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A new method for generating measure invariant algorithms is presented. This method is based on
a reformulation of the equations of Molecular Dynamics. These new equations are non-Hamiltonian
but have a normal form which guarantees that the invariant measure is the canonical one for the
new variables. Furthermore, from this normal form, one can easily build algorithms to integrate
these equations. Using a Trotter-type factorization of the classical Liouville propagator, we build
(time) reversible measure invariant integrators as successive direct translations. We apply this
method to propose new algorithms to generate the Nosé-Hoover chain dynamics and the isothermal-
isobaric dynamics. We also give a measure invariant integrator for the Generalized Gaussian Moment
Thermostatting dynamics recently introduced by Liu and Tuckerman. Finally, we present numerical

results which show comparable performances with previously proposed algorithms.



I. INTRODUCTION

Continuous dynamical methods for generating statistical ensembles are, by now, stan-
dard. In this approach, we consider a single trajectory which generates a given sampling
of the phase space. So, the integration over the trajectory of some physical quantities
provides an estimate of some thermodynamic properties of a material. To calculate these
estimates, we need to numerically simulate the trajectory. In general, these continuous
dynamics preserve at least an energy and a measure. One may want to find algorithms
that exactly preserve the energy, or the measure, or both. It has been shown! that for
some dynamical systems, under some hypotheses, one can not have algorithms that ex-
actly and at the same time preserve the measure, the energy, and the other quantities
preserved by the dynamics. In our case, preserving at the same time the energy and
the measure seems therefore difficult. Recently, it has been shown that measure invari-
ant algorithms play a key role to make a good sampling of the phase space. So exactly
preserving the measure is more interesting than exactly preserving the energy.

Many measure invariant algorithms have been proposed in the literature. We refer to
the beautiful paper of Tuckerman, Martyna? for a survey of recent progress in Molecular
Dynamics. The first Molecular Dynamics equations proposed to simulate the canonical

4

ensemble were given by Nosé¢® and Hoover*. An improvement of this dynamics, called

the Nosé-Hoover chain dynamics, has been proposed by Martyna, Klein and Tuckerman®.
Tuckerman, Berne and Martyna® have proposed a first reversible measure invariant algo-
rithm in the case of two thermostats. A generalization of this algorithm to the case of M
thermostats has been given by Martyna et al.”-®. Recently, Liu and Tuckerman®1° have

proposed a new dynamics to simulate the canonical ensemble, called the Generalized

Gaussian Moment Thermostatting (GGMT) dynamics.



There are also many works on constant pressure Molecular Dynamics and on path
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integral Molecular Dynamics . Let us also note that multiple time scale methods

have been used to improve the previous algorithms6—23,

As underlined previously, preserving at the same time the measure and the energy
exactly is difficult, if not impossible. Thus, it is not surprising that the proposed measure
invariant algorithms do not exactly preserve the energy of the system. This energy is
only approximately conserved?* =2, More generally, the Molecular Dynamics of non-
microcanonical ensembles is refered to as non-Hamiltonian dynamics3?. In practice, even
if the energy is not exactly conserved by the measure invariant algorithms, there is no
constant draft on it. This can be considered as very surprising. For instance, the well-
known fourth-order Runge-Kutta method applied on the Kepler two-body problem gives
a quadratic long term error growth®'. The surprisingly good conservation of the energy
is actually due to the fact that the algorithms are measure-invariant. More precisely, let
us suppose that we work with a Hamiltonian dynamics, and we use a p-order measure-
invariant algorithm to integrate it. The energy at the beginning is Hy, and the numerical
energy at time step k is Hy,yum(k At). Then, under some regularity conditions on the
Hamiltonian, and for small enough time steps At, one can prove®?33 that the numerical

error on the energy satisfies,

1
Vk < Eeq/m, | Hpum (K At) — Hy | < co AtP

where ¢; and ¢y are two constants which do not depend on the time step At (they depend
on the Hamiltonian function which defines the dynamical system and on the measure
invariant algorithm chosen). This means that the longtime error remains bounded for

exponentially large times.

In this paper we go one step further in the research of measure invariant algorithms.



We present a systematic method to build reversible measure invariant algorithms (see
Sec. II). Our approach allows us to generate many algorithms. In order to proceed
pedagogically, we first apply our method on a simple example (see Sec. IIT). Actually,
this example is a simplified case of the equations used to simulate the isothermal-isobaric
ensemble’. We show in appendix (see Sec. V A) how to get measure invariant algorithms
for the whole set of equations. Then, in the main part of the article, we focus on the
GGMT dynamics®. First, we show how to get new algorithms, then give some numerical
results (see Sec. IV). In the appendix, we take a close look at measure invariance for the
GGMT dynamics. For this dynamics, the algorithm proposed by Liu and Tuckerman®
is numerically efficient. However, it is actually only approximately measure invariant
(see Sec. VD and VE). Our method gives us an algorithm which is ezactly measure

wvariant.

II. A METHOD TO GENERATE MEASURE INVARIANT ALGORITHMS

Our method simply consists in rewriting (when it is possible) systems of ordinary

differential equations

in the normal form
) v
Yi:Gi<Yi>, i=1,...,n (2.2)

\
where V; = (Y1,...,Yi_1,Yiq1,...,Y,,) is the whole set of variables except Y;. The Y;
are obtained from the X; by a change of variables. So, the normal form is caracterized

by the fact that Y; does not depend on Y;. Following the usual method?, one can check



that system (2.2) preserves the following measure
m=dY; ... dY,

Now, we want to build measure-invariant algorithms. One can notice that the system
(2.2) is a divergence-free dynamical system. Many ways to build volume-preserving

algorithms for this kind of dynamics are known®%.

In this article, we take advantage
of the fact that the system (2.2) is more than divergence-free, it is in a normal form.
We follow a usual method?, and build algorithms by Trotter factorizations of Liouville
propagators. This gives simple algorithms by successives translations:

eAtlerr — H eAtp(k) Gp(k) v, 1)

k
The k" operation is a translation on the variable Y, (x), where p(k) is a subscript in [1,n].
This translation preserves the measure m, since it reads Y,(xy — Yyx) + Atpk) Gpry- So

Athff

the complete operator e also preserves the measure m.

Let us now briefly discuss the existence of a transformation such as the one considered
at the beginning of this section. Is it always possible to find variables Y; so that the
dynamics on these new variables is in a normal form? In general, it is not possible to
have an explicit expression for a good change of variables. So, in general, it is not possible
to explicitly transform a dynamics such as Eq. (2.1) into a normal form dynamics such
as Eq. (2.2). However, for some particular cases, such a transformation exists and can be
explicitly written. In the following parts of this article, we consider specific examples of
dynamics (the ones usually used to generate NVT and NPT ensembles), and we explicitly

transform them into normal form dynamics.



III. A SIMPLE APPLICATION

To illustrate our purpose, we consider Nosé-Hoover equations. Actually, we are going
to work on a simplified example of these equations. So we simulate a one-dimensional

particle coupled with a thermostat of Nosé-Hoover?:

P

g = 2
m

. e

p = Flqgg—=0p (3.1)
2() 0

pe = = —kpT
m

Here, the particle position is g, its impulsion is p, and its mass is m. The temperature
is T, and kp is the Boltzmann constant. The forces are F(¢g) = —V’(q). The particle is
coupled to the thermostat by the variable p¢, and @ is a coupling parameter (it can be
considered as the thermostat mass). It is known that system (3.1) preserves the following

"Maxwell-Boltzmann” measure

2
o B4+
mp =e : v dq dp dpe

for 5 =1/(kpT).

To be efficient, an algorithm in Molecular Dynamics applied to Egs. (3.1) has to
preserve as much as possible the same measure. In practice all algorithms only approx-
imately preserve this measure. In the last years the approach which has predominated

has consisted in introducing an additional variable, let us say &, which here satisfies

L Pe
£= ) (3.2)

and to remark that system (3.1)-(3.2) preserves the following energy and measure:

H’=i+V(q)+§+€k3T
2m 2Q



mo = e dg dp dpe d§

The usual method consists in finding an algorithm which exactly preserves the mea-

sure myg. Actually, for many dynamical systems, the same approach has been used. The

continuous dynamics preserves a measure, one has to find an algorithm that exactly

preserves this measure. The discrete conservation of a measure similar to mgy can be

checked analytically or numerically. In this paper we propose a unified approach to

design measure invariant reversible integrators. So no a posteriori check is required

anymore.

Let us apply our method to the system (3.1). We introduce

Then the variables (g, p, pe, §) satisfy

q
P
Pe

3

p=cp (3.3)
P

m

et F(q)

= (3.4)
— 6_2£ — kBT

m

Pe

Q

Now, we have a dynamical system in a normal form. So, it is clear that the measure

Th:

dq dp dpe d§

is preserved. When writing /m in the original variables, one can check that m = m.

Furthermore, from the normal form, building a reversible measure invariant algorithm is

quite easy. Using the Trotter formula:

=3B At B | O(At?) (3.5)



and using the fact that [§0,,pe 0, ] = 0 we get
L=L+Ly+ Ls

with
L = €0
Ly = po;
L3 = qaq+p§8pg

We can now generate 3! different algorithms of the form

At At At At
At Leff — L, Ly eAtL L Lg (3-6)

with {a,b,c} = {1,2,3}. All these algorithms are measure invariant. From Eq. (3.5), we

deduce:
eAtLess — (ALL + O(AtB) (3_7)

With variables (¢, , p¢, §), the energy reads

~9 2
T pm o D
H —2m6 +Vig) + _2Q + EkpT

It is preserved up to the order 2 in At¢. For instance, the particular choice (a,b,c) =



(1,2,3) in Eq. (3.6) gives the following algorithm:

pe

1
(1) §—>§—|—§At 0

q — q—|—At£e_5
m
p’Q
pe — pe+ At <—€_2£—]€BT)
m

1
(2) p—p+ 3 At egF(q)

pe

1
(1) §—>§—|—§At 0

So, the dynamics given by Eqs. (3.4) is exactly the same as the dynamics given by Eqs.
(3.1)-(3.2), provided that p and p are linked according to Eq. (3.3). However, working
with new variables allows us to derive measure invariant algorithms in a quite simple
way. The numerical properties of these algorithms are studied in the following parts on

some examples.

Finally, let us notice than more sophisticated algorithms than the one given in Eq.

(3.6) are also possible. For instance, we can write

A A A A A A
eAtLerr _ oGt La B Lo oG La (AtLe (Gt La S Ly oG La

It is also possible to use a Yoshida-Suzuki like decomposition”3%36. Thanks to these

more complex decompositions, energy conservation properties are probably better.



IV. GENERALIZED GAUSSIAN MOMENT THERMOSTATTING

A. Normal form for the GGMT dynamics

Let us now take the example of the Generalized Gaussian Moment Thermostatting

(GGMT) equations. In this case, transforming the system into its normal form is more

complex than in the simple example described in the beginning of the article.

We simulate N particules in d dimensions. The temperature is 7', and the forces are

oV
dq;

Fi(q) = —=—(q). The GGMT dynamics is:

m;

Pe, = —— —dN (kT)"

We also set

Sk 1 p§
Ry = — (k T
* Ckfl Jz: Q] b

It is proved® that Eqs. (4.1) preserve the measure:

my =

1<k<M

e*ﬁH(p,q) B, 2 de qu dMPg



2
2pl + V(q). Furthermore, with the help of some
mg

N
with 8 = 1/(kpT) and H(p,q) = Z
i=1

additionnal variables 7, one can find® a conserved energy and a conserved measure m.
The previous dynamical system is clearly not a system in a normal form, since p,

depends on p;. As we did in the first simple application, we now add M variables &,

whose dynamics is given by

€ = Fi (@) iy n > (P0)icy > (o) ar > (66Dt

where Fj, is a function we are going to precise later on. We also need to take some
initial conditions on these additional variables ;. With all these data, we have a new
dynamical system, written with variables (q;, s, e, &k). This system is not in a normal
form. We are going to transform it, finding new variables, in order for the new system to
be in a normal form. Actually, the new variables will be (q;,P;, pe,,&x). So p; is going
to be replaced by p;.

Let us choose the following dynamics for &:

& = Ry
(4.2)
& = e 27D (O s T MG R 2<k< M

The expressions of the Rk are similar to the expressions of the Ry:

M
- De; .
R, = Z;(kBT)j '

- S 3L pg, i—k
Ri = 2(k—1) ZQ—’(kBT)]_ 2<k<M
@i

N -2

where S = E Pi So the quantity S is the same as S, except that it is defined from
— M,
i=1

variables p, instead of variables p,. The new impulsions are linked to the old ones by

p; = eX p;



with

x1 =&
1
= —— 1] 2< k<M 4.3
Xk = T n &k <k< (4.3)
M
X = k=1 Xk

Let us notice that it is possible to rewrite the dynamics on & for k£ > 2 as

f.k = e_Q(k_l) (Ej;ék,j:L,., M Xj) Ry

From this equation, we can deduce that the dynamics of the M wvariables xj reads

Xt = Rg-

Let us now explain the transformation. In the initial dynamical system (4.1), p, de-
pends on p;. It is thus natural to add the M variables x; defined by xx = Rg, and to
transform p; into p; according to p; = eX1 XM p,. We want now to write the complete
dynamical system only using variables ((q;)i=1,n5, (P;)i=1,N, (Pex ) k=1, (X&)k=1,1)- Re-

minding y is the sum of the y, we get

q = Dex 1<i<N
my;
P, = e F(q) 1<i<N (4.4)
o — S‘k —2kx k
Pe, = —— e 2N _dN (kgT)* 1<k<M
Cr—1

and
k—1 M )
Xk = S— e—Q(k—l)x Z & (kBT)]*k 1 S k S M

So the system is not yet in a normal form, since yj depends on x; (for k& > 2). That

is why we need to go from the y; to the &, defined as & = e2*~Dxx (for k > 2).



From this definition, it is possible to write the dynamics on &, which is exactly what we
announced in Eq. (4.2). Then the dynamics for (q;, p;,pe,,&k) is given by the system
(4.2)-(4.3)-(4.4). One can check that this set of differential equations is now a normal

form system. It clearly preserves the measure
m=d"p d¥q d"p; dM¢

If we write the measure m with the original variables, we can check that /m = mg, where

mo is the conserved measure given by Liu and Tuckerman®. In addition, the energy

N 132 M p2
o = iem2X 4y §k
Zam VO Y

— 2Qk
(4.5)
OO 01 11162 02 ln§3 CM—l hlfM
T S22 __DeM
ke <01 St G 2 TCaxe Crr—z 2(M — 1))

is preserved. A proof of this conservation is given in appendix (see Sec. V C).

B. Numerical results

On their web site”, Frenkel and Smit propose many Molecular Dynamics codes, in-
cluding sources. To get the results we present in this paper, we worked from one of these
codes.

We want now to compare the algorithms given by our method with algorithms given
by Liu and Tuckerman®. We choose to simulate one particle (N = 1), in one dimension

(d = 1), in the quartic double well potential given by:
V(g) = Do (a® — ¢*)?

Usually, Molecular Dynamics algorithms are first tested with the harmonic potential.

However, when using this potential, the invariant measure is a Gaussian function. We



want to test algorithms given by our method on more demanding potentials. That is
why we choose a double quartic well potential. We work with Dy = 1, a = 1.5, and
kT = 1. So, the barrier height is close to 5kgT'. Initial conditions are ¢(0) = 0 and
p(0) = 1. Thus, at the beginning of the simulation, the particle is in a non-equilibrium
position, and goes toward the right well. In order to control the temperature, we use two
thermostats (M = 2). Equations of motion in this case are given in appendix (see Sec.
VB). We set the masses Q1 and @2 of the thermostats according to adviced values®, so
Q1 =1and Q2 =8/3.

To generate trajectories, two algorithms have been used. The first one is a reversible
measure invariant algorithm. It is given in appendix (see Sec. V B). Generally speaking,
we have focused on measure invariance, and not on energy conservation. So this algorithm
is a simple one rather than a sophisticated one (see end of Sec. III for more details on
this distinction).

The other algorithm is the one given by Liu and Tuckerman®. The authors present a
general algorithm using a Yoshida-Suzuki decomposition35:35. We work with n. = n,, =
1. We have made this choice in order to compare our algorithm, which is not really
improved in term of energy conservation, with an algorithm having the same feature. Of
course, it is also possible to use a Yoshida-Suzuki decomposition on both algorithms.

For the Liu and Tuckerman algorithm, initial conditions for thermostat variables are
71(0) =n2(0) = 0 and p¢, (0) = —pe¢, (0) = 1. For the measure invariant algorithm, initial
conditions are £;(0) = 0, £2(0) = 1 and p¢, (0) = —pe, (0) = 1. Thus, the energy has the
same initial value in both simulations. With both algorithms, we generate trajectories
of length 2.5 106 steps, using a time step of At = 0.001.

With this dynamics, analytical position and impulsion distribution functions are



known. As the potential is symmetric, the particle spends equal amounts of time into
both wells (let us notice that the particle has enough energy to cross the barrier). So
the analytical position distribution function is symmetric. On a numerical point of view,
getting the proper function is a challenge.

Results on position distribution functions are given in Fig. 1. One can see the functions
generated by the algorithms, as well as the analytical solution. No algorithm gives
a perfectly symmetrical function. However, the asymmetry is lower for the measure

invariant algorithm.

Figure 1

In Fig. 2, we plot the quantity < f(q) — fewzact(q) > (t) as a function of time. This
quantity is an estimator of the difference between the analytical distribution function

and the calculated function, and it is defined® by

N(t)
1 _
< (@) ~ feauet(@) > (O = 775 D1 Te@) = fevact(i) |

i=1
At time ¢, NV (¢) bins have been generated. With these bins, it is possible to calculate a
distribution function, which is f,. We can see that the distribution function generated by
the measure invariant algorithm converges more quickly to the proper one. So, in term
of position distribution function, the measure invariant algorithm gives better results.

Figure 2

We show on Fig. 3 the impulsion distribution functions generated by the algorithms,
as well as the analytical solution.

Figure 3

The Liu and Tuckerman algorithm function is closer to the analytical solution. How-

ever, when one looks at the convergence of the calculated distribution function to the



exact one, algorithms performances are similar. The convergence can be estimated by
many ways. We can look at the quantity < f(p) — fexact(p) > (cf. Fig. 4), but also
at the moments of the distribution function. The second moment (which is linked to
the temperature) is given on Fig. 5, whereas the fourth moment is given on Fig. 6.
Obviously, both algorithms have the same performances.

Figure 4

Figure 5

Figure 6

Finally, let us give results on the conservation of the energy. The expression of the
conserved energy is given in Eq. (4.5) when using the new variables. Let us underline
the fact that we have chosen initial conditions for both simulations so that the initial
values of the energy are the same: H' ,(t = 0) = H},(t = 0) = 6.25. Results are given
in Fig. 7. The Liu and Tuckerman algorithm better preserves the energy. At all times,
its numerical energy is close to the correct value. Our algorithm quite well preserves
the energy for times ¢ < 1800. At that moment, there is a sudden change. For times
t > 1800, the numerical energy keeps constant, but at another value. However, one can
notice that this change has no consequence on the quality of the distribution functions
generated by our algorithm. We can see this kind of “shock” neither on the position
distribution function (see Fig. 2) nor on the impulsion functions (see Figs. 4, 5 and
6). We think that it can be possible to improve our algorithm by changing the Trotter
decomposition order.

Figure 7
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V. APPENDIX

A. Nosé-Hoover chains for NVT and NPT ensembles

In this part, we want to show how to proceed to find equations in the normal form
from the NPT equations, that simulate particles at constant temperature and constant
pressure. So, we study N particles in d dimensions, that are coupled to M thermostats
and one barostat. Let Ny be the number of degrees of freedom of the system that we
have to thermostate. For the NPT equations, given below, Ny = dN + 1.

This formalism also includes the NVT ensemble. To go back to it, we first need to set
Ny = dN. We need also to set 1/WW =0, so V' becomes a constant. The NVT ensemble
equations only involve (q;, pi, D¢y, k)-

We consider the following NPT equations’. The particles positions are q;, their im-
pulsion are p;. They are coupled to a single barostat described by p.. The volume V
is allowed to fluctuate, but we want the pressure to stay constant at P.,;. The barostat
and the particles are coupled to the same chain of thermostats, described by pe, , in order
for the simulation to run at constant temperature 7' (let us notice that slightly different

dynamics are possible, that also generate the NPT ensemble).



Q= 2+ Eq 1<i<N
m;
po= B - Pap (14 L) P 1<i<N
i 7 Ql 7 N W 7
p; P Pe
e, = > 4 = — NpkpT — 222
231 ; - W fiB 0, e
p
P, = b fpr — Do o<k<M-1  (51)
Qr-1 Qk+1
2
. Pey,
Peny = Q]\]\;711 — kT
. dVpe
V =
w
1 o~p}  pe
e = dV -Pzn _Pew T o
De ( t t) + N;mz 0, Pe
Internal pressure and forces are defined by
p; 9¢(q,V)
Py, == F, —dV ———— 5.2
(DY “ 32

p2
Pi + #(q,V). Tt is known that the

. Let us set H(p,q,V

uMz

system (5.1) preserves the following measure
my = e*BH/de dVq deg dpe dV

with

M
H/:H(Pa% 6 Z Pewtv
k=1



The system (5.1) is obviously not in a normal form. So we add M variables &, whose

dynamics is:

; Dey.
f— 1<k<M
g Qk

Now we have a system written in variables (q;, Pi, Pe,, &k, V. pe). We are going to change
of variables. The new ones are (q;, P;, Pey, &k, V, D). We set
q =V iaq 1<i<N

p, = ViV efip, 1<i<N

ﬁgk — €§k+1 pgk 1 S k g M — ]_ (5 3)
ﬁfl\{ = pfz\{
V = hV

De = et De



With these new variables, the dynamical system can be rewritten as

§, = i ~V(aw+

)

v

e e

N .2 9
S ey | —26, —2VELL P; —2¢, Pe
= e |e e an — | +e — — N;kpT
D¢, [ Z e W kB

_ Pear e 26m —kgT

Pers = Qrr—1

ék — @ ekt

Qr
. _ Deu
Em Qur
S d
V = W e_glp
o 1 & N1 N 52
p. = et |d eV (Pint — Peat) + N e~ %1 =2V ay Z %

1<i<N
1<i<N
2<k<M-—1

(5.4)
1<k<M-1

In the last equation, Pj,; is defined as in (5.2), but has to be written with variables

introduced in (5.3). The important thing is that we can check by (5.2) that P;,; does

not depend on pe..

It is straightforward to notice that this last system of equations is in a normal form.



So the measure
m=d"p dVg d"pe dM¢ dp. dV
is conserved. Thanks to (5.3), we can express m with the original variables, and check

that we find the same measure as the one already known?. With the new variables, the

energy reads:

N .9 M-1 ~2 =2
. 2 - - p p
i —2¢, ,—2V N1 Z p; Vids LV Z €k 2641 3
¢ N : 2my; + (25(6 € ) + ZQk € + QQM
i=1 k=1 (55)
]52 M -
—26 e 4
+ e %! 5 + NjpkpT & + kT ,;_2& + Pegte

From the system (5.4), it is straightforward to generate an algorithm. In the particular

case M = 2, the classical Liouville propagator can be factorized as

L=Li+ Lo+ L3+ Ls+ Ls+ Le+ L7+ Lg

with
Ly = £ 0
Ly = &0,
L3 = pe, O,
Ly = pe, O,

Ly = Y.L, D, 05,

Le = Eivzl qz a,

L = Vo

Ls = p:0p,
We took advantage of the fact that the operators p, 0p, commute one with each other, as
well as the operators ql Og,- From then on, we go on as in the first example. We expand
eALL

as in equations (3.6) - (3.7), or in a more sophisticated way to better preserve the

energy.



B. GGMT dynamics, Case M =2 N=1,d=1

In section IV, we present numerical results for the simulation of one particle coupled
to a chain of two thermostats. In the following lines, we are going to detail the algorithm
we implemented. Let us first rewrite the system (4.2)-(4.4) in this particular case. We

have eX = /& €51, The dynamics for (g, , pe,, Pes, &1, E2) is

2 o2&
. p- e
=L — kpT
p€1 m 62 B
(5.6)
54 —4&1
p e 2
= — kT
p€2 3m2 53 ( B )
: Pey Pe,
— 8 T T
2 Q1 Q"

m Q2
and the energy reads
S0 26 2 2
~ p° e P, P, 3
H = —— \%4 — + =2 + kT =1
& + (q)+2Q1+2Q2+ BT | &1+ 5 In&

The preserved measure is

m = dq dp dp& dp§2 d€1d£2



Let

Ly = &0,
Ly = &0,
Ly = poy
Ly = G0q+ e, Ope, + Pe, Op,

We can generate 4! algorithms of the form

with {a,b,¢,d} = {1,2,3,4}. We implemented this algorithm with (a, b, ¢, d) = (1,2, 3,4).

C. Proof of the conservation of the energy for the GGMT dynamics

We want to prove that the energy written in (4.5) is conserved by the dynamics (4.2)-
(4.3)-(4.4). Thanks to the relations & = x1, & = e2(*~Dxx for k > 2, we can first rewrite

the energy as

Cy Ch Cs Cr—1
kT —
+kB (O_ 1+CX2+OX3+ +CM_2XM)

We know? that the following energy is preserved:

H’:;%;“ e +V(q kg deBT];nk

where the dynamics on 7y, is

k S’
. Pey, kJ
ﬁk——Q _Nzl

j—2



We then only have to check that:

Ch

CMfl )

Cy
AN — (2o &
an <C_1 X1+ = Co X2 + o, X3 +- OM_2 XM)
Z ik Sk—l
We have x = (kgT)’~ . So
=k 7 Ckfl
- 43 Pe¢, Pes Pen M-1
= e Pe oy o Py 4 o kpT
X1 o, 0 (ksT) 05 (kpT)* Our (ksT)
. P¢,y S Pes S Pen S
= Pe o L B9 gy 4+ 4 kT
X2 Q2 Cy Q301(B) QMCI(B)
. g1
XM = 12378
Qum Crr—1
whereas
) 1 pe,
Win =g
dN = kgT —=
2 C1Qy (ks T) * Q2 Co
. Pes 2 Pesy S Pes 52
N7y = —— P& o +Pe S g + be >
s 1 3(3) QBCO(B) Q3 Cq
. 1 pey, Per S M—2 Pen S? M—3
dN = kT + == — (kT + M kT
= G, e T G () Qu e 1)
+ . + DPen SM—1
Qu Car_a

So the equation (5.7) is true.

(5.7)



D. Non-exact preservation of the measure for the algorithm Liu et al.® proposed

for GGMT dynamics, case of the free particle

We show here that the algorithm proposed by Liu and Tuckerman® does not exactly
preserve the measure analytically, in the very special case of a free particle (a more
general case is studied in the next section). However, we will see that, for some initial
conditions, the preservation, if not exact, is very good. This may explain the good
numerical properties that Liu and Tuckerman noticed.

We work in the case M = 2 (two thermostats), N = 1 and d = 1 (one particle
in a one-dimensionnal space), and with the variables used by the authors, i.e. X =

(¢,p, PessPess M1, M2)- We use MAPLE to get explicit formulas when needed.

The GGMT equations:
For the present moment, we recall the GGMT equations and the algorithm proposed

by Liu and Tuckerman, without any assumption on the force. The equations are

p
q = —
m 3
43 Pe¢, p
= F(q) — = == | (kT —
p (@) 0. 0 ((B )p+3m>
. Pa
Uit Or 2
N = </€BT+p—) Pe
. m ) Qa2
. p
p€1 = E4_ kBT
.. p 2
bg, = W—(kBT)

They preserve the following measure

mo = "2 dp dq dpe, dpe, dm dn (5.8)



The algorithm proposed by Liu and Tuckerman is the following

N N
eAtLesr e% Leemr e%F(Q) Op AL O eTtF(‘J) %% eTtLGGMT (5.9)

The central part of this decomposition corresponds to the simple Velocity Verlet algo-

rithm. The external operator is

exp (% LGGMT) = A(At) B(At) C(At) B(At) A(At)

The operators A(At), B(At) and C(At) are defined by

At At
A0 = e (F 61010, ) o (5 6200, )
B At At pe, p? At
B(At) = exp (—?)\pap) exp (-T @ 3—m8p exp 3 )\pap
_ Al e, At P
can = e (550, ) e (5o 220,

We set

3 2
_ Gilp) Ga(p)
9 = Q1 kT Q2

UX) = m+mn



/

X
. Th
ax = e

If the vector X’ is a function of the vector X, the Jacobian matrix is noted

X/
Jacobian of the transformation is Jac <% X )

If the complete algorithm (5.9) preserves the measure mg defined by Eq. (5.8), we

have
mo [X'(X)] = mo [X]

Using the Jacobian of the function X’(X), and the function U(X) already defined, we

get

/
Jac <3i) _ UO-U(X) (5.10)

Study in the case F(¢) = 0:
The equation (5.10) must be true for all parameters m, Q1, Q2, T, At, and for all

initial conditions X. Let us now choose some specific values for some parameters:
m = 1.0, Q1= 1.0, Q2 =18/3, kT =1.0

N 11
Then G(p) = % +p? — 5 Let ; be the real positive root of G: 1 = \/—4 + 3v/3.

We also choose some specific initial conditions X = (¢, p, pe, (p), Pe, (P), M1, m2). So, in



X, there are only 4 free variables, and we choose p¢, and pg¢, according to

2 2
pt—pm At
pe:(p) = 3mQ2 = 22 - G2(0)

2 2 4
Sl U P
At p2p? 4 \ '3

(5.11)

kT At

and  pe(p) = —Q1 <@pg2(p)+jg(p)>

= - (gp@(p) + %%ﬁ)

where p is the real positive root of G(p) (we assumed that At > 0). Reasons to make
this choice can be found in the next section, in which we give a general proof of the non

preservation of the measure.

Using MAPLE, we compute 7; (At) and 73 (At). Working only with p > 0, we have

1 16mp* —12m p® V3+12p° +48 — 36 V3 — 4T A’ p* + 27 A p* V3
4 (—4 +3v3) p2

m(At) =
and

m o+ ne—m(At) —n2(Al)
p? (—36p% V3 +249 At* p? /3 — 288 /3 — 431 At? p? + 48 p? + 516)
(=44 3V3) (=44 33 +p?) (18p2 + 24 — 18 /3 — 47 At? p2 + 27 At? p2 /3)

where 7; stands for 71 (0) and 79 for 72(0).

We can also compute

Jac<8X’) i (-4+3v3)"* V32
X (12p2 + 24 — 18 /3 — 47 A2 p2 + 27 AL p2 V/3)*/?

If At =0, we choose p = p, so initial values for p¢, and p¢, are well defined. With these

values, one can check that 1y + 12 — 11 (At) — n2(At) = 0 and that Jac (%—))((/) =1



Now we have to check whether Jac (%—))f(/) is equal to e t12—m(A)=m2(A)  We notice

that these two functions depend only on p and At, and not on ¢, 7, or 72. In Fig. 8, we

!/

0X
h .
plot the ratio Jac < X

> Jemtnz=m(AD=m2(AY) for At = (0.001 and for p € [2.0;5.0], and
we compare it with 1.
Figure 8
We clearly see that, for some values of the impulsion p, the ratio is different from 1.
However, in Fig. 9, we plot the same ratio for p € [0.9; 1.1] (with the same value for At):
Figure 9
Functions are close to each other. We can check that their values for p = 1 are really

close:

1.81517

Jac (58);) (p=1)

€n1+nz—m(At)—n2(At)(p: 1) = 1.81153

When p = 1, the initial condition is X = (¢, 1,491.96, —1311.89, 11, 72).

So, for some initial conditions, the measure is very well preserved. However, for some

other initial conditions, it is not at all preserved.

E. Non-exact preservation of the measure for the algorithm Liu et al.® proposed

for GGMT dynamics, a more general case

In the previous section, we study the very special case of a free particle, F'(¢) = 0. Now,
we have a look at a more general case: we suppose that the force F'(¢q) is a polynomial
function of ¢, which degree is odd (for instance, this is the force given by the harmonic

oscillator). We still work with M = 2 (two thermostats), N = 1 and d = 1 (one



particle in a one-dimensionnal space), and with the variables used by the authors, i.e.
X = (q,p, pe,, Pessm,m2)- The GGMT equations and the algorithm to integrate them

are the same as in the previous section.

The main idea:

Previously, thanks to the simple choice made for the force, we used MAPLE to get
explicit formulas. Here, we do not use MAPLE, but we rather give a more general proof.
It will enlighten the choice of the functions p¢, (p) and pe, (p) made in Eq. (5.11).

Our proof is based on the concept of algebraicity®®. We will use the following facts.
A polynomial function is algebraic. Any function obtained by addition, multiplication
or composition of a finite number of algebraic functions is algebraic. Any root of a
polynomial function is an algebraic function of the coefficients. However, the function
x +— e*, with x real, is not algebraic. We suppose that the algorithm (5.9) is measure
invariant, and we look for a contradiction.

Let us set X® = A(At) X. It can be checked that the vector X* is a polynomial
function of X, and thus a real algebraical function of X. Let us suppose for a moment
that X’ = e®tLess X is an algebraical function of X. We assume that the complete

algorithm (5.9) preserves the measure m defined by Eq. (5.8). So we have

ox' U(X)—U(X")
Jac <8—X) =€

We know that X’(X) and U(X) are algebraical functions of X. Furthermore, they are not
constant. So we conclude that the exponential of an algebraical function is an algebraical

function, which is not true. We reach the contradiction.

The difficulty and how to solve it:



The previous proof is incorrect, since X' is actually not an algebraical function of X.
The issue is on the operator B(At), which only modifies the value of the impulsion. Let

us set X? = B(At)X. The impulsion in X and X° are respectively p and p°, and the

second thermostat impulsion in X is pg,. Setting o = 351%2 and A = \(X), we have

)\ At

bo_ pe "1
p B At
\/1—&—@%]326’)‘7
ox?b op® e A
Jac <8—X> (X) = 3—p(29) =

(1 + a4t p? e"\%)g/2
Because p® depends on A\(X) by an exponential function, the vector X? is not an alge-
braical function of X.

Now, let us suppose that, instead of working with X, we work with X = (q,p, pe,). We
define X as a function of X by X (X) = (¢,p, —Q1 kT pe,/Q2, pe,, 0,0). Let us now set
X = B(At) X(X). As A\(X) = 0, we check, thanks to the formulas previously written,

that

e X" is an algebraical function of X

e Jac (88))(:) (X (X)) is also an algebraical function of X.

So we solved our issue.

The solution on the whole algorithm:
In the algorithm (5.9), the operator B(At) appears four times. However, between the
first and the second time, and between the third and the fourth time, the value of X is

not modified. All we need to ensure is that A = 0 just before the first application of



B(At), and also just before the third application. We set

x A8 ya BAD xp CAD ye B@AH ya AQGH ye
e DBYD o p Lo g Ly,

A(AL) B(At) C(At) B(At)
—_— —_—

X7 - Xk — X! A(—Af)

Xh XZ xm
with X = (q7pap§1ap§277717772)7 X = (qavpaapgﬂpgzvn?ang)a and so on. So we need to

ensure that A\(X?) = A\(X?) = 0.

Expression of the constraints:

We compute

1 A kT A
AMXY) = Or <p§1 + Tt Gl(p)) + % (p£2 + Tt Gz(p))
and
N hy , At Gi(p") Gz(Ph))
AX) = XM+ 5 <Tl + ke 2

Ax) + 2 g0

= MXT) + %

G") + 5 6"

At
4

At

= MXY)+=—G(p")+ T g™

At
We set ®(p?, q) = p* + >

At?
[F(q) +F <q + Atp? + - F(q))}, so that p" = ®(p?, q).



We want to choose X so that

& (p§1 + %Gl(p)) + kg—j (ng + %Gg(p)) =0 (5.12)
g (20", 9) +G0*) = 0 (5.13)

Choosing X:

The goal of this part is to show how to choose X in order for the two previ-
ous constraints to be fulfilled. The variable ¢ will be free, and we will define X by
X = (q,p = (g, At), pe, = P1(q; At), pe, = P2(q, At), 1 = 0,72 = 0).

Let us first show that there exists a value of p?, which is 6(q, At), so that the second
constraint (5.13) is fullfilled.

Let us suppose that ¢ = 0. Since F' is a odd degree polynomial function, we see that
limypi| 0o G (®(p?, ¢ = 0)) = +00. So the function p? — G (®(p?,q =0)) + G (p?) goes
to +o0o when | p? | goes to +o0, and has a negative value when p? = 0. So there exists
6(q = 0, At) > 0 so that (p?,q) = (6(0, At),0) fulfills the second constraint. When g is
small enough, we can do the same. So we define a function 6(g, At) which is algebraic
in ¢, positive, and which satisfies G (®(6(q, At),q)) + G (6(q, At)) = 0. Let us call p the
strictly positive root of G. We can check that lima;—60(q, At) = p > 0, where u is
independent of g.

Let us set

o 3mQ2 1
At+¢2+1 [0(q, At)]> +1

(g, At) (5.14)

We suppose that we can choose X so that pg, = p§, = 7(g, At) and \(X,) =0. So

C

d p c b b 4
= ~ — p=pr , P = IR
\/1+T(q,At)m(p) \/1+T(Q7At)6mQ2P

p




The function p — p?(p, ¢, At) is an increasing function, and its limit when p — +oo is

+ Af‘;”(iqcﬁt). Thanks to the choice of 7, the equation

p*(p. q, At) = 0(q, At)

where p is the unknown, has a unique solution, p = ¥(q, At). This function is algebraic
in ¢. Using the limit of 8, one can check that lima;—o % (g, At) = u > 0. Let us notice
that many other expressions for the function 7 are possible. The main constraint is to
ensure that the previous equation (where p is the unknown) has a unique solution, and
that lima;— 7(q, At) exists and depends on gq.

Now we define 5 (q, At) = 7(q, At) — % G2 (¢¥(q, At)), and we choose in X the value
Pe, = 2(g, At). Once again, this function is algebraic in ¢, and limas—o¢2(g, At) =
7(g,0).

Let us sum up what we have done until now. We show that it is possible to choose p
and pg, as algebraic functions of ¢, so that the second contraint is fulfilled. Furthermore,
we identified the limit when At — 0 of these functions.

Now, we use the first constraint (5.12) and define 91 (¢, At) = —% Q1 Gy (¥(g, At)) —
kT & [1a(q, At) + 5t G2 ((q, At))], and we choose in X the value pe, = (g, At).
Once again, this function is algebraic in ¢, and lima;—. ¥1(q, At) = —kgT % 7(gq,0).

We proved what we announced at the beginning of this part.

Conclusion:
In the previous part, we show it was possible to define an algebraic function ¢ — X (q)

so that:

e X'(X(q)) is an algebraical function of ¢

o Jac (BX /) (X (q)) is also an algebraical function of g.



where X’ = e2tless X . If the algorithm (5.9) is measure invariant, then we have the
relation (5.10). We just need to prove that U(X'(X(q))) — U(X(q)) is not a constant
function to reach a contradiction. In order to do so, we make a Taylor expansion on the
variable At, and we check that the first term really depends on ¢. We can do so because
we have checked that all the functions we defined to build the function ¢ — X (g) have a

finite limit when At — 0.

UX'(X(9) —U(X(q)) = mi+m—m =m0

= At (m“—;T(q, 0) +0(1)>

One can check that 7(g,0) depends on ¢ (thanks to the particular choice of T in Eq.

(5.14)). The real p is a strictly positive constant. So we reach the contradiction.
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List of figure captions

FIG. 1: Position distribution functions for the double quartic well potential generated by mea-
sure invariant GGMT algorithm (solid line) and by Liu and Tuckerman GGMT algorithm (long

dashed line), compared with the analytical result (short dashed line).

FIG. 2: Convergence of the position distribution functions for measure invariant GGMT algo-
rithm (solid line) and for Liu and Tuckerman GGMT algorithm (dashed line) for the double

quartic well potential.

FIG. 3: Impulsion distribution functions for the double quartic well potential generated by
measure invariant GGMT algorithm (solid line) and by Liu and Tuckerman GGMT algorithm

(long dashed line), compared with the analytical result (short dashed line).



FIG. 4: Convergence of the impulsion distribution functions for measure invariant GGMT al-
gorithm (solid line) and for Liu and Tuckerman GGMT algorithm (dashed line) for the double

quartic well potential.

FIG. 5: Convergence of the second moment of the impulsion distribution functions for measure
invariant GGMT algorithm (solid line) and for Liu and Tuckerman GGMT algorithm (dashed

line) for the double quartic well potential.

FIG. 6: Convergence of the fourth moment of the impulsion distribution functions for measure
invariant GGMT algorithm (solid line) and for Liu and Tuckerman GGMT algorithm (dashed

line) for the double quartic well potential.

FIG. 7: Evolution of the numerical energy for measure invariant GGMT algorithm (solid line)

and for Liu and Tuckerman GGMT algorithm (dashed line) for the double quartic well potential.

FIG. 8: Checking the preservation of the measure in the case of the free particle, for p € [2.0; 5.0]:

we compare Jac (%—f{/) (p) with em*m2=m(A0=m2(A) ) by plotting their ratio.

FIG. 9: Checking the preservation of the measure in the case of the free particle, for p € [0.9;1.1]:

we compare Jac (%_))((’) (p) with emtm2=m(A0=m2(AY (1)) by plotting their ratio.
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