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Abstract. The goal of this paper is to study the symmetry properties of nonnegative
solutions of elliptic equations involving a non uniformly elliptic operator. We consider on
a ball the solutions of

∆pu + f(u) = 0

with zero Dirichlet boundary conditions, for p > 2, where ∆p is the p-Laplace operator and
f a continuous nonlinearity. The main tools are a comparison result for weak solutions and
a local moving plane method which has been previously used in the p = 2 case. We prove
local and global symmetry results when u is of class C 1,γ for γ large enough, under some
additional technical assumptions.
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1 Introduction and main results

The goal of this paper is to prove local and global symmetry results for the nonnegative
solutions of







∆pu + f(u) = 0 in B
u ≥ 0 in B
u = 0 on ∂B

(1)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplace operator or p-Laplacian, and B = B(0, 1)
is the unit ball in R

d, d ≥ 1. We will focus on the non uniformly elliptic case: p > 2, and
consider nonlinearities f which are continuous on R

+.

In earlier works of two of the authors [14, 15, 16], it has been noted that for p = 2 the
C2 regularity of u is apparently a threshold in order to apply the moving plane technique.
Here we will see that the threshold for p > 2 is rather C 1,1/(p−1). As in [16], additional
properties of f are required at least close to its zeros. The main tools of this paper are the
maximum principle when the nonlinearity is nonincreasing or, based on a local inversion,
when ∇u 6= 0, and a local moving plane technique.

Our results are not entirely satisfactory, since the statements are rather technical, but on
the other hand, they are a first achievement in obtaining symmetry results by comparison
techniques in the case of non uniformly elliptic operators. Let us start with a simple case,
where we assume the following additional conditions on f .

(H1) Let f be a real function defined on R
+ such that:

a) f ∈ Cα(R+) for some α ∈ (0, 1),
b) ∃ θ > 0 such that f > 0 on (0, θ), f < 0 on (θ,+∞),
c) f is nonincreasing on (θ − η, θ + η) for some η > 0.

Theorem 1 (Symmetry result for the p-Laplacian with p > 2)
Let p > 2, γ ∈ (1/(p − 1), 1). Consider a function f satisfying (H1) and a solution
u ∈ C1,γ(B) of (1). Then u is positive and radially symmetric on B.

Remark 1 A consequence of the C1,γ regularity of the solution on the whole ball is that the
maximum of this solution needs to be reached at the level u = θ (see Lemma 8). Does such
a solution exist ? Given a function f and using a shooting method, we obtain a solution on
a ball of radius large enough. Then a rescaling gives a solution on B for an appropriately
rescaled nonlinearity f , which provides an example of existence of a solution.

A result of symmetry similar to that of Theorem 1 also holds under weaker regularity
assumptions on f .

(H2) f ∈ C0(R+) and f > 0 on (0,+∞).

Theorem 2 (Symmetry result with f only continuous)
Let p > 2, γ ∈ (1/(p − 1), 1). Assume that (H2) holds and consider a solution u ∈
W 1,p(B) ∩ L∞(B) of (1) such that, with M = ‖u‖L∞(B),

u ∈ C2
(

B \ (∇u)−1(0)
)

∩ C1,γ
(

u−1([0,M))
)

.

If f is nonincreasing in a neighborhood of M , then u is positive and radially symmetric
on B.
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Remark 2 If we assume that u belongs to C1,γ(B) with γ > 1/(p−1), then f(M) = 0. See
Lemma 8. Reciprocally if f(M) 6= 0, as we shall see in Example 1, a solution like the one
of Theorem 2 has a regularity which is not better than C 1,1/(p−1) at the points x such that
u(x) = M . This is the reason why the C1,γ regularity cannot be assumed at such points.

The starting point of the moving plane technique is the celebrated paper by Gidas, Ni
and Nirenberg [20] based on [1, 2, 26]. An improvement was made in [19, 5, 27] using the
monotonicity properties of the nonlinearity. This lead to a local moving plane technique
[14, 15, 16] in the case of the Laplacian, which is well suited for nonlinearities with low
regularity. The corresponding notion of local symmetry also seems appropriate in the case
of the p-Laplacian. Further interesting results were obtained in [17, 18].

For nonlinear elliptic operators, the story is shorter [8, 9, 10]. It strongly relies on
comparison methods [29, 6, 7] but covers the case of the p-Laplace operator only when p < 2.
For completeness, let us mention that related results have been obtained by rearrangement
techniques, for instance in [23, 21], and that in [3, 4], F. Brock has been able to get
symmetry results for the p-Laplace operator by a completely different approach based on
a continuous Steiner symmetrization.

Our goal is to get local symmetry results for p > 2 using an adapted version of the
maximum principle [11, 24, 25] and regularity properties [12, 28, 13, 22], with a local

moving plane method which is essentially adapted from [15, 16]. The paper is organized
as follows. In the next section, we state a local symmetry result (Theorem 3). Theorem 2
is a simple corollary of Theorem 3. In the third section we start with two examples, which
motivate the choice of the class of regularity of the solutions and then state three useful
lemmas. The fourth section is devoted to the proof of Theorem 3 by the local moving plane

method. Proofs of Theorems 1 and 2 are contained in the proof of Theorem 3.

2 A general result

In this section we present a local symmetry result, generalizing Theorem 2 to sign-changing
functions f .

(H) The function f ∈ C0(R+) has a finite number of zeros and f(0) ≥ 0. Moreover, if

f(u0) = 0 for some u0 ≥ 0, then there exists η > 0 such that:

(a) either f is nonincreasing on (u0 − η, u0 + η) ∩ R
+,

(b) or f(u) ≥ 0 on (u0, u0 + η),

We say that u0 ∈ f−1(0) belongs to Za in case (a) and to Zb in case (b). Note that
f−1(0) = Za ∪ Zb.

Theorem 3 (Local symmetry result with f only continuous)
Let p > 2, γ ∈ (1/(p− 1), 1). Assume that f satisfies (H) and consider a C 1(B) solution u
of (1) such that, with M = ‖u‖L∞(B),

u ∈ C2
(

B \ (∇u)−1(0)
)

∩ C1,γ
(

u−1([0,M))
)

.

If f is nonincreasing in a neighborhood of M and if the set J := u−1(Zb) ∩ (∇u)−1(0) is
empty, then u is locally radially symmetric and the set u−1([0,M))∩(∇u)−1(0) is contained
in Za.
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Here locally radially symmetric [4] means that there exists an at most countable family
(ui)i∈I of radial functions with supports in balls Bi, i ∈ I, such that ui|Bi

is a nonnegative
radial nonincreasing solution of ∆pui+f(ui+Ci) = 0 on Bi, where ui|(B\Bi) ≡ 0 and Ci ≥ 0
is a constant satisfying f(Ci) = 0, and such that

u =
∑

i∈I

ui .

Remark 3 In the case of Theorem 3, I is finite. Monotonicity holds on balls or annuli.
As a consequence, in Theorems 1 and 2, monotonicity holds along any radius. The mono-
tonicity is even strict in case of Theorem 2, while there might be a plateau at level θ in case
of Theorem 1.

The regularity of locally radially symmetric solutions can be studied by elementary meth-
ods, which, under an additional condition on f in case (a) of (H), allows to give a sufficient
condition under which all sufficiently smooth solutions are globally radially symmetric.

Corollary 4 Let α ∈ (0, (p − 2)/2) and consider f such that for any u0 ∈ Za,

0 < lim inf
u→u0

|f(u)|

|u − u0|α
< +∞ .

Under the same assumptions as in Theorem 3, if α+1
p−α−1 < γ < 1, then u is globally radially

symmetric and decreasing along any radius.

This corollary is a consequence of Proposition 5, which will be stated in the next section.

3 Preliminaries

Let us start with two examples and a statement on the regularity of locally radially sym-
metric solutions of (1). Consider a radial solution in a ball centered at 0 given as a solution,
with r = |x|, of the ordinary differential equation







1
rd−1

(

rd−1 |u′|p−2 u′
)′

+ f(u) = 0 ,

u(0) = u0 > 0 and u′(0) = 0 .

(2)

Example 1 Let f(u0) 6= 0 and f(u) ≡ f(u0) on a neighborhood of u0. Then u(r) =
u0 −A sgn(f(u0)) rβ+1 is the solution of (2) in a neighborhood of r = 0, with β = 1/(p− 1)
and A = (|f(u0)|/d)β/(β + 1). The same formula for u is true up to lower order terms if
f is smooth but not constant. In any case, u is exactly in C 1,1/(p−1) at r = 0, and this is
why the level u = M has to be excluded in our results if f(M) 6= 0.

Example 2 Let f(u) = |u0 − u|α−1(u0 − u). Then exactly as above, u(r) = u0 ±Arβ+1 is
a solution of (2) in a neighborhood of r = 0, with β = (α + 1)/(p − α − 1) and for some
A > 0, which depends on d, α and p. In this case, u is exactly in C 1,β at r = 0 with
β > 1/(p − 1) if α > 0. However, there is no uniqueness since u ≡ u0 is also a solution.
Actually we may find a continuum of solutions as follows: take u ≡ u0 on (0, r0) for some
r0 > 0, and u(r) = u0 ± A (r − r0)

β+1(1 + o(r − r0)), for r in a neighborhood of r+
0 . This

solution also has exactly a C1,β regularity.
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Remark 4 If u0 ∈ Zb, then there is no radial solution with u(0) > u0 and ∇u = 0 on
{u = u0}, because of Lemma 9 (strong maximum principle and Hopf’s lemma, see below).

These two examples unveil regularity, not only for radially symmetric solutions of (1)
but also for locally radially symmetric solutions, since (1) is invariant under translation.
This can be stated as follows (the proof is left to the reader).

Proposition 5 Assume that f is continuous. Any locally radially symmetric solution
of (1) is of class C2 outside of its critical set. At a critical point x0 ∈ B, u is ex-
actly in C1,1/(p−1) if u0 = u(x0) 6∈ f−1(0). If we further assume that f satisfies the
hypotheses of Corollary 4 then u is either locally constant or at most of class C 1,β with
β = (α + 1)/(p − α − 1).

The proof of Corollary 4 is a straightforward consequence of Theorem 3 and Proposition 5.
The next result relates the assumption u ≥ 0 with the fact that, in the definition of the
local radial symmetry, ui ≥ 0 on Bi.

Corollary 6 Assume that f is continuous and let u be a solution of

{

∆pu + f(u) = 0 in B ,
u = 0 on ∂B ,

having the following property: there exists an at most countable family (ui)i∈I of radial
monotone functions with supports in balls Bi ⊂ B such that u =

∑

i∈I ui, where ui satisfies
∆pui+f(ui+Ci) = 0 on Bi, ui|∂Bi

≡ 0, the constants Ci are all non-negative and f(Ci) = 0
for all i ∈ I.

If d ≥ 2 and u ≥ 0, then ui > 0 in Bi for any i ∈ I, and u is locally radially symmetric
in the sense of the definition given in Section 2. Moreover, for any d ≥ 1, if there exists
an i ∈ I such that infBi

ui < 0, then infBi
u < 0.

Proof. Under the assumptions of Theorem 3, this is a straightforward consequence of the
proof. The general case is an extension to p > 2 of a result which has been proved for p = 2
in [14], Proposition 1 (also see [16]). �

Before proving Theorem 3, we shall state three lemmata. Let us start with a weak
comparison result due to Montenegro [24] (also see [11, 25] for related results).

Lemma 7 (Weak comparison principle) Let u and v be solutions in W 1,p ∩L∞(ω) of

∆pu + f(u) = 0 and ∆pv + f(v) = 0 ,

respectively, where ω is a bounded open connected set in R
d with a C1 by parts boundary.

Assume that f is a nonincreasing function on u(ω)∪v(ω). If u ≥ v on ∂ω a.e., then u ≥ v
in ω a.e.

Lemma 8 (Characterization of the critical set) Consider a domain ω in R
d. Let

u ∈ C1,γ(ω) be a solution of
∆pu + f(u) = 0 in ω

and consider x0 ∈ ω such that ∇u(x0)=0. If x0 ∈ ∂ω, assume moreover that u ∈ C1,γ(ω),
∂ω is Lipschitz and A(x0) = limε→0 ε−d Vol({x ∈ ω : |x − x0| < ε}) > 0. If γ > 1/(p − 1),
then f(u(x0))=0.
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Proof. Assume for simplicity that x0 = 0 and u(x0) = 0. Consider then uε(x) = ε−1u(εx).
A straightforward computation gives

ε−1∆pu
ε + f(ε uε) = 0 .

Because of the C1,γ regularity of u,

|∇uε(x)|p−1 ≤ C |x|γ(p−1)εγ(p−1)

for some nonnegative constant C. Let φ be a nonnegative nonzero radial test function,
then

f(0)A(x0)
∫

Rd φ dx = limε→0

∫

ε−1ω f(εuε)φ dx
= limε→0 ε−1

(∫

ε−1ω |∇uε|p−2∇uε · ∇φ dx
)

≤ C limε→0 εγ(p−1)−1
∫

Rd |x|γ(p−1)|∇φ| dx = 0 ,

which proves that f(0) = 0. Here we assume A(x0) = |Sd−1|/d if x0 ∈ ω. �

For the completeness of this paper, we finally recall a result due to Vázquez [29].

Lemma 9 (Strong maximum principle and Hopf’s lemma) Let ω be a domain in
R

d, d ≥ 1, and let u ∈ C1(ω) be such that ∆pu ∈ L2
loc(ω), u ≥ 0 a.e. in ω. Assume that

−∆pu + β(u) ≥ 0 a.e. in ω

with β : [0,+∞) → R continuous, nondecreasing, β(0) = 0 and such that either there exists
an ε > 0 for which β ≡ 0 on (0, ε) or β(s) > 0 for any s > 0 and

∫ 1
0 (s β(s))−1/p ds = +∞.

Then if u does not vanish identically on ω, it is positive everywhere in ω. Moreover, if
u ∈ C1(ω ∪ {x0}) for an x0 ∈ ∂ω that satisfies an interior sphere condition and u(x0) = 0,
then the derivative along the unit outgoing normal vector at x0 satisfies: ∂u

∂ν (x0) > 0.

4 Proof of Theorem 3

We will split the proof of Theorem 3 in five steps, which are more or less classical in
moving plane techniques. In the first one, we prove that one can start the method. Then
we characterize the obstructions and get the global symmetry result when there is no
obstruction. In the third and fourth steps, we prove that obstructions are due only to
balls on which the solution is radially symmetric. Finally in the fifth step we establish the
local symmetry result. We also indicate how the special cases of Theorems 1 and 2 can be
treated.

Consider e1 ∈ Sd−1 and denote by x1 the coordinate along the direction given by e1,
and by x′ the coordinate in the orthogonal hyperplane identified with R

d−1. Let λ > 0 and

Tλ = {x ∈ B : x = (x1, x
′) ∈ R × R

d−1, x1 = λ} ,
Σλ = {x ∈ B : x = (x1, x

′) ∈ R × R
d−1, x1 > λ} ,

xλ = (2λ − x1, x
′) if x = (x1, x

′) , uλ(x) = u(xλ) and wλ = uλ − u .

Step 1: Starting the moving plane method

Consider λ0 = sup{x1 ∈ (0, 1] : ∃x′ such that (x1, x
′) ∈ B and u(x1, x

′) > 0}. Up to
a change of coordinates, we may therefore assume that λ0 > 0. We claim that the moving
plane method can be started, that is, there is a λ < λ0 such that wλ ≥ 0 in Σλ for any
λ ∈ (λ, λ0).
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Let us assume first that 0 ∈ Zb or f(0) > 0. In this case we notice that for some η > 0,

−∆pu ≥ 0 on {x ∈ B : 0 < u(x) < η} .

We can use Lemma 9 to conclude that u > 0 in B, and ∂u
∂x1

(1, 0) < 0. Thus λ0 = 1 and the
claim is proved.

Next we assume that 0 ∈ Za, that is, f is nonincreasing on (0, η). Assume by contradic-
tion that there exists a sequence λn ↗ 1, such that for each n ∈ N, there exists xn ∈ Σλn

such that

wλn
(xn) < 0 .

For n large, we can certainly have that η > supx∈Σλn
u(x). Noticing that on ∂Σλn

we have
uλn

≥ u, we may apply Lemma 7 with ω = Σλn
and get a contradiction that proves the

claim.

Step 2: Characterizing the obstructions

Let λ = inf{λ > 0 : wλ(x) ≥ 0 ∀ x ∈ Σλ}. We assume that λ > 0: there exists a
sequence λn ↗ λ and a sequence xn ∈ Σλn

such that wλn
(xn) < 0. We may assume that xn

is a minimum point of wλn
, so that ∇wλn

(xn) = 0. Up to the extraction of a subsequence,
xn converges as n → +∞ to some x ∈ Σλ, which satisfies wλ(x) = 0 and ∇wλ(x) = 0. We
call this point x an obstruction.

We observe that in case 0 ∈ Zb or f(0) > 0, u is decreasing in the direction x1 near
∂B ∩ Σλ for λ close to λ and so that x 6∈ ∂B. Then one of the following cases holds:

1) x ∈ Σλ. At this point we may have ∇u(x) = 0, which implies that f(u(x)) = 0 by
Lemma 8 if u(x) < M , or wλ ≡ 0 on B(x, ε) for some ε > 0. In fact, if ∇u(x) 6= 0,
we can use a local inversion method and the strong maximum principle as in [15] to
conclude that wλ ≡ 0 near x, since wλ has a local minimum at x.

2) x ∈ Tλ∩B. Since x ∈ B it is standard that ∂u
∂x1

(x) = −1
2

∂w
λ

∂x1
(x) = 0, which implies that

∇wλ(x) = ∇u(x) = 0. Actually, if ∇u(x) 6= 0, we can use a local inversion method as
in [15] and get a contradiction with Hopf’s lemma for usual elliptic operators. Now
we have two possibilities: either u(x) = M , or we can use Lemma 8 to find that
f(u(x)) = 0. In summary, either u(x) = M or f(u(x)) = 0, and ∇u(x) = 0.

3) In case 0 ∈ Za it may occur that x ∈ ∂B∩Σλ. If x ∈ ∂B∩Σλ then uλ(x) = u(x) = 0 and
so ∇uλ(x) = 0, since xλ ∈ B. Consequently, if ∇u(x) 6= 0 we have that ∇wλ(x) ·e1 <
0, which is a contradiction. Thus we must have ∇u(x) = 0. If x ∈ T λ ∩ B then
∂wλ/∂x1(x) = −2∂u/∂x1(x) = 0 and we also have ∇u(x) = 0.

Step 3: The obstruction set and the critical points of u

Let λ be the first value of λ for which an obstruction point x appears in applying the
moving plane method. Remark that all possible obstruction points x are contained in the
set

K :=
{

x ∈ ∂Σλ : ∇u(x) = 0
}

∪
{

x ∈ Σλ \ Tλ : u(x) = uλ(x)
}

.

We claim that the set K1 = {x ∈ K : ∇u(x) 6= 0} is not empty.

Assume by contradiction that K1 = ∅: ∇u(x) = 0 for all x ∈ K. Let us denote by
Qε(x) the set {y ∈ R

d : maxi=1,2,...d |yi − xi| < ε}, where ε > 0 is taken small. From the
covering ∪x∈KQε(x) of the compact set K if 0 ∈ Zb or f(0) > 0, and of the compact set
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K ∪
(

K ∩ T λ ∩ ∂B
)

if 0 ∈ Za, we can extract a finite subcovering corresponding to points
xj ∈ K, j = 1, 2,... L for some number L, and define the open set

ωε :=

L
⋃

j=1

Qε(xj) ⊃ K .

If 0 ∈ Zb or by Lemma 9 if f(0) > 0, we can choose ε small enough so that ωε ⊂ B
and observe that by construction ωε has a boundary of class C1 by parts. Next we define
Γ = ∂ωε. We can find δ1 > 0 and δ > 0 such that

uλ ≥ u + δ on Σλ+δ1
∩ Γ .

Next we claim that
∂u

∂x1
< −δ on Tλ ∩ Γ ,

for a possibly smaller δ > 0. If the claim was false, then there would be a point x0 ∈ Tλ ∩Γ
with ∂u

∂x1
(x0) = 0. But then, since x0 ∈ Γ and uλ(x0) = u(x0), we have ∇u(x0) 6= 0. Thus,

we can use a local inversion method and the strong maximum principle as in [15] to prove
that uλ ≡ u in a neighborhood of x0 in Σλ and then K1 6= ∅, which is a contradiction with
our assumption.

If 0 ∈ Za, we take δ1 smaller than dist
(

T λ ∩ ∂B, ∂ωε

)

, and we replace ωε by ωε ∩ B
and Γ by ∂ωε ∩ B. Let us consider η > 0 small. First we analyze the behavior of u and
uλ in A1 = (B \ B(0, 1 − η)) ∩ Σλ+δ1

. For any x0 ∈ Γ ∩ ∂B ∩ Σλ+δ1
, by definition of K,

uλ(x0) = uλ(x0) − u(x0) ≥ δ0 > 0. By continuity, for x in a neighborhood of x0 and for
λ − λ > 0 small enough, have uλ(x0) − u(x0) ≥ δ0/2 > 0. Taking η smaller if necessary,
this implies that

uλ ≥ u in Γ ∩ A1,

for λ − λ > 0 small enough. Next we consider A2 = B(0, 1 − η) ∩ Σλ+δ1
. Then that by

continuity, the property

uλ ≥ u + δ on Γ ∩ A2

can be extended to

uλ ≥ u + δ/2 on Γ ∩ A2 ,

for λ − λ > 0 small enough. The property

∂u

∂x1
< −δ on Tλ ∩ Γ

holds for the same reasons as in the first case.

Thus, in both cases, using continuity again, for possibly smaller δ and δ1, we see that

∂u

∂x1
< −δ on

(

Σλ\Σλ+δ1

)

∩ Γ

and, for η > 0 small enough, we also have

uλ ≥ u + δ/2 on Σλ+δ1
∩ Γ , for λ ∈ (λ − η, λ) ,

∂u

∂x1
≤ −δ/2 on

(

Σλ\Σλ+δ1

)

∩ Γ , for λ ∈ (λ − η, λ) .
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From the last inequality, we get

uλ ≥ u on
(

Σλ\Σλ+δ1

)

∩ Γ ,

from where it follows that

uλ ≥ u on Γ ∩ Σλ .

But we also have uλ = u on Tλ ∩ ωε and uλ ≥ u in ∂B ∩ Γ . As a consequence, for
ωλ

ε = ωε ∩ Σλ, we get

uλ ≥ u on ∂ωλ
ε .

By Lemma 8 we have f(u(K) \ {M}) ⊂ {0}, and then, by the assumptions of Theorem 3,
u(K) ⊂ Za∪{M}. We recall that in a neighborhood of every point in Za∪{M}, f is nonin-
creasing, by hypothesis. Thus, for ε, η small enough, this guarantees that f is nonincreasing
on u

(

ωλ
ε

)

∪ uλ

(

ωλ
ε

)

. Then Lemma 7 applies and gives that

uλ ≥ u on ωλ
ε ,

for λ ∈ (λ− η, λ). This proves that there is no obstruction in ωλ
ε , a contradiction: K1 6= ∅.

Step 4: Getting a local symmetry result

Let us notice that K1 ⊂ Σλ. Because of the local inversion method and the strong
maximum principle as in [15] again, K1 is an open set. Let C+ be one of its connected
components:

∇u = 0 on Γ+ = ∂C+ ∩
(

Σλ\Tλ

)

.

By Lemma 8 and the assumptions of Theorem 3, u (Γ+) ⊂ Za ∪ {M} and u is equal to a
constant on each component of ∂C+ ∩ Σλ. This in particular implies that C+ ∩ Tλ 6= ∅,

otherwise we would have C+ ⊂ Σλ\Tλ: the fact that u is constant in each connected
component of ∂C+ would contradict the fact that u is nondecreasing and ∇u 6= 0 in C+.

Define

C = C+ ∪ C− ,

where C− is the reflexion of C+ with respect to Tλ. The set C is connected and symmetric
with respect to Tλ, and by construction the function u is symmetric on C with respect
to Tλ.

Step 5: Getting a global symmetry result

Let us define u1 = infC u and u2 = supC u. By monotonicity of u in the x1 direction,
we know that u takes either the value u1 > 0 on the boundary of C, where ∇u = 0, or
u1 = 0 on ∂C ∩ ∂B. Consequently, by Lemma 8, we have f(u1) = 0 if u1 6= 0. Similarly,
either u takes the value u2 on another connected component of the boundary of C and
then f(u2) = 0, or u reaches its maximum in an interior point x ∈ C that we may take in
Tλ ∩ C.

Because u1 and u2 belong to {0}∪Za∪{M}, which is a finite set, and |∇u| is uniformly
bounded in B, we deduce that C contains a ball of some radius r0 > 0, which depends only
on f and u. There are therefore only a finite number of such components C. Moreover,
if we consider all possible sets C, symmetric with respect to a certain hyperplane, along
which u is increasing and where ∇u = 0 on ∂C (except maybe for u1 = 0), we still have a
finite number, say N0.
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Now we consider N = dN0 + 1 directions γi ∈ Sd−1, i = 1, 2, ...,N , such that the angle
(γi, γj) is 2π-irrational for any (i, j) with i 6= j, and such that any family of d such unit
vectors generates R

d. It is not hard to prove that a set which is symmetric with respect to
those directions is actually radially symmetric, with respect to some point in it. See [16]
for more details. Thus, if we apply the moving plane procedure in all the directions given
above, we find a connected component C which is radially symmetric, i.e. an annulus (or a
ball) C = Br1

(x0)\Br2
(x0) with r1 > r2 ≥ 0, and such that u = u1 on ∂Br1

(x0) and u = u2

on ∂Br2
(x0). Then we can consider the following modifications of the function u. First we

consider v1 defined in B as v1 ≡ u1 in Br1
(x0) and v1 = u in B \ Br1

(x0). Second, in case
r2 > 0, we define v2 = u in Br2

(x0).

At this point, under the hypothesis of Theorem 1, the function u is radially symmetric,
and M = θ. We observe that the set {x : u(x) = M} is a closed ball of radius r ≥ 0.

Under the hypothesis of Theorem 2, we also see that the function u is radially symmetric.

In the case of Theorem 3, we reapply Step 1-5 to the function x 7→ v1(x) in B, and to
the function x 7→ v2(x) − u2 in Br2

(x0). We remark that u ≥ u2 on Br2
(x0) because of

the monotonicity of the solution in x1. Thus all assumptions of Theorem 3 hold with B
replaced by Br2

(x0). A finite iteration provides the result. �
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