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Abstract

A multi-dimensional junction is the singular (d+ 1)-manifold obtained by gluying through
their boundaries a finite number of copies of the half-space Rf‘l. We show that the general
theory developed by the authors (2013) for the network setting can be adapted to this multi-
dimensional case. In particular, we prove that general quasi-convex junction conditions reduce
to flux-limited ones and that uniqueness holds true when flux limiters are quasi-convex and
continuous. The proof of the comparison principle relies on the construction of a (multi-
dimensional) vertex test function.
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1 Introduction

This paper is concerned with extending the theory developed for Hamilton-Jacobi (HJ) equations
posed on junctions in [3] to the multi-dimensional setting.
A multi-dimensional junction is made of N copies of Rff“l glued through their boundaries.

Ji ={X = (2',2;) : 2’ € R%, 2; > 0} ~ R
J= U 7% with =X = xd) ’ zi 2 0} > Ry (1.1)
im1 N JiNnJ; =T ~R*x {0} for i+ j.
We emphasize that the common boundary of the half-spaces J; is denoted by I' and is called the
junction interface. For points X,Y € J, d(X,Y) denotes |2’ — ¢/| + d(x,y) with
r+y ifXEJi,YEJj,Z.#j
d(z,y) = .
|z —y| if X,Y € J,.
For a smooth real-valued function u defined on J, 9;u(X) denotes the (spatial) derivative of

u with respect to x; at X = (2/, ;) € J; and D'u(X) denotes the (spatial) gradient of u with
respect to z’. The “gradient” of u is defined as follows,

(D'u(X), du(X)) if X eJfi=J;\T,

(D'u(z’,0), 01u(2’,0), ..., Ovu(z’,0)) if X=(2,0)€eTl. (12)

Du(X) = {
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With such a notation in hand, we consider the following Hamilton-Jacobi equation posed on the
multi-dimensional junction J

{ us+ H;(Du) =0 t>0,X € J;\T, (1.3)
u+ F(Du)=0 t>0,XeTl
submitted to the initial condition

uw(0,X) =u’(X) for X eJ (1.4)
The second equation in is referred to as the junction condition.

The Hamiltonians are supposed to satisfy the following conditions:
(Continuity) H; € C(R¥H)
(Quasi-convexity) VA, {H; < A} is convex (1.5)
(Coercivity) lim|p| o0 Hi(P) = +00.

We next define the A-limited flux function Fs associated with the multi-dimensional junction
J. In order to do so, we first consider 79(p’) € R minimal such that p; — H;(p’,p;) reaches its
minimum at p; = 79(p’) and H; is defined by
H (7 p) = H;(p', pi) it p; <7(p),

3 ) — .

' Hi(p', @ (p') it p>m ().
In a similar way, we define
Hy(p',m(p))  if pi <m(p),
H(p',pi) £ p>md(p).

So-called fluz-limiter functions A: R? — R are always assumed to be continuous and, in some
important cases, to satisfy the following condition,

H (0, pi) = {

—-

A:R% = R is continuous and quasi-convex. (1.6)

The function Fy is defined for p = (p1,...,pn) and P = (p',p) as

i=1,...,

F4(P) = max (A(p’), max Hi(p’,pi)) . (1.7)

We now consider the following important special case of (|1.3)),

ut—l-Hi(Du):O t>0,X€Jl\P, (18)
u+ Fa(Du) =0 ¢>0,XeT. '
We point out that A could be replaced with max(A, Ag) where
Ao(p) = max A;(p')  with  A;(p") = min H;(p, ;). (1.9)
i=1,...,N pi€R

We notice (see Lemma in Appendix) that the functions A4;, ¢ = 0,..., N are quasi-convex,
continuous and coercive.

As far as general junction conditions are concerned, we assume that the junction function
F:R? x RN — R satisfies

(Continuity) F € C(R? x RN) (1.10)
1.10
(Monotonicity) Vi, p; — F(p',p1,...,pn) is non-increasing
and, in some important cases,

(Quasi-convexity) VA, {F < A} convex. (1.11)

In particular, under assumption (1.5)), if A satisfies (1.6]), then F4 defined in (1.7)), satisfies (|1.10)
and (1.11)).



1.1 Main results

For simplicity, we state the next theorem under a simple continuity assumption for subsolutions,
but a more general result is true (see Theorem [2.13]).

Theorem 1.1 (General junction conditions reduce to F4). Let the Hamiltonians satisfy and
let F: RN — R satisfy . There exists a unique coercive continuous function Ap : R* — R,
satisfying Ap > Ay with Ag defined in (@, such that the following holds. Every relaxed viscosity
super-solution (resp. sub-solution, which is moreover assumed to be continuous) of s a
Ap-fluz limited super-solution (resp. sub-solution) of . Moreover, if F is quasi-convex, so is
Ap.

Remark 1.2. Let p? > 70 (p’) be minimal such that H;(p’, p;) = Ag and let p° denote (p?,...,p%).
The function Ap is defined as follows: for each p’ € R%, if F(p',p°) < Ag(p'), then Ap(p') = Ao(p'),
else Ar(p') is the only A € R such that A > Ag(p’) = max; A;(p’) and there exists p; > p? such
that

Hy(p',pf) =F(p',p") =X
where pT = (pf7 . ,p}). Notice that even if X is unique, p™ may be not unique.

Theorem 1.3 (Comparison principle on a multi-dimensional junction). Assume that the Hamil-
tonians satisfy , the function A satisfies with A > Ay where Aqy is defined in (@,
and that the initial datum wug is uniformly continuous. Then for all (relazed) sub-solution u and
(relazed) super-solution v of — with F = Fu defined in , satisfying for some T > 0
and Cp > 0,

u(t, X) < Cr(1+d(0,X)), v(t,X)>—-Cr(1+d(0,X)), forall (tX)€[0,T)xJ, (1.12)

we have
u<wv in [0,T) x J.

1.2 Comparison with known results

In the special case N = 2, our results are related to [Il 2] where an optimal control problem in a
two-domain setting is studied. The state of the system evolves according to two different dynamics
on each side of an hypersurface. Moreover, the two dynamics at the interface corresponding to the
maximal and minimal Ishii’s discontinuous solutions of the associated Hamilton-Jacobi equation
are identified. One of the two value functions is characterized in terms of partial differential
equations. We showed in [3] that, in the one-dimensional setting, both value functions can be
characterized by using the notion of flux-limited solutions introduced in [3]. The result of the
present paper indicates that such a connexion holds in the general two-domain setting, even if this
is out of the scope of the present paper. Moreover, we can deal with quasi-convex Hamiltonians
instead of convex ones.

The reader is also referred to [6] 5] for optimal control problems in multi-domains. In par-
ticular, the authors impose some transmission conditions. As we already mentioned it in [3],
Definition is strongly related to these works. See also [4] for stationary Hamilton-Jacobi prob-
lems on multi-dimensional junctions, where comparison principles are established using an optimal
control approach. We finally refer the reader to the references cited in [3] and the comments there.

Organization of the article. The paper is organized as follows. In Section |2 the notion of
viscosity solution in the setting of multi-dimensional junction is introduced. The proof of Theorem
[[Tlis done in Subsection Section [Blis devoted to the construction of the vertex test function.
The proof of Theorem [I.3]is done just after the statement of Theorem [3.I] about the vertex test
function. The proof of a technical lemma is presented in an appendix.



Notation. For a function f : D — R, epi f denotes its epigraph {(X,r) € D x R: r > f(X)}
and hypo f denotes its hypograph {(X,r) € D x R: r < f(X)}. We will use the notation P to
denote different objects, depending on the context.

2 Viscosity solutions on a multi-dimensional junction

2.1 Definitions
2.1.1 Class of test functions

For T > 0, set Jr = (0,T) x J. The class of test functions on Jr is chosen as follows,

C'(Jr) = {¢ € C(Jr), ¢ restricted to (0,T) x J; is C' fori =1,..,N}. (2.1)

2.1.2 Classical viscosity solutions

In order to define classical viscosity solutions, we recall the definition of upper and lower semi-
continuous envelopes u* and wu, of a (locally bounded) function u defined on [0,7T) x J:

u*(t,X) = limsup u(s,Y) and ue(t, X) = liminf wu(s,Y).
(,Y)=(t,X) (8,Y)=(t,X)

Definition 2.1 (Classical viscosity solutions). Assume the Hamiltonians satisfy (L.5)) and the flux
function F satisfies (1.10]). Let u : [0,T) x J — R be locally bounded.

i) We say that u is a (classical viscosity) sub-solution (resp. super-solution) of (1.3)) in Jr if for
all test function ¢ € C*(Jr) such that

u* < ¢ (resp. u. > ) in a neighborhood of (ty, Xo) € Jr
with equality at (to, Xo) for some to > 0, we have

e + Hi(Dyp)

0 (resp. > 0) at (to,Xo) if Xg € ‘]z* =J; \ r
¢t + F(Dp) <0

<
< (resp. >0) at (to,Xo) if Xo eT. (2.2)

ii) We say that u is a (classical viscosity) sub-solution (resp. super-solution) of (1.3))-(1.4) on
[0,T) x J if additionally

u (0, X) <wup(X) (resp. ux(0,X)>wup(X)) forall ze€lJ

ili) We say that w is a (classical viscosity) solution if u is both a sub-solution and a super-solution.

Definition 2.2 (Flux-limited solutions). Consider a continuous flux-limiter function A: R? — R.
Then u is a A-flux limited sub-solution (resp. super-solution, solution) of (1.8]) if it is a classical
sub-solution (resp. super-solution, solution) of (1.3|) with F' = F4.

2.1.3 Relaxed viscosity solutions

We next introduce relaxed viscosity solutions.

Definition 2.3 (Relaxed viscosity solutions). Assume the Hamiltonians satisfy (1.5) and the flux
function F satisfies (1.10)). Let u : [0,T) x J — R be locally bounded.

i) We say that u is a relazed sub-solution (resp. relaxed super-solution) of (1.3)) in Jr if for all
test function ¢ € C*(Jr) such that

u* <@ (resp. wu. > ) in a neighborhood of (t9, Xo) € Jr



with equality at (to, Xo) for some to > 0, we have
¢t + Hi(Dp) <0 (resp. =0) at (to, Xo)
if Xo € J;, and

either + F(Dyp) <0 resp. >0
40+ F(Dy) resp- 20) st (t0, Xo)

or o+ Hi(Dp) <0 (resp. ) for some i
if Xg €T

ii) We say that u is a relazed (viscosity) solution if u is both a sub-solution and a super-solution.

2.1.4 The ”weak continuity” condition for sub-solutions

If F not only satisfies (1.10]), but is also semi-coercive, that is to say if
F(p',p) = 400 as max(max(0,—p;)) — +oo for each p' € R? (2.3)

then any F'-relaxed sub-solution satisfies a ”"weak continuity” condition at the junction point.
Precisely, the following result holds true.

Lemma 2.4 ("Weak continuity” condition on the junction interface). Assume that the Hamilto-

nians satisfy and that F satisfies and , Then any relaxed sub-solution u of

satisfies teh following "weak continuity” property

u*(t, X) = lim sup u(s,Y) forall i=1,...,N, forall (t,X)e (0,T)xI (2.4)
(8,Y)=(t,X), YeJ?

where we recall that JF = J;\T.

The proof of this result is a straightforward adaptation of the one of Lemma 2.3 in [3] in the
case d = 0; so we skip the details of the proof.

As in [3], we will see that the ”weak continuity” property is an important condition to avoid
pathological relaxed sub-solutions (that do exist) when F' is not semi-coercive. Moreover it turns
ou that the notion of ”weak continuity” is stable, as shows the following result.

Proposition 2.5 (Stability of the weak continuity property). Consider a familly of Hamiltonians
HY satisfying . We also assume that the coercivity of the Hamiltonians is uniform in €. Let
u® be a family of subsolutions of

ug + H; (Du) =0 n (0,T) x J;

foralli=1,... N, and that u® satisfies the "weak continuity” property . If u = limsup *u®
is everywhere finite, then u still satisfies the "weak continuity” property :

The proof of this result is also a straightforward adaptation of the one of Proposition 2.6 in [3]
in the case d = 0; so again we skip the details of the proof.

2.1.5 A reduced set of test functions
Let 7 : RY x R — R be defined as follows for A > A;(p') = min H;(p’, -)

(', ) = inf{p; : H;(p',p;) = H (p',p;) = A}
7, (', N) = sup{p; : H;(p',pi) = H; (p',pi) = A}



Definition 2.6 (Reduced viscosity solutions — the flux-limited case). Assume the Hamiltonians
satisfy and consider a continuous flux-limiter function 4 : R — R such that for all p’ € R¢,
A(p') > Ao(p'). Given u: [0,T) x J — R locally bounded, the function u is a reduced sub-solution
(resp. reduced super-solution) of with ' = Fj in Jp if and only if u is a sub-solution
(resp. super-solution) outside I' and for all test function ¢ € C*(Jr) touching u from above at
(to, Xo) € (0,+00) x T, of the following form

p(t, 2, z) = ¢(t,2) + ¢o(z)
with
¢ € CH((0,+00) x RY) ®o € CH(R)
D'¢(to, v) = po i (0) = 7 (ph, A(pp))
we have

ot + Fa(Dp) <0 (resp. >0).

Proposition 2.7 (Equivalence of Deﬁnitionsandunder "weak continuity” ). Every reduced
super-solution (resp. subsolution) u in the sense of Definition is also, for De_ﬁnition a flux-
limited super-solution (resp. a fluz-limited subsolution if u satisfies moreover the "weak-continuity”

property ).

Proof. 1t is clear that flux-limited sub-solutions (resp. super-solutions) are reduced sub-solutions
(resp. reduced super-solutions). To prove that the converse holds true, we proceed as in [3] by
considering critical slopes in z. Precisely, it is enough to prove the following lemmas.

Lemma 2.8 (Critical slopes for super-solutions). Let u be a super-solution of (1.8) away from T
and let ¢ touch u, from below at Py = (tg, Xo) with Xg € T'. Then the “critical slopes” defined as
follows

Di =sup{p € Ry : Ir > 0,0(t, X) + pr < u.(t, X) for (t,X) € B,.(Py) N ((0,400) x J;)}
satisfy for alli=1,..., N,
ei(Po) + Hi(D'o(Ry), 0ip(Po) + pi) = 0,

with the convention for p; = 400, that H;(p', +00) = +00.

Lemma 2.9 (Critical slopes for sub-solutions). Let u be a sub-solution of (L.8) away from I and
let @ touch u* from above at Py = (tg, Xo) with Xo € T'. Then the “critical slopes” defined as
follows

pi=inf{peR_:3r>0¢(t X)+px>u"(tX) for (t,X) € B.(Py) N ((0,+00) x J;)}
satisfy for alli=1,...,N,
¢t(Po) + Hi(D'(Po), 0ip(Po) +pi) <0 if pi > —o0.

Moreover, we have
pi > —oo foreach i=1,...,N

if u satisfies the "weak continuity” property .

Remark 2.10. Even if Lemma [2.9]is not stated like that, an inspection of its proof shows that it
is sufficient to have the ”weak continuity” property pointwisely at (to, Xo) and on a single branch
J to prove that p; > —oo for the same index 1.



The proofs of these lemmas are straightforward adaptations of the corresponding ones in [3]
so we skip them. The remaining of the proof is also analogous but we give some details in the
sub-solution case for the reader’s convenience.

Let ¢ touch u* from above at Py = (to, Xo) with Xo = (2(,0) € I and let A denote —p;(Fp)
and P = (p',p1,...,pn) denote Dp(Py). We want to prove

Fus(P) < . (2.5)
We know from Lemma [2.9] that for all i = 1,..., N,
Hi(p',pi +pi) < A (2.6)

for some p; < 0. In particular,

We write next

Fa(P) = max(A(), H; (¢, py))
). H; (0, pi + i)
"), Hi(p', pi + i)
)

If (2.5) does not hold true, then

Moreover, we have from that
pi+pi <7 (0, A(p)).
Hence, we can consider the following test function
¢(t,2',x) = o(t, 2, 0) + do(x)

with 0;¢0(0) = 77 (p', A(p')) for each i = 1,..., N. From the definition of reduced sub-solutions,
we thus get
A(p') = Fa(Do(Ry)) < X

which is the desired contradiction. O

2.2 Stability

In the following proposition, we assert that, for the special junction functions F's, relazed solutions
are in fact always classical solutions, that is to say in the sense of Definition [2.1

Proposition 2.11 (F4 junction conditions are always satisfied in the classical sense). Assume
the Hamiltonians satisfy and consider a continuous flux-limiter function A. If F' = Fa, then
relazed viscosity solutions in the sense of Definition coincide with viscosity solutions in the
sense of Definition |2.1]

Remark 2.12. Because relaxed solutions are always stable (see [3]), we also deduce from Proposition
that for the special case F' = Fy, classical solutions are also stable.

Proof. We treat successively the super-solution case and the sub-solution case.



Case 1: the super-solution case. Let u be a relaxed super-solution and let us assume by
contradiction that there exists a test function ¢ touching u, from below at Py = (¢, Xo) for some
to € (0,T) and Xy € T, such that

Pt + FA(DQO) <0 at P (27)

Consider next the test function ¢ satisfying ¢ < ¢ in a neighborhood of Py, with equality at Py
such that

PrlBb) = ePo) o 9ip(Po) = min(rd(D'o(Po)), ip(Po)) for i=1,.

D'a(Py) = D'p(Py) N

ey

Using the fact that Fa(Dy) = Fa(D@) > H; (D'¢,0,¢) = H;(D'¢,0;¢) at Py for all 4, we deduce
a contradiction with (2.7)) using the viscosity inequality satisfied by ¢ for some ¢ € {1,..., N}.

Case 2: the sub-solution case. Let now u be a relaxed sub-solution and let us assume by
contradiction that there exists a test function ¢ touching u* from above at Py = (to, Xo) for some
to € (0,T) and Xy € T, such that

o+ Fa(Dp) >0 at B. (2.8)

Let us define
I={ie{l,.,N}, H;(D'¢,0;p) <Fa(Dp) at Py}

and for i € I, let ¢; > 79 (D’p(Py)) be such that

Hy(D'¢(Py), q:) = Fa(Dp(F))

where we have used the fact that H;(D'p(Fp), +00) = +o00. Then we can construct a test function
¢ satisfying ¢ > ¢ in a neighborhood of Fy, with equality at Py, such that

¢e(Po) = ¢e(Fo) sy - ) max(q;, Oip(F))  if i€,
D’@(Pg) :D’ga(OPQ) and 8“0(130){ 9;0(Py) ’ if gl

Using the fact that Fa(Dy) = Fa(Dp) < H; (D', 0;9) at Py for all i, we deduce a contradiction
with (2.8)) using the viscosity inequality for ¢ for some i € {1,...,N}. O
2.3 General junction conditions reduce to flux-limited ones

We have the following result which implies immediately Theorem [1.1

Theorem 2.13 (General junction conditions reduce to F). Let the Hamiltonians satisfy (1.5)) and
let F: RN — R satisfy (1.10). There exists a unique coercive continuous function Ar : R — R,
satisfying Ap > Ag with Ay defined in @), such that the following holds.

i) Every relazed viscosity super-solution (resp. sub-solution satisfying moreover the "weak conti-

nuity” property ) of (1.3)) is a Ap-flux limited super-solution (resp. sub-solution) of (1.8).

i) Reciprocically, every Ap-fluz limited super-solution (resp. sub-solution) of (1.8)), is a F-relazed
viscosity super-solution (resp. sub-solution) of (1.3).

111) Moreover, if F is quasi-convez, so is Ap.

We prove Theorem [2.13]



Proof of Theorem[2.13. With the notation of Remark in hand, we first recall that if F'(p/, p) >
Ap(p'), then there exists only one A > Ag(p’) such that there exists p* = (pf,...,pk) with pj > p?
such that

Hy(p',pf) =Fp',p") =\

The coercivity of Ap is a direct consequence of the fact that Ap > Ay. We thus prove next
that A is continuous. Consider a sequence (p!,), converging towards p’. Then we have two cases.
Case 1n
There exists p} = (pfm . ,p?\}m) with p;’n > p? = p?(p/,) such that

Hi(p,,pi,) = F(pn,p)) = An = Ap(p,) > Ao(pl,) if  F(p,,p"(p,)) = Ao(p),). (2.9)

Case 2n

An = Ao(py) = Ar(p) i Fp),,p° (1)) < Ao(py,).
We first claim that (pj'n)n is bounded. Indeed, if not, then A,, — +oco and, for n large enough,

F(p,,p°(p,)) > An

which is impossible. The claim also implies that (A, ), is also bounded. Consider now to converging
subsequences, still denoted by (p;), and (A, )n, and let p* and A be their limits.

Case 100

We can pass to the limit in and get

H;(p',pf)=Fp,p")=A> A(p))

with pj > p9(p’) and then A = Ap(p').
Case 200
We get
A= Ao(p')
Subcase 200.1: F(p',p°(p')) < Ao(p)
Then Ar(p') = Ap(p') = A.
Subcase 200.2: F(p/,p°(p')) > Ao(p')
Then we have to enter in more details in the results of the limit process. We get

F(p'.p°) < Ao(p)) and A= Ao(p') = Hi(p',p]) where p) > (p')

with
p’ =lim p°(pl,) for a subsequence

which implies p) > p¥(p’). Then we can choose some p;~ € [p?(p’), p?] such that
Hi(p',pf) = F(',p") = Ao(p)) = A

which shows again that Ap(p’) = A.
This ends the proof that A is contiuous.

Proof of i)

We only do the proof for sub-solutions since the proof for super-solutions follows along the same
lines. Let ¢ be a test function touching v* from above at Py = (tg, Xo). We only need to consider
the case where Xy € I'. From Proposition we can also assume that

@(t’X) = ¢(t7x/) + (;50(.1‘)

with
D'¢(to,z0) =po and  Digo(0) = 7, (pp, Ar(pp))-



We have
i (FPo) +min(F(Dp(Fp)), min H;(D'p(Py),0:0(Py)) <0

which yields
¢i(Po) + max(F(py, 7 (po, Ar (1)), Ar (1)) < 0.
In view of the definition of Ar, we get

oit(Po) + Ar(py) <O0.

Now compute
Fap(Dg(Py)) = max(Ap(pp), max Hy (po, 7 (), Ar (p))) = Ar(pp)-

This ends the proof of i).

Proof of ii)

We only do the proof for super-solutions since the proof for sub-solutions follows along the same
lines. Let ¢ be a test function touching u, from below at Py = (tg, Xo). We want to show that it
is a F-relaxed viscosity supersolution, i.e.

max(F(Dp(Fp)), max H; (D' (Fp), 0ip(Fo)) = A i= —pu(Fo) (2.10)
We set

Dy(Py) = (po,p) with p = (p1,....pn)
We know that u is a Fa-reduced viscosity solution with A = Ap, i.e.

max(Ap (py), max H; (py, pi)) = Far (Dp(F)) = A (211)
Moreover, we have
F(ph, 7 (ph: Ar(p)))) = Ar(po) > Ao(ph) (2.12)
or
Ar(po) = Ao(po) (2.13)

We now distinguish two cases.
Case 1
Assume first that there exists an index ig such that H;,(pf, pi,) > max(Ap(pf), max H;(py, pi))-
Then implies the result (2.10).
Case 2
Assume that for all i, we have H;(pf,p;) < Ar(p)). Then p; < 7 (ph, Ar(p})) and F(pp,p;) >

F(po, 7+ (po, Ar(pp)) = Ar(pp) = A in case of (2.12).
In the case of (2.13)), we have Ap(p}) = Ao(pf) and the inequality for all

H;(py, pi) < Ar(py) = Ao(py) = max (H;in H;(py, q;-))
J

leads to a contradiction.
The proof of ii) is now complete.

Proof of iii)
It follows from Proposition below.
The proof is now complete. U

We now turn to the following useful proposition.

Proposition 2.14 (Quasi-convex Hamiltonians and flux functions generate quasi-convex flux

limiters). If the Hamiltonians H; satisfy (1.5) and the flux function F satisfies (1.10)-(L.11)), then

A is continuous, quasi-convex and coercive.

The proof of this proposition is postponed and can be found in Appendix.
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2.4 Existence

Theorem 2.15 (Existence). Let T > 0. Assume that Hamiltonians satisfy (1.9)), that the junction
function F satisfies (1.10)) and that the initial datum u® is uniformly continuous. Then there exists
a relaxed viscosity solution u of (1.3)-(1.4) in [0,T) x J and a constant Cr > 0 such that

lu(t, X) —u®(X)| < Cr forall (t,X)€][0,T)x J.
Moreover u is continuous.

Sketch of the proof of Theorem[2.15 Using Perron’s method as in [3], we easily get existence of
relaxed viscosity solutions for general junction functions F' satisfying . The only new result
which needs some comment is the continuity of the solution u. To this end, we first construct u
(by Perron’s method) as a F4-relaxed solution with A = Ap given by Theorem and Remark
For this problem we can apply the compariton principle (Theorem which implies both
the uniqueness and the continuity of u. Using Theorem ii), we conclude that u is also a
F-relaxed viscosity solution. O

3 Vertex test function

This section is devoted to the construction of the vertex test function to be used in the proof of
the comparison principle.
We will use below the following shorthand notation

H;(p',p) for p=p; if XeJ;\T
H X, /’ — 7 I 7 . 7 bl 3.1
( p p) { FA(p/ap) for p= (pla apN) if Xel. ( )
We also introduce a modulus of continuity wg (with obviously wg(0) = 0), such that
H(X,P)~ H(X, P)| < wr(IP — P|) forall |P|,|P|<R (3.2)

In particular, keeping in mind the definition of Du (see ([L.2))), Problem (|1.8) on the junction can
be rewritten as follows

u+ H(X,Du) =0 forall (¢ X)e(0,+00)x J.
In the spirit of the definition of test function in (2.1f), we set
cH(J) = {¢p € C(J), ¢ restricted to J; is C* fori=1,...,N}
Then our key result is the following one.

Theorem 3.1 (The vertex test function). Let A satisfying (L.6) with A > Ay and let v € (0,1].
Assume the Hamiltonians satisfy (1.5). Then there erists a function G : J?> — R enjoying the
following properties.

i) (Regularity) o) g
J or all X € J,

2 G(X,)G
GeC(J7) ond {G-,Y €CMJ) forall Y €.

(Y)
it) (Bound from below) G > 0 = G(0,0).
iii) (Compatibility condition on the diagonal) For all X € J,

0 < G(X,X) — G(0,0) < 7. (3.3)
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iv) (Compatibility condition on the gradients) For all (X,Y) € J? with d(X,Y) < K,
H(Y,-DyG(X,Y)) - H(X,DxG(X,Y)) < wr(7Ck) (3.4)
with R = Ck given in where notation introduced in , and are used.
v) (Superlinearity) There exists g : [0, +00) — R nondecreasing and s.t. for (X,Y) € J*

g(d(X,Y)) <GX,Y) and lim 9(a) = +o0. (3.5)

a—400 @
vi) (Gradient bounds) For all K > 0, there exists Cx > 0 such that for all (X,Y) € J?,
dAX,)Y)<K = |Gx(X,Y)|+]|Gy(X,Y)|<Ck. (3.6)
We now assert that Theorem is a direct consequence of Theorem
Proof of Theorem[I.3 Use Theorem [3.1]and proceed as in [3] (indeed the modification of estimate
with respect to the corresponding one in [3], does not affect the arguments of the proof). O

3.1 The case of smooth convex Hamiltonians

Assume that the Hamiltonians H; satisfy the following assumptions for i =1, ..., N,

H; € C?(R¥)  with D?H; >0 in R4+
. Hi(P) _ (3.7)
hl’nlp‘*)+oo W = 400
and the flux limiter
Ag < AcC*RY  and D*A >0 in R (3.8)

Tt is useful to associate with each H; satisfying (3.7)) its partial inverse functions 71'?[:
for \> A;(p'), Hi(p, 7X@, \)) =\ suchthat =, (p,\) < 7() <7, (0, ) (3.9)
where we recall that A;(p’) = min,, H;(p',p;). is convex in p’ (see Lemma [A 1))

Lemma 3.2 (Properties of 7). Assume ([3.7). Then wi(p',-) € C?(Ai(p'),+00) and ©i €
C(epi A;). Moreover, w3 is concave w.r.t. (p',\) in epi A; and £7;° is non-decreasing w.r.t. .

Proof. The regularity of 7% can be derived thanks to the inverse function theorem. As far as
the concavity of 7ri+ is concerned, we can drop the subscript ¢ and we do so for clarity. let
®',N), (¢, p) €epid and ¢t € (0,1). Then

A+ (1 =tu=tH@p = (', \)+ A -t)H(d', 7" (¢, 1))

> H(tp' + (1= t)¢ tn* (0, \) + (L= )7 (¢, ).

Hence

TP+ (L= )¢ A+ (1= t)p) >t (', \) + (1 = )7 (¢, 1)
which is the desired result. The monotonicity of 7+ is easy to derive from the convexity of H.
The proof of the lemma is now complete. O

We next define the function G° for X € J;,Y € J;, i,j =1,..., N, as follows,

G'X,Y)= sup (p- (2 —¢)+pz—pjy—AN (3.10)
(PA)EGY
where
gii — JAPN) ERTIXR:P = (¢ pi,pj), A = Hip',pi) = H; (W', p) 2 AW} ifi# ]
A {(PvA) 6Rd+2 XR:P= (plvpl)vA:HZ(plvpz) ZA(p/)} le:]
(3.11)
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Proposition 3.3 (The vertex test function — the smooth convex case). Let A > Ag with Ay given
by (L.9) and assume that the Hamiltonians satisfy [3.7) and the limiter A satisfies (3.8). Then
GO satisfies

i) (Regularity)

0 GOGCI({(va)GJXJa .’E;é })a
G° € C(J*) and {GO(O,-)601 1) and COC.0) & CA )

ii) (Bound from below) G° > G°(0,0);

iii) (Compatibility conditions) (3.3) holds with v = 0; and (3.4) holds with v = 0 for X = (', z),
Y =(,y) withe £y orz=y=0;

iv) (Superlinearity) (3.5)) holds for some g = ¢°;
v) (Gradient bounds) (3.6)) holds only for (X,Y) € J? such that x # y or (x,y) = (0,0);

The proof of this proposition is postponed until Subsection With such a result in hand,
we can now prove Theorem in the case of smooth convex Hamiltonians.

Lemma 3.4 (The case of smooth convex Hamiltonians). Assume that the Hamiltonians satisfy
(13.7) and the limiter A satisfies (@ with A > Ag. Then the conclusion of Theorem holds

true.

Proof. Recall that
GAUX,Y)=6;(Z) with Z=X-Y.

Up to substract G°(0,0) to G°, we can assume that G°(0,0) = 0. It is enough (and it is our goal)
to regularize GY; in a neighborhood of {z; = y;}\ {z; = y; = 0}. Let g¢ € (0, 1] small to fix later,
and consider a smooth nondecreasing function ¢ : R — [0, 1] satisfying ¢ = 0 on (—00,0], { > 0
on (0,400), and ¢ =1 on [B,400), with B > 1 large. We also consider a smooth nonincreasing
function & : [0, +00) — (0, +00) with &(+00) = 0, which satisfies in particular for Z = (2/, z;) and
a real z;

18,:(2", z:) — 64 (2, 7)| < 2 — 2|

— &)
We will regularize GY, in a neighborhood of the diagonal of half thickness £¢f with
0,z +yi) = &(12' ¢ (i + i)

To this end, we consider a smooth cut-off function ¥ : R — [0,1] such that supp ¥ C [—1,1]
with ¥ =1 on [-1/2,1/2]. We will also use a one-dimensional non-negative mollifier

if [zl 2] < 26(12"])

1 Z
palz) = 22
Ty
with supp p C [—1,1] to regularize by convolution the function &;;(Z) in the direction of z; only,
because ®;;(Z) is already C! in the other directions z’. Finally we define with Z = (2’, 2;) and

2=’ —y', z = x; — y;, the function

Zi 2
Gi(X,V)=(1-0(——2 ) )&u( )0 [ —— (@) (2 —a).
zz( ) ) ( <509(Z/737i+yi)>) 1Z(Z7ZZ)+ (609(2,7xi+yi)>/a€Rp509(2 ,wﬁ-yz)(a) 11(2721 a)

This regularization procedure preserves the desired properties like estimates (with a possible
different function g but independent on any ¢y € (0, 1]) and with a possible different constant
Ck. Moreover, for g9 > 0 small enough, this regularization procedure introduces a small error
in and another small error v in . This ends the proof of the lemma. O
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3.2 The vertex test function in J; x J; with i # j

In order to prove Proposition we first need to study G° for X € J; and Y € J; with i # j.
Then, one can write
GL(X,Y) = &;(2" — v, mi, —yy)
with
®,j(Z)= sup (P-Z—-\)
(P,N)egY

where G is defined in (3.11). Remark that for X € J; and Y € J;, we have Z = X —Y € Q
where

Q = R" x [0, +00[x] — 003 0].
We also consider the simplex
T= {(ai’aj’ao) € [071]3 oyt a; + ap = 1}

Lemma 3.5 (Necessary conditions for the maximiser : ij-version). Given Z € Q, the supremum
defining &;;(Z) is reached for some (P,\) € G4 and there exists (o, o, ) € T such that

Z = D(a- H)(P)

Proof. ®;;(Z) is defined by maximizing a linear function under a equality constraint and an
inequality constraint. Constraints are qualified if

D(H, — Hj) is not colinear with D(H; — A).

When constraints are qualified, Karush-Kuhn-Tucker theorem asserts (computing Dp(P - Z —
A)) that there exists a; € R and o > 0 such that

Z =VpH; + Ozj(Vij - VpHi) + Oéon(A — Hl)

with
g = 0 if A(p/) < Hz(plvpl)

If one sets a; = 1 — ap — o, Equivalently, we have
z; = ;0 Hi(p',pi) > 0
zj = ;0 H;(p',pi) <0
Z = aivp/Hi + OéijIHj + Oéovp/A

The constraints are qualified in particular if
&Hi(p’,pi) > 0 and @Hj(p',pj) < 0. (312)

In this case we deduce that (o, a;, ) € T. Hence, the result is proved in case .

Now assume that 9;H;(p’,p;) < 0. We remark that in all cases, 9;H;(p’, p;) > 0 since z; > 0.
Hence, 0;H;(p’,p;) = 0 or, in other words, H;(p’,p;) = Ai(p’). But the constraint H;(p’,p;) >
A(p'), the assumption A(p') > Ag(p’) and the simple fact that A;(p’) < Ap(p’) imply in particular
that A(p’) = Ao(p’). We arrive at the same conclusion if 9;H;(p’,p;) > 0. In other words,

Condition (3.12) holds true as soon as  Vp', A(p") > Ao(p). (3.13)

In particular, the result of the lemma holds true under this latter condition: A(p') > Ay (p’)
for all p’ € R, If now there are some p’ such that A(p') = Ag(p’), we remark that

®:;(2) = lim %,(2)
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where &;(7) is associated with A°(p') = e + A(p’). From the previous case, we know that there
exists P. and A, such that
6, (Z) =P Z -\

and o = (af,a5,a5) € T such that

Z = D(a- H)(P.).

We can extract a subsequence such that a® — «. Moreover, P. - Z — A, is bounded from above
and

As = Hl(plgvpf) = H](p/67p§)
Since H; and H; are assumed to be superlinear, we conclude that we can also extract a converging
subsequence from P.. This achieves the proof of the lemma. O

Lemma 3.6 (Uniqueness of P : ij-version). Let Z = (2/,z2;,2;) € Q. If there exists a, P, A and
B,Q, 1 such that o, 3 € T and

6y(Z)=P-Z-\=Q-Z—p,
Z = D(a-H)(P) = D(8- H)(Q).

Then A= pu, p' = q and

pi=q=m (1A (3.14)
except in the case
a;=0=0=z (3.15)
and
pi=q¢ =m; N (3.16)
except in the case
aj =P =0=z (3.17)

Moreover under the previous assulptions, and in all cases, we can define

P= @, m (0,7 (0, N)

and then we have X R
6,;(Z)=P-Z—-X and Z=D(a-H)(P)

Proof. We consider the function ¥ : R%2 x T — R defined as follows
U(P,a) = D(a- H)(P).
By assumption, we have
0=D(a-H)(P)—D(B H)Q).
If P denotes Q — P and & denotes 3 — «, then
1 p B
0:/ ( a ) -DU(P+6P,a+ 0a)dd
0
1 ~ ~ 1 ~
= / DpVY(P + 0P, o+ 0a)Pd + / D,U(P+ 0P, + 0a)add.
0 0
Taking the scalar product with P yields
1 o 1 - -
0= / D% p((a+6a) - H)(P +0P)P - Pdf + / DpH(P +60P)a - Pdo
0 0

=T+ T
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with T; >0, i = 1,2 and
1 — — —
T = / D% ,((a+6a) - H)(P+0P)P - Pdf >0
0
1
= / DpH(P +0P)a- Pdf > 0.
0

Indeed, keeping in mind that

we remark that

/DPH P +0P)a- Pdo = 6 - (H(Q) — H(P))

= ai(H(Q) — Hi(P)) + a;(H;(Q) = H;(P)) + ao(A(Q) — A(P))
= (Bo — a0)(A(Q) — Hi(Q) — A(P) + Hi(P))
= Bo(Hi(P) — A(P)) + ao(Hi(Q) — A(Q)) > 0.

Hence, we get

0= /1 D%,((a+6a) - H)(P + 60P)P - Pdd
0

0= Bo(Hi(P) — A(P))

0=ao(H;(Q) — A(Q))-

We distinguish three cases. We will use several times the fact that H;(p’,p;) = X and 0; H;(p, p;) >
0 implies that p; = ;" (p’, ). We will also use the corresponding property for p;: p; = 7 (p'pj).

e Case 1. If there exists 6 € (0,1) such that o + fa € int T, then P = @ and

e Case 2. If « = (3 is a vertex of T, then either « = (1,0,0) or a = (0,1,0) or « = (0,0, 1).
— In the first subcase, o; = 1, we get p’ = ¢ and p; = ¢; and Z = VpH;(P) and
0= —4)z=F-Q)-Z=A-p.

We conclude by remarking that we can choose p; = 7; (@, =¢; when o; = 8; =0 =
. The second subcase is similar.

- If now « = (0,0,1), then p’ = ¢’ and Z = VpA(P) and
0=0i—aq)zi+p—a)y=P Z=\—p
and we conclude as in the two previous subcases.

e Case 3. Assume finally that there exists 6 € (0,1) such that a+60a € 9T but is not a vertex.
In this third case, this implies that two components of a = o+ 8& = (a;, a;, ag) are not 0.
— If ap = 0 then p’ = ¢/ and p; = ¢; and p; = ¢;, i.e. P =Q.

— If a; = 0 then p’ = ¢’ and p; = ¢; and z; = 0 and A = p and we can choose p; =
7t (p', ) = ¢; when o; = 3; = 0 = z;. The third subcase a; = 0 is similar to the second
one.
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The proof of the lemma is now complete. U
The two previous lemmas imply the following one.

Lemma 3.7 (Gradients of G?j). The function GO is C in J; x J;, up to the boundary, and

DGL(X.Y) = (', pis =1, —pj), pi=m (0N, pj=m; (0, \) and P =, pip))
where (p',\) = (PB(X,Y), £(X,Y)) are uniquely determined by the relation for some a € T

GYL(X,)Y)=p' - (2" —y') +pixi — pjy; — A,
Z=D(a-H)(P) with Z= (' -y z;—y;)
In particular, the maps B and £ are continuous in J; X Jj.

The following lemma is elementary but it will be used below.

Lemma 3.8 (GY; at the boundary). The restriction of &;; to {z; = 0} and {z; = 0} equals
respectively (H; V A)* and (H; V A)*, where the star exponent denotes here the Legendre-Fenchel
transform.

3.3 The vertex test function in J; x J;

In view of the definition of G, see (3.10), we have the following Legendre-Fenchel transform
equality
GAUX,Y) = (H;vVA* (X -Y).

In particular, we derive from Lemma [3.§] the following one.
Lemma 3.9 (Continuity of GY). The function G is continuous in J x J.

We now state (without proof, because the proofs are even easier) the following two analogues

of Lemmas [3.5] and [B.6]

Lemma 3.10 (Necessary conditions for the maximiser : ii-version). Let T; = { (o, aq) € [0,1]%,  a; + ag =1},
and a- H = a;H; + oA, and Z = (2', z;). If the suppremum defining &;;(Z) is reached at some
(P,\) € G%, then there exists o € T; such that

Z = D(a- H)(P)

Lemma 3.11 (Uniqueness of P: ii-version). Let Z = (2',z;) € R4t If there exists a, P, \ and
B,Q, 1 such that a, 8 € T; and

®u(Z)=P-Z-A=Q - Z—p,
Z=D(a-H)(P)=D(B-H)(Q).
Then A= pu, p' = q and
pi=aq =m0\ if z>0 (3.18)
and
pi=q=m (0, if z<0 (3.19)
Moreover under the previous assumptions, and in all cases, we can define either

P=,m @, N) if z>0

or .
P=@p,m (0\N) if z<0

and then we always have

6;(Z)=P-Z—X and Z=D(a-H)(P)
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We now turn to the regularity of GY.

Lemma 3.12 (Gradients of G%). GY; is Ct in J; x J; \ {z; = y; > 0}. For (X,Y) € J; x J; such
that x; # y;, we have

DG?z(Xv Y) = (plvpiu _plv _pi) and P = (plvpi)
with p; = w;t (', ) if £(z; —y;) > 0. Here (p', ) = (PB(X,Y), £(X,Y)) is uniquely determined by
GHLX,Y) =p - (¢ —y) +pi(zi —yi) — A

which holds true for some a; € [0,1]. In particular, the maps P and £ are continuous in J; X J;.
Moreover the restrictions of GY; to (J; x J;) N {%(z; — y;) > 0} are C and
Ggi(xlv anla 0) = p/ ! (QC/ - yl) A
with
DG?i(x/a O» y/7 0) = (plv 7Ti+ (p/’ )‘)7 _plv _7; (p/a )‘))

3.4 Proof of Proposition |3.3

We now turn to the proof of Proposition [3.3

Proof of Proposition[3.3. The proof proceeds in several steps.

Step 1: Regularity. We already noticed in Lemma that G° € C(J?) and Lemmas and
3.12 imply that G € C*(R) for each region R given by

R:{szJ] i, (3.20)

T ={(X,Y) € Jix Ji, *(wi—y) >0} if i=j.
Step 2: Computation of the gradients. For each R given by (3.20) and for all (X,Y) €
R C J; x Jj, Lemmas [3.7 and imply that
GUX,Y) =9 (&' —y) + pixi — pjy; — A

and
(D, 0:)GR(X,Y) = (p,pi) and —(D',0;)GR(X,Y) = (¥,p;)

with A = £(X,Y) and p’ =P(X,Y) with

@A) ) i R=J;xJ;  with i #
R R AR/ B A S

Notice in particular that 9 and £ are continuous in J x J. We also easily deduce that G°(X,Y) >
G(X, X) = G°(0,0).

Step 3: Checking the compatibility condition on the gradients. Let us consider (X,Y) €
JA X = (2',2),Y = (v,y) withx =y =0 or z #y. We have

Dx (GO(,Y))(X) € {0, 7 ()}
~(DyG(X, N(Y) € {0/, 75 (N)}
with A > A(p"). We claim that

H(X,DxG°(X,Y)) =X for N>1 (3.22)
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and
H(Y,-DyG°(X,Y)) <X for N>1 (3.23)

with equality for N > 2 (we use here once again the short hand notation (3.1)).
Equality is clear except if x = 0. In this case, if y # 0, say Y € J;, the desired equality
is rewritten as
max(A(p'), max H-(p',pi)) = A

with p; = 7 (p/,\) if i # j and p; = 7Tj_(p’,)\). Since A > A(p’) and Hj_(p',pj) = )\, we get the
result for N > 2. For N = 1, we have z —y < 0 and then p, = 7; (p/, A) which gives again the
result. If now (z,y) = (0,0), then p; = ;" (p’, \) for all index i and A = A(p') > Ao(p’). Hence,
we get in this case too.

One can derive (3.23)) in the same way, even with equality for N > 2. For N = 1, where y = 0,
X = (2',2;) € Jf, ie. x; —y; > 0, this gives p; = 7, (p/, \), and we only get

H(Y,-DyG°(X,Y)) = max(A(p'), min H;(p',-)) < X

with a strict inequality (for A > A(p')). On the other hand, we recover equality for y # 0.

Step 4: Superlinearity. In view of the definition of G°, we deduce from (3.21)) that for all
R>0and A > A(R(z' —v") /2" = |),

e (R —y/,\) —yry (R —y' \) = A if i,

G°(X,Y)> Rl — |+ e
( ) | vl {(m—y)ﬂii(Rx’—y’,)\)—)\ if i=j,+(zx—y)>0
where £ = z/|z|. For R > 0, we define

0 . L,
" ( ’ ) =+, iZlf?,IJI\lfy‘p/'SR U (pa ) =

Hence we get
GY(X,Y) > Rz’ — /| + (R, N)d(z,y) — X

where

|$i—yi| if X,Y € J;
d(z,y) = . .
T + Yy leEJi7Y€Jj7Z7é_].
From the definition (3.9)) of 7rijE and the assumption (3.7) on the Hamiltonians, we deduce that
(R, \) = 400 as A — 400
and fix some A(R) > supy,, < A(p') such that 7°(R, A\(R)) > R. This gives
GY(X,Y) > Rd(X,Y) — A(R).
Therefore we get (3.5) with

9°(a) = sup(Ra — A(R)).
R>0

Step 5: Gradient bounds. Because each component of the gradients of G are equal to one
of the {(p’,w,f(p',)\))}i hery With A = £(X,Y) and p’ = P(X,Y), we deduce (3.6) from the

continuity of £, P and ’/T;f:. We use in particular the fact that £ and B only depend on 2’ — 3/
and z; —y; if X,Y € J;; and 2’ — ¢’ and (z;, —y;) if X € J;, Y € J; with i # j. O
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3.5 The general case

Let us consider a slightly stronger assumption than (L.5), namely

H; € C*(R¥1)  with minH; = H;(P?) and D?H,;(P?) >0,

D?H >0 on (DH;)*, and DH;(P)#0 for P # P? (3.24)
lim H;(P) = +o0.
| P| =400

Notice that the second line basically says that the sub-level sets are strictly convex. The following
technical result will allow us to reduce a large class of quasi-convex Hamiltonians to convex ones.

Lemma 3.13 (From quasi-convex to convex Hamiltonians). Given Hamiltonians H; satisfying
(13.24)), there exists a function 8 : R — R such that the functions fo H; satisfy (3.7)) fori=1,...,N.
Moreover, we can choose B such that

B is conver, B€C*R) and B >3>0. (3.25)

Proof. In view of (3.24)), it is easy to check that D?( o H;) > 0 if and only if we have

—_ D?H;

0 < {(InB')(\)} (DHZ- X DHi) omE(p,A) + DHF° mE@,N) for A>Hi(PY), p €R%
(3.26)
Because D?H;(p?) > 0, we see that the right hand side is positive for A close enough to H;(P?).
Then it is easy to choose a function § satisfying (3.26) and (3.25) (looking at each level set
{H; = A\}). Finally, compositing 5 with another convex increasing function which is superlinear

at oo if necessary, we can ensure that 8 o H; superlinear. ]

Lemma 3.14 (The case of smooth Hamiltonians). Theorem holds true if the Hamiltonians
satisfy (B:24).

Proof. We assume that the Hamiltonians H; satisfy (3.24). Let 8 be the function given by
Lemma If u solves ([L.8) on Jr, then u is also a viscosity solution of

{ B(u) + Hy(Du) =0 for t€(0,T) and X €.Jy;, (3.27)

B(ut) + F4i(Du) =0 for te(0,T) and X €Tl

with ' "4 constructed as Fy where H; and A are replaced with H; and A defined as follows
H;=BoH;, A=pA)

and B(\) = —B(—\). We can then apply Theorem |3.1]in the case of smooth convex Hamiltonians

to construct a vertex test function G associated to problem (3.27) for every 4 > 0. This means
that we have with H(X, P) = 8(H(X, P)),

H(Y,-DyG) < H(X,DxG) + 4.
This implies
H(Y,—DyG) < B~ (B(H(X,DxG)) +4) < H(X,DxG) +4(B7") | L (r)-

Because of the lower bound on 3’ given by Lemma [3.13] we get [(87!)’| () < 1/6 which yields
the compatibility condition (3.4]) with v = 4/4 arbitrarily small. O

We are now in position to prove Theorem in the general case.
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Proof of Theorem[3.1l Let us now assume that the Hamiltonians only satisfy (L.5). In this case,
we simply approximate the Hamiltonians H; by other Hamiltonians H; satisfying (3.24]) such that

We then apply Theorem to the Hamiltonians H; and construct an associated vertex test
function G also for the parameter v. We deduce that

H(Y,-Gy) < H(X,Gx) + 3y

with «v > 0 arbitrarily small, which shows again the compatibility condition on the Hamiltonians
(3.4) for the Hamiltonians H;’s. The proof is now complete in the general case. O

A Proof of Proposition [2.14

Before proving Proposition [2.14] we state and prove the following elementary lemma.

Lemma A.1 (Quasi-convexity of the functions A;). If the Hamiltonians H; are quasi-convex
(resp. convez), continuous and coercive, so are the functions A; defined in (@ In particular,
Ao = max; A; is quasi-convex (resp. convez), continuous and coercive.

Proof. We only address the question of the quasi-convexity of the functions A; since their conti-
nuity and coercivity are simpler.

Consider p’ and ¢’ such that A;(p’) < X and A;(¢") < A for some A € R. There exists p;,¢; € R
such that

Ai(p") = Hi(p',pi)  Ai(d') = Hi(d', @)
Then (p', ), (¢',¢;) € {H; < A} and we conclude from the convexity of {H; < A} that for ¢,s >0
witht +s =1,
Ai(tp" +5q") < Hi(tp" + sq', tpi + 5qi) < .

This achieves the proof of the lemma. O

Proof of Proposition 2.1 We assume that the Hamiltonians H; are convex, p; — H;(p',p;) is

increasing in [0(p’), +o0) and decreasing in (—oo,7Y(p’)] and F is convex in all variables and

p — F(p',p) is decreasing in each variable for every p’ fixed. In particular, the functions iﬂ'ii
are concave. The general case follows by an approximation argument and by remarking that it
is enough to find S increasing such that 5o F' and 8 o H; satisfy the previous assumptions (see
Lemma [3.13]).

We now prove that

G\ \) =F@, 7" (@' N)
is convex w.r.t. (p’,\) € epi Ag. For (p',\), (¢', 1) € epi Ap and ¢, s > 0 with t + s = 1, we can use
the monotonicity of F' together with the concavity of 7T;r (see Lemma to get
tG(p'\N) +sG(d' ) = Ftp' + sq' st (0, N) + st (', 1))
> F(tp +sq, 7w (tp’ + sq', tA + sp))
= G(tp' + sq', t\ + sp).

Similarly, we can see that G is non-increasing with respect to .
We next remark that

Ap(p') =G, Ar(p))
and for p’, ¢ € R% and ¢,s > 0 with t + s = 1, we can write

tAp(p) + sAp(d) = tG(W', Ar(p)) + sG(q', Ar(q'))
> G(tp' + sq¢' ,tAr(p") + sAr(d'))
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and

Ap(tp’ +sq') = G(tp' + sq', Ap(tp" + sq')).

We thus deduce from the monotonicity of G in A that

Ap(tp' + s¢') < tAp(p) + sAp(q).

The proof is now complete. O
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