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Abstract. In this paper, we study diagonal hyperbolic systems in one space dimension.

Based on a new gradient entropy estimate, we prove the global existence of a continuous

solution, for large and non-decreasing initial data. We remark that these results cover

the case of systems which are hyperbolic but not strictly hyperbolic. Physically, this

kind of diagonal hyperbolic system appears naturally in the modelling of the dynamics

of dislocation densities.
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1. Introduction and main result

1.1. Setting of the problem

In this paper we are interested in continuous solutions to hyperbolic systems in one

dimension. Our work will focus on solutions u(t, x) = (ui(t, x))i=1,...,d, where d is

an integer, of hyperbolic systems which are diagonal, i.e.

∂tu
i + λi(u)∂xui = 0 on (0,+∞) × R, for i = 1, . . . , d, (1.1)

with the initial data:

ui(0, x) = ui
0(x), x ∈ R, for i = 1, . . . , d. (1.2)

1
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Here ∂t =
∂

∂t
and ∂x =

∂

∂x
. Such systems are (sometimes) called (d×d) hyperbolic

systems. Our study of system (1.1) is motivated by the consideration of a model

describing the dynamics of dislocation densities (see the Appendix, Section 5), which

is given by

∂tu
i +




∑

j=1,...,d

Aiju
j



 ∂xui = 0 for i = 1, . . . , d,

where (Aij)i,j=1,...,d is a non-negative symmetric matrix. This model can be seen

as a special case of system (1.1).

For real numbers αi ≤ βi, let us consider the box

U = Πd
i=1[α

i, βi]. (1.3)

We consider a given function λ = (λi)i=1,...,d : U → R
d, which satisfies the following

regularity assumption:

(H1)







the function λ ∈ C∞(U),

there exists M0 > 0 such that for i = 1, ..., d,

|λi(u)| ≤ M0 for all u ∈ U,

there exists M1 > 0 such that for i = 1, ..., d,

|λi(v) − λi(u)| ≤ M1|v − u| for all v, u ∈ U,

where |w| =
∑

i=1,...,d

|wi|, for w = (w1, . . . , wd). Given any Banach space (E, ‖ · ‖E),

throughout this work we define the norm on Ed:

‖w‖Ed =
∑

i=1,...,d

‖wi‖E , for w = (w1, . . . , wd) ∈ Ed.

We assume, for all u ∈ R
d, that the matrix

(λi
,j(u))i,j=1,...,d, where λi

,j =
∂λi

∂uj
,

is non-negative in the positive cone, namely

(H2)

∣
∣
∣
∣
∣
∣
∣
∣

for all u ∈ U, we have

∑

i,j=1,...,d

ξiξjλ
i
,j(u) ≥ 0 for every ξ = (ξ1, ..., ξd) ∈ [0,+∞)d.
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In (1.2), each component ui
0 of the initial data u0 = (u1

0, . . . , u
d
0) is assumed to

satisfy the following property:

(H3)







αi ≤ ui
0 ≤ βi,

ui
0 is non-decreasing,

∂xui
0 ∈ L log L(R),

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, . . . , d,

where L log L(R) is the following Zygmund space:

L log L(R) =

{

f ∈ L1(R) such that

∫

R

|f | ln (e + |f |) < +∞
}

.

This space is equipped with the following norm:

‖f‖L log L(R) = inf

{

µ > 0 :

∫

R

|f |
µ

ln

(

e +
|f |
µ

)

≤ 1

}

,

This norm is due to Luxemburg (see Adams [1, (13), Page 234]).

Our purpose is to show the existence of a continuous solution u = (u1, . . . , ud) such

that, for i = 1, . . . , d, the function ui(t, ·) satisfies (H3) for all time.

1.2. Main result

It is well-known that for the classical scalar Burgers equation ∂tu + ∂x

(
u2

2

)

= 0,

the solution stays continuous when the initial data is Lipschitz-continuous and

non-decreasing. We want somehow to generalize this result to the case of diago-

nal hyperbolic systems. In particular, we say that a function u0 = (u1
0, . . . , u

d
0) is

non-decreasing if each component ui
0 is non-decreasing for i = 1, . . . , d.

Theorem 1.1. (Global existence of a non-decreasing solution)

Assume (H1), (H2) and (H3). Then, there exists a function u which satisfies for

all T > 0:

i) Existence of a weak solution:

The function u is solution of (1.1)-(1.2), where

u ∈ [L∞((0,+∞) × R)]d ∩ [C([0,+∞);L log L(R))]d and ∂xu ∈ [L∞((0, T );L log L(R))]d,

such that for a.e. t ∈ [0, T ) the function u(t, ·) is non-decreasing in x and satisfies

the following L∞ estimate:
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‖ui(t, ·)‖L∞(R) ≤ ‖ui
0‖L∞(R), for i = 1, . . . , d, (1.4)

and the gradient entropy estimate:
∫

R

∑

i=1,...,d

f
(
∂xui(t, x)

)
dx +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u)∂xui(s, x)∂xuj(s, x) dx ds ≤ C1, (1.5)

where

0 ≤ f(x) =

{
x ln(x) + 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,
(1.6)

and C1

(
T, d,M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

)
.

ii) Continuity of the solution:

The solution u constructed in (i) belongs to [C([0,+∞) × R)]
d

and there exists a

modulus of continuity ω(δ, h), such that for all δ, h ≥ 0 and all (t, x) ∈ (0, T −δ)×R,

we have:

|u(t+ δ, x+h)−u(t, x)| ≤ C2 ω(δ, h) with ω(δ, h) =
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)
, (1.7)

where C2

(
T, d,M0,M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

)
.

The key point to establish Theorem 1.1 is the gradient entropy estimate (1.5). We

first consider the parabolic regularization of the system (1.1) and we show that the

smooth solution admits the L∞ bound (1.4) and the fundamental gradient entropy

inequality (1.5). Then, these a priori estimates will allow us to pass to the limit

when the regularization vanishes, which will provide the existence of a solution. Let

us mention that a similar gradient entropy inequality was introduced in Cannone

et al. [5] to prove the existence of a solution of a two-dimensional system of two

coupled transport equations.

Remark 1.2. We remark that assumption (H2) implies that the second term on

the left hand side of (1.5) is non-negative. This will imply the L log L bound on the

gradient of the solutions.

To our knowledge, the result stated in Theorem 1.1 is relatively new. In relation

with our result, we cite the work of Poupaud [25], where a result of existence and

uniqueness of Lipschitz solutions is proven for a particular quasi-linear hyperbolic

system.

Hyperbolic systems (1.1) in the case d = 2 are called strictly hyperbolic if and only

if we have:

λ1(u1, u2) < λ2(u1, u2). (1.8)
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In this case, a result due to Lax [18] implies the existence of Lipschitz monotone

solutions of (1.1)-(1.2). This result was also extended by Serre [26, Vol II] in the

case of (d × d) rich hyperbolic systems (see also Subsection 1.4 for more related

references). Their results are limited to the case of strictly hyperbolic systems. On

the contrary, in Theorem 1.1, we do not assume that the hyperbolic system is strictly

hyperbolic. See the following remark for a quite detailed example.

Remark 1.3. (Crossing eigenvalues)

Condition (1.8) on the eigenvalues is not required in our framework (Theorem 1.1).

Here is a simple example of a (2× 2) hyperbolic but not strictly hyperbolic system.

We consider solution u = (u1, u2) of







∂tu
1 + cos(u2)∂xu1 = 0,

∂tu
2 + u1sin(u2)∂xu2 = 0,

∣
∣
∣
∣
∣
∣

on (0,+∞) × R. (1.9)

We assume:

i) u1(−∞) = 1, u1(+∞) = 2 and ∂xu1 ≥ 0,

ii) u2(−∞) = −π
2 , u2(+∞) = π

2 and ∂xu2 ≥ 0.

Here the eigenvalues λ1(u1, u2) = cos(u2) and λ2(u1, u2) = u1sin(u2) cross each

other at the initial time (and indeed for any time). Nevertheless, we can compute

(λi
,j(u

1, u2))i,j=1,2 =

(
0 −sin(u2)

sin(u2) u1cos(u2)

)

,

which satisfies (H2) (under assumptions (i) and (ii)). Therefore Theorem 1.1 gives

the existence of a solution to (1.9) with in particular (i) and (ii).

Remark 1.4. (A generalization of Theorem 1.1)

In Theorem 1.1 we have considered a particular system in order to simplify the

presentation. Our approach can be easily extended to the following generalized

system:

∂tu
i + λi(u, x, t)∂xui = hi(u, x, t) on (0,+∞) × R, for i = 1, ..., d, (1.10)

with the following conditions:

- λi ∈ W 1,∞(U × R × [0,+∞)) and the matrix (λi
,j(u, x, t))i,j=1,...,d is positive in

the positive cone for all (u, x, t) ∈ U × R × [0,+∞) (i.e. a condition analogous to

(H2)).

- hi ∈ W 1,∞(U × R × [0,+∞)), ∂xhi ≥ 0 and hi
,j ≥ 0 for all j 6= i.



October 14, 2009 13:33 WSPC/INSTRUCTION FILE elhajj-monneau

6 A. EL HAJJ & R. MONNEAU

Let us remark that our system (1.1)-(1.2) does not create shocks because the solu-

tion (given in Theorem 1.1) is continuous. In this situation, it seems very natural

to expect the uniqueness of the solution. Indeed the notion of entropy solution (in

particular designed to deal with the discontinuities of weak solutions) does not seem

so helpful in this context. Even for such a simple system, we then ask the following:

Open question: Is there uniqueness of the continuous solution given

in Theorem 1.1 ?

In a companion paper (El Hajj, Monneau [11]), we will provide some partial answers

to this question.

1.3. Application to diagonalizable systems

Let us first consider a smooth function u = (u1, . . . , ud), solution of the following

non-conservative hyperbolic system:






∂tu(t, x) + F (u)∂xu(t, x) = 0, u ∈ U, x ∈ R, t ∈ (0,+∞),

u(x, 0) = u0(x) x ∈ R,

(1.11)

where the space of states U is now an open subset of R
d, and for each u, F (u) is

a (d × d)-matrix and the map F is of class C1(U). The system (1.11) is said to be

(d× d) hyperbolic if F (u) has d real eigenvalues and is diagonalizable for any given

u on the domain under consideration. By definition, such a system is said to be

diagonalizable if there exists a smooth transformation w = (w1(u), . . . , wd(u)) with

non-vanishing Jacobian such that (1.11) can be equivalently rewritten (for smooth

solutions) as the following system

∂tw
i + λi(w)∂xwi = 0 for i = 1, . . . , d,

where λi are smooth functions of w. Such functions wi are called strict i-Riemann

invariant.

Our approach can give continuous solutions to the diagonalized system, which pro-

vides a continuous solution to the original system (1.11).

1.4. A brief review of some related literature

For a scalar conservation law, which corresponds to system (1.11) in the case d = 1

where F (u) = h′(u) is the derivative of some flux function h, the global existence

and uniqueness of BV solutions has been established by Oleinik [24] in one space

dimension. The famous paper of Kruzhkov [17] covers the more general class of L∞

solution in several space dimensions. For an alternative approach based on the no-

tion of entropy process solutions see for instance Eymard et al. [12]. For a different

approach based on a kinetic formulation, see also Lions et al. [23].
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We now recall some well-known results for a class of (2× 2) strictly hyperbolic sys-

tems in one space dimension. This means that F (u) has two real, distinct eigenvalues

satisfying (1.8). As mentioned above, Lax [18] proved the existence and uniqueness

of non-decreasing and smooth solutions for diagonalized (2 × 2) strictly hyperbolic

systems. In the case of some (2×2) strictly hyperbolic systems, DiPerna [6,7] showed

the global existence of a L∞ solution. The proof of DiPerna relies on a compensated

compactness argument based on the representation of the weak limit in terms of

Young measures which must reduce to a Dirac mass due to the presence of a large

family of entropies. This result is based on an the idea of Tartar [28].

For general (d × d) strictly hyperbolic systems; i.e. where F (u) has d real, distinct

eigenvalues

λ1(u) < · · · < λd(u), (1.12)

Bianchini and Bressan proved in a very complete paper [3] a striking global exis-

tence and uniqueness result of solutions to system (1.11) assuming that the initial

data has small total variation. This approach is mainly based on a careful analysis

of the vanishing viscosity approximation. An existence result has first been proved

by Glimm [14] in the special case of conservative equations, i.e. F (u) = Dh(u) is

the Jacobian of some flux function h. Let us mention that an existence result has

been also obtained by LeFloch, Liu [20] and LeFloch [19,21], in the non-conservative

case.

We can also mention that our system (1.1) is related to other similar models with

dimension N ≥ 1, such as scalar transport equations based on vector fields with

low regularity. Such equations were for instance studied by Diperna and Lions in

[8]. They have proved the existence (and uniqueness) of a solution (in the renor-

malized sense), for given vector fields in L1((0,+∞);W 1,1
loc (RN )) whose divergence

is in L1((0,+∞);L∞(RN )). This study was generalized by Ambrosio [2], who con-

sidered vector fields in L1((0,+∞);BVloc(R
N )) with bounded divergence. In the

present paper, we work in dimension N = 1 and prove the existence (and some

uniqueness results) of solutions of the system (1.1)-(1.2) with a velocity vector field

λi(u), i = 1, . . . , d. Here, in Theorem 1.1, the divergence of our vector field is only

in L∞((0,+∞), L log L(R)). In this case we proved the existence result thanks to

the gradient entropy estimate (1.5), which gives a better estimate on the solution.

Let us also mention that for hyperbolic and symmetric systems in dimension

N ≥ 1, Ga◦rding has proved in [13] a local existence and uniqueness result in

C([0, T );Hs(RN )) ∩ C1([0, T );Hs−1(RN )), with s > N
2 + 1 (see also Serre [26,

Vol I, Th 3.6.1]), this result being only local in time even in dimension N = 1.
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1.5. Organization of the paper

This paper is organized as follows: in Section 2, we approximate the system (1.1) by

adding the viscosity term (ε∂xxui). Then we show a global in time existence for this

approximated system. Moreover, we show that these solutions are regular and non-

decreasing in x for all t > 0. In Section 3, we prove the gradient entropy inequality

and some other ε-uniform a priori estimates. In Section 4, we prove the main result

(Theorem 1.1) passing to the limit as ε goes to 0. Finally, in the appendix (Section

5), we derive a model for the dynamics of dislocation densities.

2. Local existence of an approximated system

The system (1.1) can be written as:

∂tu + λ(u) ⋄ ∂xu = 0, (2.1)

where u := (ui)1,...,d, λ(u) = (λi(u))1,...,d and u⋄v is the “component by component

product” of the two vectors u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ R
d. This is the

vector in R
d whose coordinates are given by (u ⋄ v)i := uivi. We now consider the

following parabolic regularization of system (2.1), for all 0 < ε ≤ 1:







∂tu
ε + λ(uε) ⋄ ∂xuε = ε∂xxuε

uε(x, 0) = uε
0(x), with uε

0(x) := u0 ∗ ηε(x),

(2.2)

where ∂xx =
∂2

∂x2
and ηε is a mollifier verifying ηε(·) = 1

ε
η( ·

ε
), such that η ∈ C∞

c (R)

is a non-negative function satisfying
∫

R
η = 1.

Remark 2.1. By classical properties of the mollifier (ηε)ε and the fact that uε
0 ∈

[L∞(R)]d, then u0 ∈ [C∞(R)]d ∩ [W 2,∞(R)]d. Moreover using the non-negativity of

ηε, the second equation of (2.2) gives

‖uε,i
0 ‖L∞(R) ≤ ‖ui

0‖L∞(R), for i = 1, . . . , d,

and (H3) also implies that uε
0 is non-decreasing.

The following theorem is a global existence result for the regularized system (2.2).

Theorem 2.2. (Global existence of non-decreasing smooth solutions)

Assume (H1) and that the initial data uε
0 is non-decreasing and satisfies

uε
0 ∈ [C∞(R)]d ∩ [W 2,∞(R)]d. Then the system (2.2) admits a solution uε ∈

[C∞([0,+∞)× R)]d ∩ [W 2,∞((0,+∞)× R)]d such that the function uε(t, ·) is non-

decreasing for all t > 0. Moreover, for all t > 0, we have the a priori bounds:

‖uε,i(t, ·)‖L∞(R) ≤ ‖uε,i
0 ‖L∞(R), for i = 1, . . . , d, (2.3)
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∥
∥∂xuε,i

∥
∥

L∞([0,+∞);L1(R))
≤ 2‖uε,i

0 ‖L∞(R), for i = 1, . . . , d. (2.4)

The lines of the proof of this theorem are very standard (see for instance Cannone et

al. [5] for a similar problem). For this reason, we skip the details of the proof. First

of all, we remark that the estimate (2.3) is a direct application of the Maximum

Principle Theorem for parabolic equations (see Lieberman [22, Th.2.10]). The reg-

ularity of the solution follows from a bootstrap argument. The monotonicity of the

solution is a consequence of the maximum principle for scalar parabolic equations

applied to wε = ∂xuε satisfying

∂tw
ε + λ(uε) ⋄ ∂xwε + ∂x(λ(uε)) ⋄ wε = ε∂xxwε.

Since ∂xuε ≥ 0 this easily implies the second estimate (2.4).

3. ε-uniform a priori estimates

In this section, we show some ε-uniform estimates on the solutions of system (2.2).

Before demonstrating the proof of the gradient entropy inequality defined in (1.5),

we announce the main idea to establish this estimate. Now, let us set for w ≥ 0 the

entropy function

f̄(w) = w lnw.

For any non-negative test function ϕ ∈ C1
c ([0,+∞)×R), let us define the following

“gradient entropy” with wi := ∂xui:

S̄(t) =

∫

R

ϕ(t, ·)




∑

i=1,...,d

f̄(wi(t, ·))



 dx.

It is very natural to introduce the quantity S̄(t) which in the case ϕ ≡ 1 appears

to be nothing else than the total entropy of the system of d types of particles of

non-negative densities wi ≥ 0. Then after two integration by parts, it is formally

possible to deduce from (1.1) the equality in the following gradient entropy inequal-

ity for all t ≥ 0

dS̄(t)

dt
+

∫

R

ϕ




∑

i,j=1,...,d

λi
,jw

iwj



 dx ≤ R(t), for t ≥ 0, (3.1)

with the rest

R(t) =

∫

R






(∂tϕ)




∑

i=1,...,d

f̄(wi)



 + (∂xϕ)




∑

i=1,...,d

λif̄(wi)










dx,
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where we do not show the dependence on t in the integrals. We remark in particular

that the rest is formally equal to zero if ϕ ≡ 1.

To guarantee the existence of continuous solutions when ε = 0, we will assume later

(H2) which guarantees the non-negativity on the second term of the left hand side

of inequality (3.1).

Returning to a rigorous statement, we will prove the following result.

Proposition 3.1. (Gradient entropy inequality)

Assume (H1) and consider a function u0 ∈ [L∞(R)]
d

satisfying (H3). For any

0 < ε ≤ 1, we consider the solution uε of the system (2.2) given in Theorem

2.2 with initial data uε
0 = u0 ∗ ηε. Then for any T > 0, there exists a constant

C
(
T, d,M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

)
such that

S(t) +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,iwε,j ≤ C, with S(t) =

∫

R

∑

i=1,...,d

f(wε,i(t, ·))dx.

(3.2)

where f is defined in (1.6) and wε = (wε,i)i=1,...,d = ∂xuε.

For the proof of Proposition 3.1, we need the following technical lemma:

Lemma 3.2. (L log L estimate)

Let (ηε)ε∈(0,1] be a non-negative mollifier satisfying
∫

R
ηε = 1, let f be the function

defined in (1.6) and h ∈ L1(R) be a non-negative function. Then

i)

∫

R

f(h) < +∞ if and only if h ∈ L log L(R). Moreover we have the following

estimates:

∫

R

f(h) ≤ 1 + ‖h‖L log L(R) + ‖h‖L1(R) ln
(
1 + ‖h‖L log L(R)

)
, (3.3)

‖h‖L log L(R) ≤ 1 +

∫

R

f(h) + ln(1 + e2)‖h‖L1(R). (3.4)

ii) If h ∈ L log L(R), then for every ε ∈ (0, 1] the function hε = h ∗ ηε ∈ L log L(R)

and satisfies

‖hε‖L log L(R) ≤ C‖h‖L log L(R) and ‖h − hε‖L log L(R) → 0 as ε → 0,

where C is a universal constant.

Proof of Lemma 3.2:

The proof of (i) is trivial. To prove estimate (3.3), we first remark that for all h ≥ 0

and µ ∈ (0, 1], we have
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(

h ln(h) +
1

e

)

11{h≥ 1

e
} ≤ h ln(h + e) ≤ h ln(e + µh) + | ln(µ)|h.

We apply this inequality with µ =
1

max(1, ‖h‖L log L(R))
and integrate, we get

∫

R

f(h) ≤ 1

µ

∫

R

µh ln(e + µh) + | ln(µ)|‖h‖L1(R)

≤ 1

µ
+ | ln(µ)|‖h‖L1(R),

where we have used the definition of ‖h‖L log L(R). This gives (3.3) using the fact

that µ ≥ 1

1 + ‖h‖L log L(R)
.

To prove (3.4), we remark that for h ≥ 1
e
, we have e ≤ e2h and

h ln(e + h) ≤ h ln(h) + h ln(1 + e2) ≤ f(h) + h ln(1 + e2).

However, for 0 ≤ h ≤ 1
e
, we have in particular that

h ln(e + h) ≤ h ln(1 + e2),

and therefore

∫

R

h ln(e + h) ≤
∫

R

f(h) + ln(1 + e2)‖h‖L1(R).

From the definition of ‖h‖L log L(R), we deduce in particular (3.4). For the proof of

(ii) see Adams [1, Th 8.20].

�

Proof of Proposition 3.1:

First we want to check that S(t) is well defined. To this end, we remark that if

w ≥ 0, then

0 ≤ f(w) ≤ 1

e
11{w≥ 1

e
} + w ln(1 + w).

Which gives that

∫

R

f(w) ≤ ‖w‖L1(R) ln
(
1 + ‖w‖L∞(R)

)
+

∫

R

1

e
11{w≥ 1

e
} ≤ ‖w‖L1(R)

(
1 + ln

(
1 + ‖w‖L∞(R)

))
.

Now by Theorem 2.2, we have ∂xuε = wε ∈
[
L∞((0,+∞);L1(R))

]d ∩
[W 2,∞((0,+∞) × R)]d. This implies that S ∈ L∞(0,+∞). We compute
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d

dt
S(t) =

∫

R

∑

i=1,...,d

f ′(wε,i)(∂tw
ε,i),

=

∫

R

∑

i=1,...,d

f ′(wε,i)∂x

(
−λi(uε)wε,i + ε∂xwε,i

)
,

=

J1

︷ ︸︸ ︷∫

R

∑

i=1,...,d

λi(uε)wε,if ′′(wε,i)∂xwε,i

J2

︷ ︸︸ ︷

− ε

∫

R

∑

i=1,...,d

(
∂xwε,i

)2
f ′′(wε,i) .

We note that these computations (and the integration by parts) are justified because

on the one hand wε,i, its derivatives and λi are bounded, and on the other hand wε,i

is in L∞((0,+∞);L1(R)). We know that J2 ≤ 0 because f is convex. To control J1,

we rewrite it under the following form

J1 =

∫

R

∑

i=1,...,d

λi(uε)g′(wε,i)∂xwε,i,

where

g(x) =

{
x − 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e.

Then, we deduce that

J1 =

∫

R

∑

i=1,...,d

λi(uε)∂x(g(wε,i))

= −
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jg(wε,i),

=

J11

︷ ︸︸ ︷

−
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jwε,i

J12

︷ ︸︸ ︷

−
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,j(g(wε,i) − wε,i) .

We use the fact that |g(x) − x| ≤ 1
e

for all x ≥ 0 and (H1), to deduce that

|J12| ≤
1

e
dM1 ‖wε‖[L∞((0,+∞),L1(R))]d

≤ 2

e
dM1‖u0‖[L∞(R)]d := C0(‖u0‖[L∞(R)]d , d,M1)

where we have used
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∥
∥wε,i

∥
∥

L∞((0,+∞),L1(R))
≤ 2‖ui

0‖L∞(R), for i = 1, . . . , d, (3.5)

which follows from Remark 2.1 and Theorem 2.2. Finally, we deduce that

d

dt
S(t) ≤ J11 + J12 + J2

≤ J11 + C0.

Integrating in time on (0, t), for 0 < t < T , we get that there exists a positive

constant C
(
T, d,M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

)
which is independent of ε by

(3.3) and Lemma 3.2 (ii) such that

S(t) +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jwε,i ≤ C0T + S(0) ≤ C.

�

Lemma 3.3. (W−1,1 estimate on the time derivative of the solutions)

Assume (H1) and that the function u0 ∈ [L∞(R)]
d

satisfies (H3). Then for any

0 < ε ≤ 1, the solution uε of the system (2.2) given in Theorem 2.2 with initial

data uε
0 = u0 ∗ ηε, satisfies the following ε-uniform estimate for all T > 0:

‖∂tu
ε‖[L2((0,T );W−1,1(R))]d ≤ C‖u0‖[L∞(R)]d .

where C = C(T,M0) > 0 and W−1,1(R) is the dual of the space W 1,∞(R).

Proof of Lemma 3.3:

The idea to bound ∂tu
ε is simply to use the available bounds on the right hand side

of the equation (2.2). We will give a proof by duality. We multiply the equation

(2.2) by φ ∈
[
L2((0, T ),W 1,∞(R))

]d
and integrate on (0, T ) × R, which gives

∫

(0,T )×R

φ · ∂tu
ε =

I1

︷ ︸︸ ︷

ε

∫

(0,T )×R

φ · ∂2
xxuε

I2

︷ ︸︸ ︷

−
∫

(0,T )×R

φ · (λ(uε) ⋄ ∂xuε).

We integrate by parts term I1, and obtain:

|I1| ≤
∣
∣
∣
∣
∣

∫

(0,T )×R

∂xφ · ∂xuε

∣
∣
∣
∣
∣
≤ ‖∂xφ‖[L2((0,T ),L∞(R))]d‖∂xuε‖[L2((0,T ),L1(R))]d ,

≤ 2T
1

2 ‖φ‖[L2((0,T ),W 1,∞(R))]d‖u0‖[L∞(R)]d ,

(3.6)

where we have used inequality (3.5). Similarly, for the term I2, we have:



October 14, 2009 13:33 WSPC/INSTRUCTION FILE elhajj-monneau

14 A. EL HAJJ & R. MONNEAU

|I2| ≤ M0‖φ‖[L2((0,T ),L∞(R))]d‖∂xuε‖[L2((0,T ),L1(R))]d ,

≤ 2T
1

2 M0‖u0‖[L∞(R)]d‖φ‖[L2((0,T ),W 1,∞(R))]d .

(3.7)

Finally, collecting (3.6) and (3.7), we get that there exists a constant C = C(T,M0)

independent of 0 < ε ≤ 1 such that:
∣
∣
∣
∣
∣

∫

(0,T )×R

φ · ∂tu
ε

∣
∣
∣
∣
∣
≤ C‖u0‖[L∞(R)]d‖φ‖[L2((0,T ),W 1,∞(R))]d

which gives the stated result. �

Corollary 3.4. (ε-uniform estimates)

Assume (H1) and that the function u0 ∈ [L∞(R)]
d

satisfies (H3). Then for any

0 < ε ≤ 1, the solution uε of the system (2.2) given in Theorem 2.2 with initial

data uε
0 = u0 ∗ ηε, satisfies the following ε-uniform estimate for all T > 0:

‖∂xuε‖[L∞((0,+∞),L1(R))]d + ‖uε‖[L∞((0,+∞)×R)]d + ‖∂tu
ε‖[L2((0,T );W−1,1(R))]d ≤ C,

(3.8)

where C = C(T,M0, ‖u0‖[L∞(R)]d).

This Corollary is a straightforward consequence of Remark 2.1, Theorem 2.2, esti-

mate (3.5) and Lemma 3.3.

4. Passage to the limit and proof of Theorem 1.1

In this section, we prove that the system (1.1)-(1.2) admits solutions u in the dis-

tributional sense. They are the limits of uε given by Theorem 2.2 when ε → 0. To

do this, we will justify the passage to the limit as ε tends to 0 in the system (2.2)

by using some compactness tools that are presented first in a subsection.

4.1. Preliminary results

First, for all open interval I of R, we denote by

L log L(I) =

{

f ∈ L1(I) such that

∫

I

|f | ln (e + |f |) < +∞
}

.

Lemma 4.1. (Simon’s Lemma)

Let X, B, Y be three Banach spaces, such that we have the following injections

X →֒ B with compact embedding and B →֒ Y with continuous embedding.

Let T > 0. If (uε)ε is a sequence such that

‖uε‖L∞((0,T );X) + ‖∂tu
ε‖Lq((0,T );Y ) ≤ C,



October 14, 2009 13:33 WSPC/INSTRUCTION FILE elhajj-monneau

CONTINUOUS SOLUTIONS FOR DIAGONAL HYPERBOLIC SYSTEMS 15

where q > 1 and C is a constant independent of ε, then (uε)ε is relatively compact

in Lp((0, T );B) for all 1 ≤ p < q.

For the proof, see Simon [27, Corollary 4, Page 85].

In order to show the existence of a solution to system (1.1) in Subsection 4.2, we

will apply this lemma to each scalar component of uε in the particular case where

X = W 1,1(I), B = L1(I) and Y = W−1,1(I) := (W 1,∞
0 (I))′.

We denote by Kexp(I) the class of all measurable functions u defined on I for which

∫

I

(

e|u| − 1
)

< +∞.

The space EXP (I) = {µu : µ ≥ 0 and u ∈ Kexp(I)} is the linear hull of

Kexp(I). This space is supplemented with the following Luxemburg norm (see

Adams [1, (13), Page 234] ):

‖u‖EXP (I) = inf

{

λ > 0 :

∫

I

(

e
|u|
λ − 1

)

≤ 1

}

.

Let us recall some useful properties of this space.

Lemma 4.2. (Generalized Hölder inequality, Adams [1, 8.11, Page 234])

Let h ∈ EXP (I) and g ∈ L log L(I). Then hg ∈ L1(I), with

‖hg‖L1(I) ≤ 2‖h‖EXP (I)‖g‖L log L(I).

Lemma 4.3. (Continuity)

Let T > 0. Assume that u ∈ L∞((0,+∞) × R) such that

‖∂xu‖L∞((0,T );L log L(R)) + ‖∂tu‖L∞((0,T );L log L(R)) ≤ C2

Then for all δ, h ≥ 0 and all (t, x) ∈ (0, T − δ) × R, we have:

|u(t + δ, x + h) − u(t, x)| ≤ 6C2

(
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)

)

.

Proof of Lemma 4.3:

For all h > 0 and (t, x) ∈ (0, T ) × R, we have:
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|u(t, x + h) − u(t, x)| ≤
∣
∣
∣
∣
∣

∫ x+h

x

∂xu(t, y)dy

∣
∣
∣
∣
∣

≤ 2‖1‖EXP (x,x+h)‖∂xu(t, ·)‖L log L(x,x+h),

≤ 2
1

ln( 1
h

+ 1)
‖∂xu‖L∞((0,T );L log L(R)),

≤ 2C2
1

ln( 1
h

+ 1)
,

(4.1)

where we have used in the second line the generalized Hölder inequality (Lemma

4.2). Now we prove the continuity in time for all δ > 0 and (t, x) ∈ (0, T − δ) × R,

we have:

δ|u(t + δ, x) − u(t, x)|

=

∫ x+δ

x

|u(t + δ, x) − u(t, x)|dy,

≤

K1

︷ ︸︸ ︷
∫ x+δ

x

|u(t + δ, x) − u(t + δ, y)|dy,+

K2

︷ ︸︸ ︷
∫ x+δ

x

|u(t + δ, y) − u(t, y)|dy,+

K3

︷ ︸︸ ︷
∫ x+δ

x

|u(t, y) − u(t, x)|dy .

Similarly, as in the last estimate (4.1), we get that:

K1 + K3 ≤ δ

∫ x+δ

x

|∂xu(t + δ, y)|dy,+δ

∫ x+δ

x

|∂xu(t, y)|dy,

≤ 4C2
δ

ln(1
δ

+ 1)
.

Now we use the fact that ∂tu is bounded in L∞((0, T );L log L(R)), to obtain that:

K2 ≤
∫ x+δ

x

∫ t+δ

t

|∂tu(s, y)|ds dy,

≤ 2δ‖1‖EXP (x,x+δ)‖∂tu‖L∞((0,T );L log L(R)) ≤ 2C2
δ

ln(1
δ

+ 1)
.

Collecting the estimates of K1, K2 and K3, we get that:

|u(t + δ, x) − u(t, x)| ≤ 1

δ
(K1 + K2 + K3) ≤ 6C2

1

ln(1
δ

+ 1)
.
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This last inequality joint to (4.1) implies the result.

�

4.2. Proof of Theorem 1.1

The authors would like to thank T. Gallouët for fruitful remarks that helped to

simplify the proof of Theorem 1.1. Before proving Theorem 1.1, we first prove the

following result.

Theorem 4.4. (Passage to the limit)

Assume that uε is a solution of system (2.2) given by Theorem 2.2, with initial data

uε
0 = u0 ∗ ηε where u0 satisfies (H3). If we assume that for all T > 0, there exists

a constant C > 0 independent on ε, such that:

‖∂xuε‖[L∞((0,T );L log L(R))]d ≤ C, (4.2)

then up to extract a subsequence, the function uε converges to a function u weakly-⋆

in [L∞((0,+∞) × R)]
d
, as ε goes to zero. Moreover, u is a solution of (1.1)-(1.2),

and satisfies







‖u‖[L∞((0,+∞)×R)]d ≤ ‖u0‖[L∞(R)]d ,

‖∂xu‖[L∞((0,T );L log L(R))]d ≤ C,

‖∂tu‖[L∞((0,T );L log L(R))]d ≤ M0C,

and u(t, ·) is non-decreasing in x, for all t > 0 and satisfies

‖ui‖L∞((0,+∞);L1(R)) ≤ 2‖ui
0‖L∞(R) for i = 1, . . . , d. (4.3)

Proof of Theorem 4.4:

Step 1 (u solution of (1.1)): First, we remark that with the estimate (3.8) we

know that for any T > 0, the solutions uε of the system (2.2) obtained with the help

of Theorem 2.2, are ε-uniformly bounded in [L∞((0,+∞) × R)]
d
. Hence, as ε goes

to zero, we can extract a subsequence still denoted by uε, that converges weakly-⋆

in [L∞((0,+∞) × R)]
d

to some limit u. Then we want to show that u is a solution

of system (1.1). Indeed, since the passage to the limit in the linear terms is trivial

in [D′((0,+∞) × R)]
d
, it suffices to pass to the limit in the non-linear term

λ(uε) ⋄ ∂xuε.

According to estimate (3.8) we know that for all open and bounded interval I of R

there exists a constant C independent on ε such that:

‖uε‖[L∞((0,T );W 1,1(I))]d + ‖∂tu
ε‖[L2((0,T );W−1,1(I))]d ≤ C.
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From the compactness of W 1,1(I) →֒ L1(I), we can apply Simon’s Lemma (i.e.

Lemma 4.1), with X =
[
W 1,1(I)

]d
, B =

[
L1(I)

]d
and Y =

[
W−1,1(I)

]d
, which

shows in particular that

uε is relatively compact in
[
L1((0, T ) × I)

]d
. (4.4)

Then, we can see that (up to extract a subsequence)

λ(uε) → λ(u) a.e.

Moreover, from Lemma 4.2, similarly as in (4.1), we can get, for all t ∈ (0, T ) the

following estimates:

∣
∣
∣
∣

∫

I

∂xuε(t, y)dy

∣
∣
∣
∣
≤ 2C

1

ln( 1
|I| + 1)

,

where C is given in (4.2). By the previous estimate and the fact that λ(uε) is

uniformly bounded in [L∞((0,+∞) × R)]
d

and converges a.e. to λ(u), we can apply

the Dunford-Pettis Theorem (see Brezis [4, Th IV.29]) and prove that

λ(uε) ⋄ ∂xuε → λ(u) ⋄ ∂xu

weakly in
[
L1((0, T ) × I)

]d
. Because this is true for any bounded open interval I,

then we can pass to the limit in (2.2) and get that,

∂tu + λ(u) ⋄ ∂xu = 0 in D′((0,+∞) × R).

Step 2 (A priori bounds): By weakly-⋆ convergence and from the fact that

L∞((0, T );L log L(R)) is the dual of L1((0, T );Eexp(R)) (see Adams [1] for the

definition of the Banach space Eexp(R)), we can check that u satisfies the following

estimates:

‖∂xu‖[L∞((0,T );L log L(R))]d ≤ lim inf
ε→0

‖∂xuε‖[L∞((0,T );L log L(R))]d ≤ C,

‖u‖[L∞((0,+∞)×R)]d≤ lim inf
ε→0

‖uε‖[L∞((0,+∞)×R)]d ≤ ‖u0‖[L∞(R)]d . (4.5)

Thanks to these two estimates, we obtain that

‖∂tu‖[L∞((0,T );L log L(R))]d ≤ ‖λ(u) ⋄ ∂xu‖[L∞((0,T );L log L(R))]d

≤ M0‖∂xu‖[L∞((0,T );L log L(R))]d ≤ M0C.

Moreover (4.3) follows from (4.5) and the fact that u(t, ·) is non-decreasing in x (as

it was the case for uε).
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Step 3 (Recovering the initial data): Now we prove that the initial conditions

(1.2) coincide with u(0, ·). Indeed, by the ε-uniformly estimate given in Corollary

3.4, we can prove easily that

‖uε(t) − uε
0‖[W−1,1(R)]d ≤ Ct

1

2 .

Then, we get

‖u(t) − u0‖[W−1,1(R)]d ≤ ‖u − u0‖[L∞((0,t);W−1,1(R))]d

≤ lim inf
ε→0

‖uε − uε
0‖[L∞((0,t);W−1,1(R))]d ≤ Ct

1

2 ,

where we have used the weakly-⋆ convergence in L∞((0, t);W−1,1(R)) in the second

line. This proves that u(0, ·) = u0 in [D′(R)]
d
.

�

Proof of Theorem 1.1:

Step 1 (Existence): Note that with assumption (H2) and estimate (3.2), we de-

duce from (3.4) joint to (3.5) that, the solution uε given by Corollary 3.4 satisfies

the following estimate:

‖∂xuε‖[L∞((0,T );L log L(R))]d ≤ C, (4.6)

where C = C
(
T, d,M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

)
. Now, we apply Theorem

4.4 to prove that, up to extract a subsequence, the function uε converges, as ε goes

to zero, to a function u weakly-⋆ in [L∞((0,+∞) × R)]
d
, with u being the solution

to (1.1)-(1.2). Moreover, from Lemma 4.3, we deduce that the function u satisfies

the continuity estimate (1.7).

Step 2 (Justification of (1.5)): Let







Γij(u
ε) = 1

2

(

λi
,j(u

ε) + λj
,i(u

ε)
)

, for i, j = 1, . . . , d,

wε = ∂xuε.

For a general matrix Γ, where tΓ = Γ ≥ 0, let us introduce the square root B =
√

Γ

of Γ, uniquely defined by

tB = B ≥ 0 and B2 = Γ.

Note that for non-negative symmetric matrices, the map Γ 7−→
√

Γ is continuous.

Then we can write
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∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,iwε,j =

∫ t

0

∫

R

∣
∣
∣

√

Γ(uε)wε
∣
∣
∣

2

≤ C,

where C is given in (3.2). Therefore

√

Γ(uε)wε → q weakly in
[
L2((0, t) × R)

]d
.

Applying the same argument as in Step 1, of the proof of Theorem 4.4, for the

convergence of λ(uε) ⋄ ∂xuε, we see that

√

Γ(uε)∂xuε →
√

Γ(u)∂xu = q weakly in
[
L1((0, t) × R)

]d
.

Therefore, using the weakly convergence in L2((0, t) × R), we get

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u)∂xui∂xuj =

∫ t

0

∫

R

q2 ≤ lim inf
ε→0

∫ t

0

∫

R

∣
∣
∣

√

Γ(uε)∂xuε
∣
∣
∣

2

≤ C.

(4.7)

Remark also that for wi = ∂xui, we have

sup
0≤t≤T

Z

R

f(wi) ≤ 1 + ‖wi‖L∞((0,T );L log L(R)) + ‖wi‖L∞((0,T );L1(R)) ln
“

1 + ‖wi‖L∞((0,T );L log L(R))

”

≤ 1 + ‖wi‖L∞((0,T );L log L(R)) + 2‖ui
0‖L∞(R) ln

“

1 + ‖wi‖L∞((0,T );L log L(R))

”

:= g[wi]

≤ lim inf
ε→0

g[wε,i]

≤ 1 + C + 2‖ui
0‖L∞(R) ln(1 + C) := C

′
,

where in the first line we have used (3.3), in the second line we have used (4.3),

in the third line we have used the weakly-⋆ convergence of wε,i towards wi in

L∞((0, T );L log L(R)) and in the fourth line, we have used (4.6). Putting this result

together with (4.7), we get (1.5) with C1 = C + C ′.

�

5. Appendix: Example of the dynamics of dislocation densities

In this section, we present a model describing the dynamics of dislocation densities.

We refer to Hirth et al. [16] for a physical presentation of dislocations which are

(moving) defects in crystals. Even if the problem is naturally a three-dimensional

problem, we will first assume that the geometry of the problem is invariant by trans-

lations in the x3-direction. This reduces the problem to the study of dislocations

densities defined on the plane (x1, x2) and moving in a given direction b belonging
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to the plane (x1, x2) (which is called “Burger’s vector”).

In Subsection 5.1, we present the 2D-model with multi-slip directions. In the

particular geometry where the dislocations densities only depend on the variable

x = x1 +x2, this two-dimensional model reduces to a one-dimensional model which

is presented in Subsection 5.2. Finally in Subsection 5.3, we explain how to recover

equation (1.1) as a model for dislocation dynamics with

λi(u) =
∑

j=1,...,d

Aiju
j

for some particular non-negative and symmetric matrix A.

5.1. The 2D-model

We now present in detail the two-dimensional model. We denote by X the vector

X = (x1, x2) ∈ R
2. We consider a crystal filling the whole space R

2 and its dis-

placement v = (v1, v2) : R
2 → R

2, where we have not yet introduced any time

dependence.

We introduce the total strain ε(v) = (εij(v))i,j=1,2 which is a symmetric matrix

defined by

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)

.

The total strain can be split into two parts:

εij(v) = εe
ij + εp

ij with εp =
∑

k=1,...,d

ε0,kuk,

where εe
ij is the elastic strain and εp

ij is the plastic strain. The scalar function uk

is the plastic displacement associated to the k-th slip system whose matrix ε0,k
ij is

defined by

ε0,k
ij =

1

2

(
bk
i nk

j + nk
i bk

j

)
,

where (bk, nk) is a family of vectors in R
2, such that nk is a unit vector orthogonal

to the Burger’s vector bk (see Hirth et al. [16] for the definition of Burger’s vector

of a dislocation)

To simplify the presentation, we assume the simplest possible periodicity property

of the unknowns.
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Assumption (H):

i) The function v is Z
2-periodic with

∫

(0,1)2
v dX = 0.

ii) For each k = 1, . . . , d, there exists Lk ∈ R
2 such that uk(X) − Lk · X is a Z

2-

periodic.

iii) The integer d is even with d = 2N and we have for k = 1, . . . , N :

Lk+N = Lk, nk+N = nk, bk+N = −bk, ε0,k+N = −ε0,k.

iv) We denote by τk ∈ R
2 a unit vector parallel to bk such that τk+N = τk. We

require that Lk is chosen such τk · Lk ≥ 0.

Note in particular that the plastic strain εp
ij is Z

2-periodic as a consequence of

Assumption (H). The stress matrix is then given by

σij =
∑

k,l=1,2

Λijklε
e
kl for i, j = 1, 2,

where Λ = (Λijkl)i,j,k,l=1,2, are the constant elastic coefficients of the material, sat-

isfying for some constant m > 0:
∑

i,j,k,l=1,2

Λijklεijεkl ≥ m
∑

i,j=1,2

ε2
ij , (5.1)

for all symmetric matrices ε = (εij)ij
, i.e. such that εij = εji.

Then the stress is assumed to satisfy the equation of elasticity

∑

j=1,2

∂σij

∂xj

= 0 for i = 1, 2.

On the other hand the plastic displacement uk is assumed to satisfy the following

transport equation

∂tu
k = ckτk.∇uk with ck =

∑

i,j=1,2

σijε
0,k
ij .

This equation can be interpreted, by observing that

θk = τk.∇uk ≥ 0, (5.2)

is the density of edge dislocations associated to the Burger’s vector bk moving in

the direction τk at the velocity ck. Here ck is also called the resolved Peach-Koehler
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force in the physical literature. In particular, we see that the dislocation density θk

satisfies the following conservation law

∂tθ
k = div(ckτkθk).

Finally, for k = 1, . . . , d, the functions uk and v are then assumed to depend on

(t,X) ∈ (0,+∞) × R
2 and to be solutions of the coupled system (see Yefimov [29,

ch. 5.] and Yefimov, Van der Giessen [30]):







∑

j=1,2

∂σij

∂xj

= 0 on (0,+∞) × R
2, for i = 1, 2,

σij =
∑

k,l=1,2

Λijkl



εkl(v) −
∑

k=1,...,d

ε0,k
ij uk



 on (0,+∞) × R
2,

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)

on (0,+∞) × R
2,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for i, j = 1, 2

∂tu
k =




∑

i,j∈{1,2}

σijε
0,k
ij



 τk.∇uk on (0,+∞) × R
2, for k = 1, . . . , d,

(5.3)

where Λijkl, ε0,k
ij are fixed parameters previously introduced, and the unknowns of

the system are u = (uk)k=1,...,d and the displacement v = (v1, v2). Note also that

these equations are compatible with the periodicity assumptions (H), (i)-(ii).

For a detailed physical presentation of a model with multi-slip directions, we refer

to Yefimov, Van der Giessen [30] and Yefimov [29, ch. 5.] and to Groma, Balogh

[15] for the case of a model with a single slip direction. See also Cannone et al. [5]

for a mathematical analysis of the Groma, Balogh model.

5.2. Derivation of the 1D-model

In this subsection we are interested in a particular geometry where the dislocation

densities depend only on the variable x = x1 + x2. This will lead to a 1D-model.

More precisely, we assume the following:

Assumption (H ′):

i) The functions v(t,X) and uk(t,X)−Lk·X depend only on the variable x = x1+x2.

ii) For k = 1, . . . , d, the vector τk = (τk
1 , τk

2 ) satisfies τk
1 +τk

2 > 0 with µk =
1

τk
1 + τk

2

.

iii) For k = 1, . . . , d, the vector Lk = (Lk
1 , Lk

2) satisfies Lk
1 = Lk

2 = lk.
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For this particular one-dimensional geometry, we denote by an abuse of notation

the function v = v(t, x) which is 1-periodic in x. By assumption (H ′), (iii), we

can see (again by an abuse of notation) that u = (uk(t, x))k=1,...,d is such that for

k = 1, . . . , d, uk(t, x) − lk · x is 1-periodic in x.

Now, we can integrate the equations of elasticity, i.e. the first equation of (5.3).

Using the Z
2-periodicity of the unknowns (see assumption (H), (i)-(ii)), and the

fact that ε0,k+N = −ε0,k (see assumption (H), (iii)), we can easily conclude that

the strain

εe is a linear function of (uj − uj+N )j=1,...,N and of

(∫ 1

0

(uj − uj+N ) dx

)

j=1,...,N

.

(5.4)

This leads to the following Lemma

Lemma 5.1. (Stress for the 1D-model)

Under assumptions (H), (i)-(ii)-(iii) and (H ′), (i)-(iii) and (5.1), we have

−σ : ε0,i =
∑

j=1,...,d

Aiju
j +

∑

j=1,...,d

Qij

∫ 1

0

uj dx, for i = 1, . . . , N, (5.5)

where for i, j = 1, . . . , N







Ai,j = Aj,i and Ai+N,j = −Ai,j = Ai,j+N = −Ai+N,j+N ,

Qi,j = Qj,i and Qi+N,j = −Qi,j = Qi,j+N = −Qi+N,j+N .

(5.6)

Moreover the matrix A is non-negative.

The proof of Lemma 5.1 will be given at the end of this subsection.

Finally using Lemma 5.1, we can eliminate the stress and reduce the problem to a

one-dimensional system of d transport equations only depending on the function ui,

for i = 1, . . . , d. Naturally, from (5.5) and (H ′), (ii) this 1D-model has the following

form

The 1D-model of the dynamics of dislocation densities:

µi∂tu
i+




∑

j=1,...,d

Aiju
j +

∑

j=1,...,d

Qij

∫ 1

0

uj dx



 ∂xui = 0, on (0,+∞) × R, for i = 1, . . . , d,

(5.7)

with from (5.2)

∂xui ≥ 0 for i = 1, . . . , d. (5.8)
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Now, we give the proof of Lemma 5.1.

Proof of Lemma 5.1:

For the 2D-model, let us consider the elastic energy on the periodic cell (using the

fact that εe is Z
2-periodic)

E(u, v) =
1

2

∫

(0,1)2

∑

i,j,k,l=1,2

Λijklε
e
ijε

e
kl dX with εe

ij = εij(v) −
∑

k=1,...,d

ε0,k
ij uk.

By definition of σij and εe
ij , we have for k = 1, . . . , d

∑

i,j=1,2

(σijε
0,k
ij ) = −E′

uk(u, v). (5.9)

On the other hand using (H ′), (i)-(iii), (with x = x1 + x2) we can verify that we

can rewrite the elastic energy as

E =
1

2

∫ 1

0

∑

i,j,k,l=1,2

Λijklε
e
ijε

e
kldx.

Replacing εe
ij by its expression (5.4), we find that:

E =
1

2

∫ 1

0

∑

i,j=1,...,N

Aij(u
j − uj+N )(ui − ui+N ) dx

+
1

2

∑

i,j=1,...,N

Qij

(∫ 1

0

(uj − uj+N ) dx

)(∫ 1

0

(ui − ui+N ) dx

)

,

for some symmetric matrices Aij = Aji, Qij = Qji. In particular, joint to (5.9) this

gives exactly (5.5) with (5.6).

Let us now consider the functions wi = ui − ui+N such that

∫ 1

0

wi dx = 0 for i=1,. . . ,N. (5.10)

From (5.1), we deduce that

0 ≤ E =
1

2

∫ 1

0

∑

i,j=1,...,N

Aijw
iwj dx.

More precisely, for all i = 1, . . . , N and for all w̄i ∈ R, we set

wi =

{
w̄i on [0, 1

2 ],

−w̄i on [12 , 1],
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which satisfies (5.10). Finally, we obtain that

0 ≤ E =
1

2

∫ 1

0

∑

i,j=1,...,N

Aijw̄
iw̄j dx.

Because this is true for every w̄ = (w̄1, . . . , w̄N ) ∈ R
N , we deduce that A a non-

negative matrix.

�

We refer the reader to El Hajj [9] and El Hajj, Forcadel [10] for a study in the

special case of a single slip direction, i.e. in the case N = 1.

5.3. Heuristic derivation of the non-periodic model

Starting from the model (5.7)-(5.8) where for i = 1, . . . , d, the function ui(t, x)−li ·x
is 1-periodic in x, we now want to rescale the unknowns to make the periodicity

disappear. More precisely, we have the following Lemma:

Lemma 5.2. (Non-periodic model)

Let u be a solution of (5.7)-(5.8) assuming Lemma 5.1 and ui(t, x)−li·x is 1-periodic

in x. Let

uj
δ(t, x) = uj(δt, δx), for a small δ > 0 and for j = 1, . . . , d,

such that, for all j = 1, . . . , d

uj
δ(0, ·) → ūj(0, ·), as δ → 0, and ūj(0,±∞) = ūj+N (0,±∞). (5.11)

Then ū = (ūj)j=1,...,d is formally a solution of

µi∂tū
i +




∑

j=1,...,d

Aij ū
j



 ∂xūi = 0, on (0,+∞) × R, (5.12)

where the symmetric matrix A is non-negative and ∂xūi ≥ 0 for i = 1, . . . , d.

We remark that the limit problem (5.12) is of type (1.1) when µi = 1. In par-

ticular, there are no reasons to assume that this system is strictly hyperbolic in

general. Nevertheless, the general case µi > 0 can be treated with our approach

developed in Theorem 1.1 considering the entropy

∫

R

∑

i=1,...,d

µif
(
∂xūi(t, x)

)
dx in-

stead of

∫

R

∑

i=1,...,d

f
(
∂xūi(t, x)

)
dx.

Formal proof of Lemma 5.2:

Here, we know that ui
δ − δli · x is

1

δ
-periodic in x, and satisfies for i = 1, . . . , d
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µi∂tu
i
δ +




∑

j=1,...,d

Aiju
j
δ + δ

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx



 ∂xui
δ = 0, on (0,+∞) × R.

(5.13)

To simplify, assume that the initial data uδ(0, ·) converge to a function ū(0, ·) such

that the function ∂xuδ(0, ·) inside the interval

(−1

2δ
,

1

2δ

)

has a support in (−R,R),

uniformly in δ, where R a positive constant. Because of the antisymmetry property

of the matrix Q (see assumption (5.6)), and because of assumption (5.11), we expect

heuristically that the velocity in (5.13) remains uniformly bounded as δ → 0.

Therefore, using the finite propagation speed, we see that, there exists

a constant C independent in δ, such that ∂xuδ(t, ·) has a support on

(−R − Ct,R + Ct) ⊂
(−1

2δ
,

1

2δ

)

. Moreover, from (5.11) and the fact that

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx =

∑

j=1,...,N

Qij

∫ 1

δ

0

(uj
δ − uj+N

δ ) dx,

we deduce that

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx,

remains bounded uniformly in δ. Then formally the non-local term vanishes and we

get for i = 1, . . . , d

∑

j=1,...,d

Aiju
j
δ + δ

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx →

∑

j=1,...,d

Aij ū
j , as δ → 0,

which proves that ū is solution of (5.12), with the non-negative symmetric matrix

A. �
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