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Abstract

We study a coupled system of two parabolic equations in one space dimension. This system is singular

because of the presence of one term with the inverse of the gradient of the solution. Our system describes

an approximate model of the dynamics of dislocation densities in a bounded channel submitted to an

exterior applied stress. The system of equations is written on a bounded interval with Dirichlet conditions

and requires a special attention to the boundary. The proof of existence and uniqueness is done under

the use of a certain comparison principle on the gradient of the solution.
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1 Introduction

1.1 Setting of the problem

In this paper, we are concerned in the study of the following singular parabolic system:






κt = εκxx +
ρxρxx

κx
− τρx on I × (0,∞)

ρt = (1 + ε)ρxx − τκx on I × (0,∞),
(1.1)

with the initial conditions:

κ(x, 0) = κ0(x) and ρ(x, 0) = ρ0(x), (1.2)

and the boundary conditions:
{

κ(0, .) = κ0(0) and κ(1, .) = κ0(1),

ρ(0, .) = ρ(1, .) = 0,
(1.3)
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where
ε > 0, τ ∈ R,

are fixed constants, and
I := (0, 1)

is the open and bounded interval of R.
The goal is to show the long-time existence and uniqueness of a smooth solution of

(1.1), (1.2) and (1.3). Our motivation comes from a problem of studying the dynamics
of dislocation densities in a constrained channel submitted to an exterior applied stress.
In fact, system (1.1) can be seen as an approximate model of the one described in [7].
This approximate model (presented in [7] for ε = 0) reads:







θ+
t = εθ+

xx +

[(
θ+
x − θ−x

θ+ + θ−
− τ

)

θ+

]

x

on I × (0,∞),

θ−t = εθ−xx −
[(

θ+
x − θ−x

θ+ + θ−
− τ

)

θ−
]

x

on I × (0,∞),

(1.4)

with τ representing the exterior stress field. System (1.4) can be deduced from (1.1), by
spatially differentiating (1.1), and by considering

ρ±x = θ±, ρ = ρ+ − ρ−, κ = ρ+ + ρ−, (1.5)

which explains the presence of the factor (1 + ε) in the second equation of (1.1). Here
θ+ and θ− represent the densities of the positive and negative dislocations respectively
(see [18, 9] for a physical study of dislocations).

The part II of this work will be presented in [12]. There, we will show some kind of
convergence of the solution (ρε, κε) as ε → 0.

1.2 Statement of the main result

The main result of this paper is:

Theorem 1.1 (Existence and uniqueness of a solution). Let ρ0, κ0 satisfying:

ρ0, κ0 ∈ C∞(Ī), ρ0(0) = ρ0(1) = κ0(0) = 0, κ0(1) = 1,

{

(1 + ε)ρ0
xx = τκ0

x on ∂I

(1 + ε)κ0
xx = τρ0

x on ∂I,
(1.6)

and
κ0

x > |ρ0
x| on Ī .

Then there exists a unique global solution (ρ, κ) of system (1.1), (1.2) and (1.3) satisfying

(ρ, κ) ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(Ī × (0,∞)), ∀α ∈ (0, 1). (1.7)

Moreover, this solution also satisfies :

κx > |ρx| on Ī × [0,∞). (1.8)
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Remark 1.2 Conditions (1.6) are natural here. Indeed, the regularity (1.7) of the solu-
tion of (1.1) with the boundary conditions (1.2) and (1.3) imply in particular (1.6).

Remark 1.3 Remark that the choice κ0(0) = 0 and κ0(1) = 1 does not reduce the
generality of the problem, because equation (1.1) does not see the constants and has the
following invariance: if (ρ, κ) is a solution, then (λρ, λκ) is also a solution for any λ ∈ R.

1.3 Brief review of the literature

To our knowledge, systems of equations involving the singularity in 1/κx as in (1.1)
has not been directly handled elsewhere in the literature. However, parabolic problems
involving singular terms have been widely studied in various aspects. Fast diffusion
equations:

ut − ∆um = 0, 0 < m < 1,

are examined, for instance, in [2, 4, 5]. These equations are singular at points where
u = 0. In dimension 1, setting u = vx we get, up to a constant of integration:

vt − mvm−1
x vxx = 0

which makes appear a singularity like 1/vx. Other class of singular parabolic equations
are for instance of the form:

ut = uxx +
b

x
ux, (1.9)

where b is a certain constant. Such an equation is related to axially symmetric problems
and also occurs in probability theory (see [3, 16]). An important type of equations that
can be indirectly related to our system are semilinear parabolic equations:

ut = ∆u + |u|p−1u, p > 1. (1.10)

Many authors have studied the blow-up phenomena for solutions of the above equation
(see for instance [17, 8]). Equation (1.10) can be somehow related to the first equation
of (1.1), but with a singularity of the form 1/κ. This can be formally seen if we first
suppose that u ≥ 0, and then we apply the following change of variables u = 1/v. In
this case, equation (1.10) becomes:

vt = ∆v − 2|∇v|2
v

− v2−p,

and hence if p = 3, we obtain:

vt = ∆v − 1

v
(1 + 2|∇v|2). (1.11)

Since the solution u of (1.10) may blow-up at a finite time t = T , then v may vanishes at
t = T , and therefore equation (1.11) faces similar singularity to that of the first equation
of (1.1), but in terms of the solution v instead of vx.
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1.4 Strategy of the proof

The existence and uniqueness is made by using a fixed point argument after a slight
artificial modification in the denominator κx of the first equation of (1.1) in order to
avoid dividing by zero. We will first show the short time existence, proving in particular
that

M(x, t) = κx(x, t) −
√

γ2(t) + ρ2
x(x, t) ≥ 0,

for some well chosen initial data and a suitable function γ(t) = ce−ct, c > 0. This follows
from the PDE satisfied by M . Let us mention that one of the key points here is that∣
∣
∣
ρx

κx

∣
∣
∣ ≤ 1 which somehow linearize the first equation of (1.1). After that, due to some a

priori estimates, we can prove the global time existence.

Remark 1.4 In a previous version of the present paper (see the PhD thesis of H. Ibrahim
[10] and the preprint [11]), our main arguments of the proof involved some estimates on
higher derivatives of the solution, which required the use of a parabolic logarithmic Sobolev
inequality of the Kozono-Taniuchi type (see [13]). We are grateful to an anonymous
referee whose suggestions have simplified the presentation of this paper.

1.5 Organization of the paper

This paper is organized as follows: in Section 2, we present the tools needed throughout
this work, this includes a brief recall on the Lp and Cα theory for parabolic equations.
In Section 3, we show a comparison principle associated to (1.1) that will play a crucial
rule in the long time existence of the solution as well as the positivity of κx. In Section 4,
we present a result of short time existence, uniqueness and regularity of a solution (ρ, κ)
of (1.1). Section 5 is devoted to give some exponential bounds on the spatial derivatives
up to order 2 of ρ and κ. In Section 6, we prove our main result: Theorem 1.1. Finally,
we show in an Appendix, the proofs of some technical results.

2 Tools: theory of parabolic equations

We start with some basic notations and terminology:

Abridged notation.

• IT is the cylinder I × (0, T ); Ī is the closure of I; IT is the closure of IT ; ∂I is the
boundary of I.

• ‖.‖Lp(Ω) = ‖.‖p,Ω, Ω is an open set, p ≥ 1.

• ST is the lateral boundary of IT , or more precisely, ST = ∂I × (0, T ).

• ∂pIT is the parabolic boundary of IT , i.e. ∂pIT = ST ∪ (I × {t = 0}).
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• Ds
yu = ∂su

∂ys , u is a function depending on the parameter y, s ∈ N.

• [l] is the floor part of l ∈ R.

• |Ω| is the n-dimensional Lebesgue measure of the open set Ω ⊂ R
n.

2.1 Lp and Cα theory of parabolic equations

A major part of this work deals with the following typical problem in parabolic theory:






ut = εuxx + f on IT

u(x, 0) = φ on I

u = Φ on ∂I × (0, T ),

(2.1)

where T > 0 and ε > 0. A wide literature on the existence and uniqueness of solutions
of (2.1) in different function spaces could be found for instance in [14], [6] and [15]. We
will deal mainly with two types of spaces:

The Sobolev space W 2,1
p (IT ), 1 < p < ∞ which is the Banach space consisting of the

elements in Lp(IT ) having generalized derivatives of the form Dr
t D

s
xu, with r and s two

non-negative integers satisfying the inequality 2r + s ≤ 2, also in Lp(IT ). The norm in
this space is defined as ‖u‖W 2,1

p (IT ) =
∑2

i=0

∑

2r+s=i ‖Dr
t D

s
xu‖p,IT

.

The Hölder spaces Cℓ(Ī) and Cℓ,ℓ/2(IT ), ℓ > 0 a nonintegral positive number. We do
not recall the definition of the space Cℓ(Ī) which is very standard. The Hölder space
Cℓ,ℓ/2(IT ) is the Banach space of functions v(x, t) that are continuous in IT , together

with all derivatives of the form Dr
t D

s
xv for 2r + s < ℓ, and have a finite norm |v|(ℓ)IT

=

〈v〉(ℓ)IT
+
∑[ℓ]

j=0〈v〉
(j)
IT

, where

〈v〉(0)IT
= |v|(0)IT

= ‖v‖∞,IT
, 〈v〉(j)IT

=
∑

2r+s=j

|Dr
t D

s
xv|(0)IT

, 〈v〉(ℓ)IT
= 〈v〉(ℓ)x,IT

+ 〈v〉(ℓ/2)
t,IT

,

and

〈v〉(ℓ)x,IT
=

∑

2r+s=[ℓ]

〈Dr
t D

s
xv〉(ℓ−[ℓ])

x,IT
, 〈v〉(ℓ/2)

t,IT
=

∑

0<ℓ−2r−s<2

〈Dr
t D

s
xv〉(

ℓ−2r−s
2 )

t,IT
,

with

〈v〉(α)
x,IT

= inf{c; |v(x, t) − v(x′, t)| ≤ c|x − x′|α, (x, t), (x′, t) ∈ IT }, 0 < α < 1,

〈v〉(α)
t,IT

= inf{c; |v(x, t) − v(x, t′)| ≤ c|t − t′|α, (x, t), (x, t′) ∈ IT }, 0 < α < 1.

The above definitions could be found in details in [14, Section 1]. Now, we write down
the compatibility conditions of order 0 and 1. These compatibility conditions concern
the given data φ, Φ and f of problem (2.1).
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Compatibility condition of order 0. Let φ ∈ C(Ī) and Φ ∈ C(ST ). We say that the
compatibility condition of order 0 is satisfied if

φ
∣
∣
∂I

= Φ
∣
∣
t=0

. (2.2)

Compatibility condition of order 1. Let φ ∈ C2(Ī), Φ ∈ C1(ST ) and f ∈ C(IT ).
We say that the compatibility condition of order 1 is satisfied if (2.2) is satisfied and in
addition we have:

(εφxx + f)
∣
∣
∂I

=
∂Φ

∂t

∣
∣
∣
t=0

. (2.3)

We state two results of existence and uniqueness adapted to our special problem. We
begin by presenting the solvability of parabolic equations in Hölder spaces.

Theorem 2.1 (Solvability in Hölder spaces, [14, Theorem 5.2]). Suppose
0 < α < 2, a non-integral number. Then for any

φ ∈ C2+α(Ī), Φ ∈ C1+α/2(ST ) and f ∈ Cα,α/2(IT )

satisfying the compatibility condition of order 1 (see (2.2) and (2.3)), problem (2.1) has
a unique solution u ∈ C2+α,1+α/2(IT ) satisfying the following inequality:

|u|(2+α)
IT

≤ cecT
(

|f |(α)
IT

+ |φ|(2+α)
I + |Φ|(1+α/2)

ST

)

, (2.4)

for some c = c(ε, α) > 0.

We now present the solvability in Sobolev spaces. Recall the norm of fractional Sobolev
spaces. If f ∈ W s

p (a, b), s > 0 and 1 < p < ∞, then

‖f‖W s
p (a,b) = ‖f‖

W
[s]
p (a,b)

+

(
∫ b

a

∫ b

a

|f ([s])(x) − f ([s])(y)|p
|x − y|1+(s−[s])p

)1/p

. (2.5)

Theorem 2.2 (Solvability in Sobolev spaces, [14, Theorem 9.1]). Let p > 1,

ε > 0 and T > 0. For any f ∈ Lp(IT ), φ ∈ W
2−2/p
p (I) and Φ ∈ W

1−1/2p
p (ST ), with

p 6= 3/2 (p = 3/2 is called the singular index) satisfying in the case p > 3/2 the com-
patibility condition of order zero (see (2.2)), there exists a unique solution u ∈ W 2,1

p (IT )
of (2.1) satisfying the following estimate:

‖u‖W 2,1
p (IT ) ≤ c

(

‖f‖p,IT
+ ‖φ‖

W
2−2/p
p (I)

+ ‖Φ‖
W

1−1/2p
p (ST )

)

, (2.6)

for some c = c(ε, p, T ) > 0.

For a better understanding of the spaces stated in the above two theorems, especially
fractional Sobolev spaces, we send the reader to [1] or [14]. The dependence of the
constant c of Theorem 2.2 on the variable T will be of notable importance and this what
is emphasized by the next lemma.
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Lemma 2.3 (The constant c given by (2.6): case φ = 0 and Φ = 0). Under the
same hypothesis of Theorem 2.2, with φ = 0 and Φ = 0, the estimate (2.6) can be written
as:

‖u‖p,IT

T
+

‖ux‖p,IT√
T

+ ‖uxx‖p,IT
+ ‖ut‖p,IT

≤ c‖f‖p,IT
, (2.7)

where c = c(ε, p) > 0 is a positive constant depending only on p and ε.

The proof of this lemma will be done in Appendix A. Moreover, We will frequently make
use of the following two lemmas also depicted from [14].

Lemma 2.4 (Sobolev embedding in Hölder spaces, [14, Lemma 3.3]).
(i) (Case p > 3). For any function u ∈ W 2,1

p (IT ), if α = 1 − 3/p > 0, i.e. p > 3, then

u ∈ C1+α, 1+α
2 (IT ) with |u|(1+α)

IT
≤ c‖u‖

W 2,1
p (IT )

, c = c(p, T ) > 0. However, in terms of

ux, we have that ux ∈ Cα,α/2(IT ) satisfies the following estimates:

‖ux‖∞,IT
≤ c

{
δα(‖ut‖p,IT

+ ‖uxx‖p,IT
) + δα−2‖u‖p,IT

}
, c = c(p) > 0, (2.8)

〈ux〉(α)
IT

≤ c

{

‖ut‖p,IT
+ ‖uxx‖p,IT

+
1

δ2
‖u‖p,IT

}

, c = c(p) > 0.

(ii) (Case p > 3/2). If u ∈ W 2,1
p (IT ) with p > 3/2, then u ∈ C(IT ), and we have the

following estimate:

‖u‖∞,IT
≤ c

{

δ2−3/p(‖ut‖p,IT
+ ‖uxx‖p,IT

) + δ−3/p‖u‖p,IT

}

, c = c(p) > 0. (2.9)

In the above two cases δ = min{1/2,
√

T}.

Lemma 2.5 (Trace of functions in W 2,1
p (IT ), [14, Lemma 3.4]). If u ∈ W 2,1

p (IT ),

p > 1, then for 2r + s < 2 − 2/p, we have Dr
t D

s
xu
∣
∣
t=0

∈ W
2−2r−s−2/p
p (I) with

‖u‖
W

2−2r−s−2/p
p (I)

≤ c(T )‖u‖
W 2,1

p (IT )
.

In addition, for 2r + s < 2 − 1/p, we have Dr
t D

s
xu
∣
∣
ST

∈ W
1−r−s/2−1/2p
p (ST ) with

‖u‖
W

1−r−s/2−1/2p
p (ST )

≤ c(T )‖u‖W 2,1
p (IT ).

A useful technical lemma will now be presented. The proof of this lemma will be done
in Appendix A.

Lemma 2.6 (L∞ control of the spatial derivative). Let p > 3 and let 0 < T ≤ 1/4
(this condition is taken for simplification). Then for every u ∈ W 2,1

p (IT ) with u = 0 on
∂p(IT ) in the trace sense (see Lemma (2.5)), there exists a constant c(T, p) > 0 such that

‖ux‖∞,IT
≤ c(T, p)‖u‖W 2,1

p (IT ), with c(T, p) = c(p)T
p−3
2p → 0 as T → 0.
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3 A comparison principle

Proposition 3.1 (A comparison principle for system (1.1)). Let

(ρ, κ) ∈
(
C3+α, 3+α

2
(
IT

) )2
for some 0 < α < 1,

be a solution of (1.1), (1.2) and (1.3) with κx > 0, and the initial conditions ρ0, κ0

satisfying:

κ0
x ≥

√

γ2
0 + (ρ0

x)2 on I, γ0 ∈ (0, 1). (3.1)

Choose
γ(t) = γ0e

−τ2t/4ε, (3.2)

then we have
κx(x, t) ≥

√

γ2(t) + ρ2
x(x, t) on IT . (3.3)

Proof. Throughout the proof, we will extensively use the following notation:

Ga(y) =
√

a2 + y2, a, y ∈ R.

Without loss of generality (up to a change of variables in (x, t) and a re-definition of τ),
assume in the proof that

I = (−1, 1).

Define the quantity M by:

M(x, t) = κx(x, t) − Gγ(t)(ρx(x, t)), (x, t) ∈ IT ,

γ(t) > 0 is a function to be determined. The proof could be divided into five steps.

Step 1. (Partial differential inequality satisfied by M)

We first do the following computations on IT :

Mt = κxt − G
′

γ(ρx)ρxt −
γγ

′

√

γ2 + ρ2
x

, (3.4)

Mx = κxx − G
′

γ(ρx)ρxx, Mxx = κxxx − G
′′

γ(ρx)ρ2
xx − G

′

γ(ρx)ρxxx. (3.5)

Deriving (1.1) with respect to x, we deduce that







κxt = εκxxx +
ρ2

xx

κx
+

ρxρxxx

κx
− ρxρxxκxx

κ2
x

− τρxx,

ρxt = (1 + ε)ρxxx − τκxx.

(3.6)

We set

Γ =
γγ

′

√

γ2 + ρ2
x

, Fγ(y) = y − γ arctan(y/γ).
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Doing again some direct computations, and using (3.4), (3.5) and (3.6), we obtain

Mt = εMxx +

(

τG
′

γ(ρx) − ρxρxx

κ2
x

)

Mx +

(

ρ2
xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx

)

M

+ εG
′′

γ(ρx)ρ2
xx +

ρ2
xx

κ2
x

[Gγ(ρx) − G
′

γ(ρx)ρx] − τ(1 − F
′

γ(ρx))ρxx − Γ.

(3.7)

Using Young’s inequality 2ab ≤ a2 + b2, we have:

τγ2|ρxx|
γ2 + ρ2

x

≤ εγ2ρ2
xx

(γ2 + ρ2
x)3/2

+
γ2τ2

4ε
√

γ2 + ρ2
x

. (3.8)

Plugging (3.8) into (3.7), and using some properties of Gγ and Fγ , we get:

Mt ≥ εMxx +

(

τG
′

γ(ρx) − ρxρxx

κ2
x

)

Mx +

(

ρ2
xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx

)

M + A,

with

A = − γ2τ2

4ε
√

γ2 + ρ2
x

− γγ
′

√

γ2 + ρ2
x

.

Remark that choosing γ as in (3.2) gives A = 0.

Step 2. (The boundary conditions for M)

The boundary conditions (1.3), and the PDEs of system (1.1) imply the following equal-
ities on the boundary (using the smoothness of the solution up to the boundary),







εκxx +
ρxρxx

κx
− τρx = 0 on ∂I × [0, T ]

(1 + ε)ρxx − τκx = 0 on ∂I × [0, T ].
(3.9)

In particular (3.9) implies

Mx = − τ

1 + ε
G

′

γ(ρx)M on ∂I × [0, T ]. (3.10)

To deal with the boundary condition (3.10), we now introduce the following change of
unknown function:

M(x, t) = cosh(βx)M(x, t), (x, t) ∈ IT .

We calculate M on the boundary of I to get:

Mx =

(

β tanh(βx) − τ

1 + ε
G

′

γ(ρx)

)

M on ∂I × [0, T ]. (3.11)

We claim that, for any fixed time t, it is impossible for M to have a positive minimum
at the boundary of I. Indeed we have the following two cases:

M has a positive minimum at x = 1 ⇒ Mx ≤ 0;
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M has a positive minimum at x = −1 ⇒ Mx ≥ 0.

Both cases violate the equation (3.11) in the case of the choice of β = β(ε, τ) large enough,
and hence the minimum of M is attained inside the interval I. Direct computations give:

M t ≥ εMxx +

[

τG
′

γ(ρx) − ρxρxx

κ2
x

− 2βε tanh(βx)

]

Mx

+

[

ρ2
xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx
− β tanh(βx)

(

τG
′

γ(ρx) − ρxρxx

κ2
x

)

+ εβ2(2 tanh2(βx) − 1)

]

M.

(3.12)
Step 3. (The inequality satisfied by the minimum of M)

Let
m(t) = min

x∈I
M (x, t).

Since the minimum is attained inside I, and since M is regular, there exists x0(t) ∈ I
such that m(t) = M(x0(t), t). We remark that we have:

Mx(x0(t), t) = 0, and Mxx(x0(t), t) ≥ 0,

and hence, using (3.12), we can write down the equation satisfied by m, we get (indeed
in the viscosity sense at x = x0(t)):

mt ≥
(

ρ2
xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx
− β tanh(βx)

(

τG
′

γ(ρx) − ρxρxx

κ2
x

)

+ εβ2(2 tanh2(βx) − 1)

)

m

therefore we deduce that m(0) ≥ 0 directly implies m(t) ≥ 0, ∀t ∈ (0, T ). 2

4 Short time existence, uniqueness, and regularity

In this section, we will prove a result of short time existence, uniqueness and regularity
of a solution of problem (1.1), (1.2) and (1.3).

4.1 Short-time existence and uniqueness of a truncated system

We denote
Ia,b := I × (a, a + b), a, b ≥ 0.

Fix T0 ≥ 0. Consider the following system defined on IT0,T by:







κt = εκxx +
ρxρxx

κx
− τρx on IT0,T

ρt = (1 + ε)ρxx − τκx on IT0,T ,
(4.1)

with the initial conditions:

κ(x, T0) = κT0(x) and ρ(x, T0) = ρT0(x), (4.2)
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and the boundary conditions:
{

κ(0, .) = 0 and κ(1, .) = 1 for T0 < t < T0 + T

ρ(0, .) = ρ(1, .) = 0, for T0 < t < T0 + T.
(4.3)

Remark 4.1 (The terms p and α). In all what follows, the terms p and α ∈ (0, 1)
are two fixed positive real numbers such that

p > 3 and α = 1 − 3/p.

Concerning system (4.1), (4.2) and (4.3), we have the following existence and uniqueness
result.

Proposition 4.2 (Short time existence and uniqueness). Let p > 3, and T0 ≥ 0.
Let

ρT0 , κT0 ∈ C∞(Ī × {T0})
be two given functions such that ρT0(0) = ρT0(1) = κT0(0) = 0, and κT0(1) = 1. Suppose
furthermore that

κT0
x ≥ γ0 on I × {t = T0},

and
‖(Ds

xρT0 ,Ds
xκT0)‖∞,I ≤ M0 on I × {t = T0}, s = 1, 2,

where γ0 > 0 and M0 > 0 are two given positive real numbers. Then there exists

T = T (M0, γ0, ε, τ, p) > 0, (4.4)

such that the system (4.1), (4.2) and (4.3) admits a unique solution

(ρ, κ) ∈ (W 2,1
p (IT0,T ))2.

Moreover, this solution satisfies

κx ≥ γ0/2 on IT0,T , (4.5)

and
|ρx| ≤ 2M0 on IT0,T . (4.6)

Proof. The short time existence is done by using a fixed point argument. Since we are
looking for solutions satisfying (4.5) and (4.6), we artificially modify (4.1), and look for
a solution of







κt = εκxx +
ρxxT2M0(ρx)

(γ0/2) + (κx − γ0/2)+
− τρx in IT0,T

ρt = (1 + ε)ρxx − τκx in IT0,T ,

(4.7)

with the truncation function Tζ(x) = x11(−ζ,ζ)+ζ11{x≥ζ}−ζ11{x≤−ζ}, ζ > 0, and satisfying
the same initial and boundary data (4.2), (4.3). Denote

Y = W 2,1
p (IT0,T ).
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For any constant λ > 0, let us define Dρ
λ and Dκ

λ as the two closed subsets of Y given
by:

Dρ
λ = {u ∈ Y ; ‖ux‖p,IT0,T

≤ λ, u = ρT0 on ∂pIT0,T}
and

Dκ
λ = {v ∈ Y ; ‖vx‖p,IT0,T

≤ λ, v = κT0 on ∂pIT0,T }.
We choose λ large enough such that these sets are nonempty. Define the application Ψ
by:

Ψ : Dρ
λ × Dκ

λ 7−→ Dρ
λ × Dκ

λ

(ρ̂, κ̂) 7−→ Ψ(ρ̂, κ̂) = (ρ, κ),

where (ρ, κ) is a solution of the following system:







κt = εκxx +
ρxxT2M0(ρ̂x)

(γ0/2) + (κ̂x − γ0/2)+
− τ ρ̂x in IT0,T ,

ρt = (1 + ε)ρxx − τ κ̂x in IT0,T ,

(4.8)

with the same initial and boundary conditions given by (4.2) and (4.3) respectively.
The existence of the solution of (4.8), (4.2) and (4.3) is a direct consequence of Theo-
rem 2.2. Taking ρ̄(x, t) = ρ(x, t) − ρT0(x) and κ̄(x, t) = κ(x, t) − κT0(x), we can easily
check that (ρ̄, κ̄) satisfies a parabolic system similar to (4.8) with (ρ̄, κ̄) = 0 on ∂pIT0,T .
Using Sobolev estimates for parabolic equations to the system satisfied by (ρ̄, κ̄), par-
ticularly (2.7), we deduce that for sufficiently small T > 0, we have ‖ρx‖p,IT0,T

≤ λ,
‖κx‖p,IT0,T

≤ λ, and hence the application Ψ is well defined.

The application Ψ is a contraction map. Let Ψ(ρ̂, κ̂) = (ρ, κ) and Ψ(ρ̂′, κ̂′) = (ρ′, κ′).
Direct computations, using in particular (2.7), give:

‖ρ − ρ′‖Y ≤ c
√

T‖κ̂ − κ̂′‖Y , (4.9)

and
‖κ − κ′‖Y ≤ c‖F‖p,IT0,T

, (4.10)

with the function F satisfying:

F + τ(ρ̂ − ρ̂′)x =

A1
︷ ︸︸ ︷

T2M0(ρ̂x)

(γ0/2) + (κ̂x − γ0/2)+
(ρxx − ρ′xx) +

A2
︷ ︸︸ ︷

ρ′xx(T2M0(ρ̂x) − T2M0(ρ̂
′
x))

(γ0/2) + (κ̂x − γ0/2)+

+

A3
︷ ︸︸ ︷

ρ′xxT2M0(ρ̂
′
x)

(
1

(γ0/2) + (κ̂x − γ0/2)+
− 1

(γ0/2) + (κ̂′
x − γ0/2)+

)

.

(4.11)
In order to prove the contraction for some small T > 0, we need to estimate all the terms
appearing in (4.11). The term A1 can be easily handled. However, for the term A2, we
proceed as follows. We apply the L∞ control of the spatial derivative (see Lemma 2.6)
to the function ρ̂ − ρ̂′, we get:

‖(ρ̂ − ρ̂′)x‖∞,IT0,T
≤ cT

p−3
2p ‖ρ̂ − ρ̂′‖Y . (4.12)
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For the term ρ′xx, we apply (2.7), and hence we deduce that

‖ρ′xx‖p,IT0,T
≤ c(M0 + λ). (4.13)

From (4.12) and (4.13), we deduce that

‖A2‖p,IT0,T
≤ c

(M0 + λ)

γ0
T

p−3
2p ‖ρ̂ − ρ̂′‖Y .

The term A3 could be treated in a similar way as the term A2. The above arguments,
particularly (4.9) and (4.10), give the contraction of Ψ in the short time interval (T0, T0+
T ) with T = T (M0, γ0, ε, τ, p) > 0. Finally, inequalities (4.5) and (4.6) directly follow
using the Sobolev embedding in Hölder spaces (Lemma 2.4). 2

4.2 Regularity of the solution

This subsection is devoted to show that the solution of (4.1), (4.2) and (4.3) enjoys
more regularity than the one indicated in Proposition 4.2. This will be done using a
special bootstrap argument, together with the Hölder regularity of solutions of parabolic
equations.

Proposition 4.3 (Regularity of the solution: bootstrap argument). Under the
same hypothesis of Proposition 4.2, let ρT0 and κT0 satisfy:

{

(1 + ε)ρT0
xx = τκT0

x at ∂I,

(1 + ε)κT0
xx = τρT0

x at ∂I.
(4.14)

Then the unique solution (ρ, κ) given by Proposition 4.2 is in fact more regular. Precisely,
it satisfies for α = 1 − 3/p:

ρ, κ ∈ C3+α, 3+α
2 (IT0,T ) ∩ C∞(Ī × (T0, T0 + T )), (4.15)

where T is the time given by Proposition 4.2.

Proof. For the sake of simplicity, let us suppose that T0 = 0.

The Hölder regularity. Since κ ∈ W 2,1
p (IT ), we use Lemma 2.4 to deduce that κx ∈

Cα,α/2(IT ). We apply the Hölder theory for parabolic equations Theorem 2.1, to the
second equation of (4.1) (using in particular the regularity of the initial data ρ0), we
deduce that:

ρ ∈ C2+α,1+α/2(IT ). (4.16)

Here the compatibility condition is satisfied by (4.14). Using (4.16) and (4.5), we deduce
that ρxρxx

κx
− τρx ∈ Cα,α/2(IT ) and similar arguments as above give that:

κ ∈ C2+α,1+α/2(IT ). (4.17)

Repeating the above arguments, using this time (see (4.17)) that κx ∈ C1+α, 1+α
2 (IT ),

and hence
ρ ∈ C3+α, 3+α

2 (IT ), (4.18)
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where (4.18) directly implies that ρxρxx

κx
− τρx ∈ C1+α, 1+α

2 (IT ), and therefore

κ ∈ C3+α, 3+α
2 (IT ). (4.19)

The compatibility condition of order 1 which is needed to apply Theorem 2.1 is always
satisfied by (4.14). The Hölder regularity of (ρ, κ) directly follows from (4.18) and (4.19).

The C∞ regularity. In order to get the C∞ regularity, we argue as in the case of
the Hölder regularity (bootstrap argument). In this case the compatibility condition is
replaced by multiplying by a test function that vanishes near t = 0. 2.

5 Exponential bounds

In this section, we will give some exponential bounds of the solution given by Proposition
4.2, and having the regularity shown by Proposition 4.3. It is very important, throughout
all this section, to precise our notation concerning the constants that may certainly vary
from line to line. Let us mention that a constant depending on time will be denoted by
c(T ). Those which do not depend on T will be simply denoted by c. In all other cases,
we will follow the changing of the constants in a precise manner.

Proposition 5.1 (Exponential bound in time for ρx and κx). Let

ρ, κ ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(Ī × (0,∞)),

be a solution of (1.1), (1.2) and (1.3), with ρ0(0) = ρ0(1) = 0, κ0(0) = 0 and κ0(1) = 1.
Suppose furthermore that the function

B =
ρx

κx
satisfies ‖B‖L∞(I×(0,∞)) ≤ 1.

Then, for small T ∗ = T ∗(ε, τ, p) > 0, and A = 1 + ‖ρ0‖
W

2−2/p
p (I)

+ ‖κ0‖
W

2−2/p
p (I)

, we

have for all t ≥ 0:

|ρx|(α)
It,T∗

, |κx|(α)
It,T∗

≤ cAect, (5.1)

and c is a fixed constant independent of the initial data.

Proof. We use the special coupling of the system (1.1) to find our a priori estimate.
Roughly speaking, the fact that κx appears as a source term in the second equation of
system (1.1) permits, by the Lp theory for parabolic equations, to have Lp bounds, in
terms of ‖κx‖p,IT

, on ρx and ρxx which in their turn appear in the source terms of the
first equation of (1.1) satisfied by κ. All this permit to deduce our estimates. To be more
precise, let T > 0 an arbitrarily fixed time, the proof is divided into four steps:

Step 1. (estimating κx in the Lp norm)

Let κ
′

be the solution of the following equation:
{

κ
′

t = κ
′

xx on IT

κ
′

= κ on ∂pIT .
(5.2)
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As a solution of a parabolic equation, we use the Lp parabolic estimate (2.6) to the
function κ

′

to deduce that:

‖κ′‖W 2,1
p (IT ) ≤ c(T )

(

‖κ0‖
W

2−2/p
p (I)

+ 1
)

, (5.3)

where the term 1 comes from the value of κ′ = κ on ST . Take

κ̄ = κ − κ
′

, (5.4)

then the system satisfied by κ̄ reads:






κ̄t = κ̄xx − (κ
′

t − εκ
′

xx) +
ρxρxx

κx
− τρx on IT

κ̄ = 0 on ∂pIT .

Using the special version (2.7) of the parabolic Lp estimate to the function κ̄, we obtain:

‖κ̄x‖p,IT
≤ c

√
T
(

‖κ′

t‖p,IT
+ ‖κ′

xx‖p,IT
+ ‖ρxx‖p,IT

+ ‖ρx‖p,IT

)

, (5.5)

where we have plugged into the constant c the terms ε, τ , p and ‖B‖∞. Combining (5.3),
(5.4) and (5.5), we get:

‖κx‖p,IT
≤ c(T )

(

‖κ0‖
W

2−2/p
p (I)

+ 1
)

+ c
√

T‖ρ‖W 2,1
p (IT ). (5.6)

The term ‖ρ‖W 2,1
p (IT ) appearing in the previous inequality is going to be estimated in

the next step.

Step 2. (estimating ρ in the W 2,1
p norm)

As in Step 1, let ρ
′

, ρ̄ be the two functions defined similarly as κ
′

, κ̄ respectively (see
(5.2) and (5.4)). The function ρ

′

satisfies an inequality similar to (5.3) that reads:

‖ρ′‖
W 2,1

p (IT )
≤ c(T )‖ρ0‖

W
2−2/p
p (I)

. (5.7)

The term 1 disappeared here because ρ
′

= ρ = 0 on ST . We write the system satisfied
by ρ̄, we obtain:

{

ρ̄t = (1 + ε)ρ̄xx + ((1 + ε)ρ
′

xx − ρ
′

t) − τκx on IT

ρ̄(x, 0) = 0 on ∂pIT ,

hence the following estimate on ρ̄, due to the special Lp interior estimate (2.7), holds:

‖ρ̄‖W 2,1
p (IT ) ≤ c

(

‖ρ′

t‖p,IT
+ ‖ρ′

xx‖p,IT
+ ‖κx‖p,IT

)

. (5.8)

Again, we have plugged ε, τ and p into the constant c, and we have assumed that T ≤ 1.
Combining (5.7) and (5.8), we get in terms of ρ:

‖ρ‖W 2,1
p (IT ) ≤ c(T )‖ρ0‖

W
2−2/p
p (I)

+ c‖κx‖p,IT
. (5.9)
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We will use this estimate in order to have a control on ‖κx‖p,IT
for sufficiently small time.

Step 3. (Estimate on a small time interval)

From (5.6) and (5.9), we deduce that:

‖κx‖p,IT
≤ c(T )

(

‖κ0‖
W

2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)

+ c
√

T‖κx‖p,IT
. (5.10)

Let us remind the reader that all constants c and c(T ) have been changing from line to
line. In fact, the important thing is whether they depend on T or not. Let

T ∗ =
1

2c2
, c is the constant appearing in (5.10),

we deduce, from (5.10), that

‖κx‖p,IT∗
≤ c3

(

‖κ0‖
W

2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)

,

where c3 = c3(T
∗) > 0 is a positive constant which depends on T ∗. Recall the special

coupling of system (1.1), together with the above estimate, we can deduce that:

‖(ρ, κ)‖
W 2,1

p (IT∗ )
≤ c4

(

‖κ0‖
W

2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)

, (5.11)

with c4 = c4(T
∗) > 0 is also a positive constant depending on T ∗ but independent of the

initial data.

Step 4. (The exponential estimate by iteration)

Now we move to show the exponential bound. Set

f(t) = ‖(ρ, κ)‖W 2,1
p (I×(t,t+T ∗)), and g(t) = ‖κ(·, t)‖

W
2−2/p
p (I)

+ ‖ρ(·, t)‖
W

2−2/p
p (I)

.

Using estimate (5.11) of Lemma 2.5, together with estimate (5.11) of Step 3, we get

g(T ∗) ≤ c5f(0) ≤ c5c4(g(0) + 1), c5 = c5(T
∗).

In this case, the Sobolev embedding in Hölder spaces (see Lemma 2.5), and the time
iteration give immediately the result. 2

Proposition 5.2 (Exponential bound in time for ρxx). Under the same hypothesis
of Proposition 5.1, and for some T ∗ = T ∗(ε, τ, p) > 0, we have:

|ρ|(2+α)
It,T∗

≤ cect, t ≥ 0, (5.12)

where c > 0 is a positive constant depending only on the initial data.

Proof. The proof is very similar to the proof of Proposition 5.1. It uses in particular
the Hölder estimate for parabolic equations (namely (2.4)), the Hölder embedding in
Sobolev spaces (Lemma 2.4), and finally the iteration in time. 2
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Proposition 5.3 (Exponential bound in time for κxx). Under the same hypothesis
of Proposition 5.1, and for some T ∗ = T ∗(ε, τ, p) > 0, we have:

|κ|(2+α)
It,T∗

≤ cect, t ≥ 0, (5.13)

where c > 0 is a positive constant depending only on the initial data.

Proof. Let T > 0. Using both equations of (1.1), estimates (5.1) and (5.12), together
with the following elementary identities:

〈
f

g

〉(α/2)

t,D

≤
∥
∥
∥
∥

f

g

∥
∥
∥
∥
∞,D

∥
∥
∥
∥

1

g

∥
∥
∥
∥
∞,D

〈g〉(α/2)
t,D +

∥
∥
∥
∥

1

g

∥
∥
∥
∥
∞,D

〈f〉(α/2)
t,D ,

and
〈

f

g

〉(α)

x,D

≤
∥
∥
∥
∥

f

g

∥
∥
∥
∥
∞,D

∥
∥
∥
∥

1

g

∥
∥
∥
∥
∞,D

〈g〉(α)
x,D +

∥
∥
∥
∥

1

g

∥
∥
∥
∥
∞,D

〈f〉(α)
x,D ,

applied for f = ρxρxx and g = κx, we deduce, from Hölder estimate for parabolic
equations (see inequality (2.4) of Theorem 2.1), that

|κ|(2+α)
I0,t

≤ cect

γ(t)

(

1 + |κx|(α)
I0,t

)

, (5.14)

where γ(t) is given by (3.2), and c > 0 is a positive constant depending only on the initial
data. Inequality (5.14) directly implies (5.13) by iteration. 2

Summarizing the above results we obtain the following corollary:

Corollary 5.4 Under the same hypothesis of Proposition 3.1, we have ∀t ∈ (0, T ):

‖κx(., t)‖∞,I ≥ ce−ct (5.15)

‖Ds
xρ(., t)‖∞,I , ‖Ds

xκ(., t)‖∞,I ≤ cect, s = 1, 2, (5.16)

where c > 0 is a positive constant only depending on the initial data.

Proof. Directly follows from (3.3), (5.1), (5.12) and (5.13). 2

6 Long time existence and uniqueness

Now we are ready to show the main result of this paper, namely Theorem 1.1.

Proof of Theorem 1.1. Define the set B by:

B =

{

T > 0; ∃ ! solution (ρ, κ) ∈ C3+α, 3+α
2 (IT ) of

(1.1), (1.2) and (1.3), satisfying (1.8)

}

.

This set is non empty by the short time existence result (Theorem 4.2). Set

T∞ = supB.
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We claim that T∞ = ∞. Assume, by contradiction that T∞ < ∞. In this case, let
δ > 0 be an arbitrary small positive constant, and apply the short time existence result
(Theorem 4.2) with T0 = T∞ − δ. Indeed, by the exponential bounds (5.15) and (5.16),
we deduce that the time of existence T given by (4.4) is in fact independent of δ. Hence,
choosing δ small enough, we obtain T0 + T ∈ B with T0 + T > T∞ and hence a contra-
diction. 2
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Appendix. Miscellaneous parabolic estimates

Proof of Lemma 2.3 (Lp estimate for parabolic equations). As a first step, we
will prove the result in the case where ε = 1, and in a second step, we will move to the
case ε > 0. It is worth noticing that the term c may take several values only depending
on p.

Step 1. (The estimate: case ε = 1)

Suppose ε = 1. We have u = 0 on ∂I × [0, T ]. Take ũ = uasym where we define uasym

over R× (0, T ), first by considering the antisymmetry of u with respect to the line x = 0
over the interval (−1, 0), and then by spatial periodicity. We also take f̃ = fasym. Define
ū by

ū = ũφn,

with {

φn(x) = 1 if x ∈ (0, 2n)

φn(x) = 0 if x ≥ 2n + 1 or x ≤ −1.

This function satisfies
{

ūt = ūxx + f̄ , on R × (0, T )

ū(x, 0) = 0, on R,

with
f̄ = f̃φn − ũφn

xx − 2ũxφn
x .

The proof that
‖ut‖p,IT

+ ‖uxx‖p,IT
≤ c‖f‖p,IT

(6.1)

can be easily deduced by applying the Calderon-Zygmund estimates to the function ū
satisfying the above equation, and passing to the limit n → ∞. Now, since u ∈ W 2,1

p (IT )
with u|t=0 = 0, we use [14, Lemma 4.5, page 305] to get

‖u‖p,IT
≤ cT (‖ut‖p,IT

+ ‖uxx‖p,IT
) (6.2)
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and
‖ux‖p,IT

≤ c
√

T (‖ut‖p,IT
+ ‖uxx‖p,IT

). (6.3)

Combining (6.1), (6.2) and (6.3), we deduce that

1

T
‖u‖p,IT

+
1√
T
‖ux‖p,IT

+ ‖uxx‖p,IT
+ ‖ut‖p,IT

≤ c‖f‖p,IT
.

Step 2. (The estimate: general case ε > 0)

To get the general inequality, we consider the following rescaling of the function u:

û(x, t) = u(x, t/ε), (x, t) ∈ IεT ,

which allows to get the desired result. 2

Proof of Lemma 2.6 (L∞ control of the spatial derivative). Since u ∈ W 2,1
p (IT )

for p > 3, we know from Lemma 2.4 that ux ∈ Cα,α/2(IT ) for α = 1− 3
p . In this case, we

use the estimate (2.8) with δ =
√

T , we obtain

‖ux‖∞,IT
≤ c(p){T α

2 (‖ut‖p,IT
+ ‖uxx‖p,IT

) + T
α
2
−1‖u‖p,IT

}. (6.4)

Remark that the fact that u = 0 on the parabolic boundary ∂pIT , and that it obviously
satisfies the equation:

{

ut = uxx + f, with f = ut − uxx

u = 0 on ∂pIT ,

then we can apply estimate (2.7) to bound the term ‖u‖p,IT
. Hence (6.4) becomes (with

a different constant c(p)):

‖ux‖∞,IT
≤ c(p){T α

2 ‖ut − uxx‖p,IT
+ T

α
2
−1T‖ut − uxx‖p,IT

}
≤ c(p)T

α
2 ‖u‖

W 2,1
p (IT )

≤ c(p)T
p−3
2p ‖u‖

W 2,1
p (IT )

,

and the result follows. 2
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