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Abstract

We develop a new algorithm for the computation of the geometrical shock
dynamics model (GSD). The method relies on the fast-marching paradigm
and enables the discrete evaluation of the first arrival time of a shock wave
and its local velocity on a cartesian grid. The proposed algorithm is based
on a second order upwind finite difference scheme and reduces to a local non-
linear system of two equations solved by an iterative procedure. Reference
solutions are built for a smooth radial configuration and for the 2D Riemann
problem. The link between the GSD model and p-systems is given. Numer-
ical experiments demonstrate the accuracy and the ability of the scheme to
handle singularities.

Keywords: geometrical shock dynamics, fast-marching method, level-set
method, Riemann problem, finite difference method, shock wave, p-system

1. Introduction

In 1957, when G.B. Whitham published the Geometrical Shock Dynamics
(GSD) model [28], he qualified it as a relatively simple approximate method
developed for treating problems of the diffraction and stability of shock waves.
The simplicity comes from the fact that the shock front is seen as a surface
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evolving under its own local speed and curvature, independently of the post-
shock flow. The shock adjusts itself to changes in the geometry only [29].
As explained by Best [8], Whitham considered the motion of a shock into a
uniform gas at rest, down a tube of slowly varying cross sectional area, A,
and under some physically grounded hypothesis, he obtained an expression
relating the local shock Mach number, M , to A, now known as the A-M
relation [31] (see also (9) and (4)). The GSD model reads

M(x)|∇α(x)| = 1, div

(

n(x)

A(M(x))

)

= 0 (1)

where α gives the shock position [29] and n = ∇α
|∇α|

is the local normal to

the front. This model is hyperbolic provided that A′(M) < 0, and can thus
develop disturbances on the front which are the trace of waves, not mod-
eled, behind the shock. In practice, GSD has proven to be fairly accurate
for diffraction around a corner, non-regular Mach reflection [29], or acceler-
ating shocks and shown only little deviation for expanding decelerating flows
[5]. Whitham’s model has been extended to take into account unsteady flow
behind the shock [8, 9, 10], non-uniform gases properties [20], and has been
applied, among others, to imploding shock waves [11, 1], atmospheric prop-
agation [7], detonation in explosives [2, 3, 6], supersonic engine unstart [27]
and astrophysics [14].

This success, linked to the compact model formulation and the dimen-
sional reduction, was supported by the development of three kinds of algo-
rithms. (i) Lagrangian, or front-tracking, methods have first been experi-
mented [15, 18]. In such an approach, the shock front is explicitly discretized
by markers evolved in time and regularly resampled. This method is natural
and quite accurate but difficult to implement in three dimensions, mainly
when surface merging or breaking is expected. (ii) Eulerian conservative
algorithms [19, 20] reduce this difficulty but do not take any advantage of
the front locality. Furthermore, they rely on the definition of an a priori
propagation direction, not always easy to determine. (iii) Localized level-set
methods are a good compromise since they handle any kind of surface defor-
mation but in an implicit way. The front shock is obtained from a table of
arrival time, also called burn table. A 3D unsteady algorithm, based on the
Hamilton-Jacobi form of the GSD system (1) [17], is described in [2, 3, 4] for
Detonation Shock Dynamics. It compares well with reactive Eulerian model
results at a much lower CPU time. Nevertheless, due to the nonlinear nature
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of GSD equations, unphysical shocks can form away from the front position
and a frequent resampling of the signed distance is mandatory [23].

In this article we propose an alternative approach based on the level-
set fast-marching paradigm [22], which combines the flexibility of (iii) and
the locality of (i) while remaining easy to implement. The first and second
ordrer specific algorithms are decribed in section 2. Reference solutions for a
smooth radial problem and the GSD Riemann problem are derived in section
3. In section 4, the comparison to numerical results indicates that a second
order scheme is mandatory for non smooth problems. At last, conclusions
are summarized in section 5.

2. A fast-marching like GSD scheme

In 1988 Osher and Sethian [17] introduced the Eulerian level-set method
to solve Hamilton-Jacobi equations and the eikonal equation in particular.
Unlike the Lagrangian approach, the level-set method is simple to implement
in 3D, high-order extensions are readily derived and topological properties
of the front, as the curvature, are easily calculated. However, the level-set
mehod, of complexity O(N3), can be quite time consuming when the number
of grid point, N , is large. In the past two decades, several improvements
have been proposed in order to reduce this complexity and at same time to
enhance the accuracy. Among them, the most popular approach is the Fast-
Marching Method (FMM) developed by Sethian [22] and used with success in
a large variety of applications. Assuming a single pass front, the complexity
of the algorithm reduces to O(N logN) and even to O(N) under some further
assumptions [30].

In this section, we introduce a second-order method to solve the GSD
model (1), on a cartesian grid, based on the fast-marching paradigm. We
first reformulate the model as a coupled eikonal-transport system to facil-
itate its discretisation. The numerical method, boundary treatment and
implementation details are then given.

2.1. A modified transport equation

As in the work of Besset [7] or Aslam [2], the GSD model (1) is rewritten
under the local form
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M |∇α| = 1 (2a)

M
∇α

|∇α| · ∇M = Ṁ(M,κ) (2b)

with the initial boundary conditions











α|Γ0
= α0, (3a)

M|Γ0
= M0, (3b)

where α0 and M0 are given functions on the hypersurface Γ0, the shock initial
position. The GSD closure, linking the local Mach number, M , and the mean
curvature of the front, κ = div(n), reads

Ṁ(M,κ) = −M2 − 1

λ(M)
κ,

where M ≥ 1 and



























0 < λ(M) =

(

1 +
2

γ + 1

1− µ2

µ

)(

1 + 2µ+
1

M2

)

,

1 ≥ µ =

√

(γ − 1)M2 + 2

2γM2 − (γ − 1)
,

(4)

γ > 1 being the gas polytropic coefficient, see [29] for details.
In practice, the discretization of the mean curvature is difficult, due to

the mixed derivatives of α, especially in the context of the fast-marching
method when neighboring points are not yet assigned a value. For this reason
we choose to reformulate the transport equation on the Mach number as a
convection–diffusion one.

By combining the eikonal equation, M |∇α| = 1, and the normal defini-
tion, n = ∇α/|∇α|, one checks that the mean curvature of the front reads
κ = ∇M · ∇α +M∆α. Transport equation (2b) is then reformulated as

∇M · ∇α = S(M)∆α,
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where S(M) = − M(M2−1)
M2(λ(M)+1)−1

is nonpositive and smooth and for M > 1.
The reformulated boundary value problem to be solved is then







M |∇α| = 1 (5a)

∇M · ∇α = S(M)∆α (5b)

where the source term is now easier to discretize.
Note that this system is not in a conservative form, which could raise

difficulties to handle front discontinuities, but as we shall see in section 4.3
the numerical scheme performs well in practice.

2.2. Level-set method for the eikonal equation

The level-set function α is solution of the eikonal equation (5a) on Ω
together with the initial condition (3a) on Γ0. We solve it on a uniform
cartesian mesh of the domain Ω ≡ [0, Lx] × [0, Ly]× [0, Lz] ⊂ R

3 with grid
spacings △x, △y and △z. Let αi,j,k and Mi,j,k be the approximate solution
at a grid point, i.e. αi,j,k = α(xi, yj, zk) and Mi,j,k = M(xi, yj, zk) where
xi = i△x, yj = j△y and zk = k△z. We denote by ul, vl et wl (resp. ur, vr
et wr) the backward (resp. forward) approximation of the derivatives of α at
(xi, yj, zk) along x, y and z respectively.

The discrete form of (5a) reads

Mi,j,kĤ(ul, ur, vl, vr, wl, wr) = 1, (6)

where Ĥ is chosen as the numerical Hamiltonian of Godunov [25]:

Ĥ(ul, ur, vl, vr, wl, wr) =
√

max2(u+
l , u

−
r ) + max2(v+l , v

−
r ) + max2(w+

l , w
−
r ),

with the notations: x+ = max(x, 0) and x− = max(−x, 0) for x ∈ R. This
upwind scheme has been sucessfully used in several applications (cf. [16],
[22]). It has the ability to capture viscosity solutions of the eikonal equation
[12] and do not smear out sharp discontinuities excessively [25], which are
desirable features in the case of GSD where front singularities may appear.
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At first order, the discrete derivatives of α are written:

ul = (D−
x α)i,j,k :=

αi,j,k − αi−1,j,k

△x

vl = (D−
y α)i,j,k :=

αi,j,k − αi,j−1,k

△y

wl = (D−
z α)i,j,k :=

αi,j,k − αi,j,k−1

△z

ur = (D+
x α)i,j,k :=

αi+1,j,k − αi,j,k

△x

vr = (D+
y α)i,j,k :=

αi,j+1,k − αi,j,k

△y

wr = (D+
z α)i,j,k :=

αi,j,k+1 − αi,j,k

△z

.

The extension to arbitary higher orders is possible, we restrict ourselves
to second-order in this work.

At second order, the discrete derivatives of α are written:

ul = (D−
x α)i,j,k +

△x

2
(D−

x (D
−
x α))i,j,k

vl = (D−
y α)i,j,k +

△y

2
(D−

y (D
−
y α))i,j,k

wl = (D−
z α)i,j,k +

△z

2
(D−

z (D
−
z α))i,j,k

ur = (D+
x α)i,j,k −

△x

2
(D+

x (D
+
x α))i,j,k

vr = (D+
y α)i,j,k −

△y

2
(D+

y (D
+
y α))i,j,k

wr = (D+
z α)i,j,k −

△z

2
(D+

z (D
+
z α))i,j,k

.

We point out that there is no limiting function. In the context of the FMM,
a switching mechanism is rather used as we shall see later.

2.3. The standard fast-marching method

Following Sethian [22], the classical FMM is now outlined. In this method,
the velocity of propagation is assumed to be known and of constant sign. The
front is thus “single pass” and one needs to calculate the value of α only in the
vicinity of it. The CPU time is then dramatically reduced and, interrelated,
the monotonicity of the scheme is guaranted by following the direction in
which the information flows. This is done by propagating the solution from
lower to higher values of the level-set function α. To this end, the grid points
are partitioned into three groups, namely:

❶ Known is the set of vertices where the values of α are known, i.e. the
vertices already intercepted by the front;

❷ NarrowBand is the set of all neighboring vertices of Known, i.e. the
vertices that are about to be intercepted by the front;
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❸ Far is the set of vertices that are neither in Known nor in Narrow-
Band. In the Far set, α is assigned a huge initial value INF.

Think of the NarrowBand set as a buffer zone that serves to start the
calculation from the vertices of Known and to spread the information to
the vertices of the Far set. For every element of the NarrowBand, test val-
ues of α are calculated from the points of the Known set only, and
then the point of the NarrowBand corresponding to the minimal test value
is validated. This means that the value of α at this point is now defined
as the minimal test value. A second step consists in including this point
in the Known set and adding its close Far neighbors as new points of the
NarrowBand. By repeating the previous steps, as long as the NarrowBand
is not-empty, the level-set function is calculated in the whole computational
domain. The starting values of this process are set by the initial conditions
on Γ0. It is worth mentioning that the most time consuming step in this
algorithm is the search of the point with the minimal test value and thus the
performance of the FMM depends on it.

At a point (i, j, k) of interest of the NarrowBand, we can deduce from
(6) that the test value ϑ of α is calculated by solving the following quadratic
equation:

3
∑

ν=1

max2

(

ϑ− tν
−

i,j,k

△−
ν

,
ϑ− tν

+

i,j,k

△+
ν

, 0

)

=
1

M2
i,j,k

, (7)

with the notations

△±
1 = △x

(

1−
s±x
i±1,j,k

3

)

, △±
2 = △y

(

1−
s±y
i,j±1,k

3

)

, △±
3 = △z

(

1−
s±z
i,j,k±1

3

)

,

and with the following generic switches

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s±x
i,j,k =

{

1 if αi±1,j,k < αi,j,k

0 otherwise

s±y
i,j,k =

{

1 if αi,j±1,k < αi,j,k

0 otherwise

s±z
i,j,k =

{

1 if αi,j,k±1 < αi,j,k

0 otherwise

,

7



where the coefficients
(

tν
±

i,j,k

)

1≤ν≤3
are given by:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1
±

i,j,k = αi±1,j,k +
s±x
i±1,j,k

3
(αi±1,j,k − αi±2,j,k)

t2
±

i,j,k = αi,j±1,k +
s±y
i,j±1,k

3
(αi,j±1,k − αi,j±2,k)

t3
±

i,j,k = αi,j,k±1 +
s±z
i,j,k±1

3
(αi,j,k±1 − αi,j,k±2)

.

The switches take into account the local direction of propagation. They
ensure the causality condition by setting a zero value when the information
at the second order is not available in that direction.

Remark 2.1. At first-order of accuracy, one can take all switches equal to
zero and one has △±

1 = △x, △±
2 = △y, △±

3 = △z, and t1
±

i,j,k = αi±1,j,k,

t2
±

i,j,k = αi,j±1,k, t
3±
i,j,k = αi,j,k±1.

2.4. Full discretisation of the GSD system

Following the fast-marching paradigm, a method for solving the coupled
system of equations (5) is now explained. Since M is an unknown of the
problem, one has to calculate test values of α (i.e. ϑ) and of M (i.e. m), at
the same time, for each point of the NarrowBand, leading to a local non
linear system in ϑ and m. The discrete velocity Mi,j,k is now replaced by m
in the equation (7) and the discretization of the transport equation (5b) is
done as follows.

The advection part of equation (5b) reads∇M ·∇α. Following the upwind
direction of discretization for ∇α ensures that only receivable points are used
in the computation of ∇M . More precisely, we have:

(∇M · ∇α) |
i,j,k

=

3
∑

ν=1

[(

ϑ− tν
−

i,j,k

△−
ν

)+
m− ℓν

−
i,j,k

△−
ν

−
(

tν
+

i,j,k − ϑ

△+
ν

)−
ℓν

+

i,j,k −m

△+
ν

]
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where the coefficients
(

ℓν
±

i,j,k

)

1≤ν≤3
take the form:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ℓ1
±

i,j,k = Mi±1,j,k +
s±x
i±1,j,k

3
(Mi±1,j,k −Mi±2,j,k)

ℓ2
±

i,j,k = Mi,j±1,k +
s±y
i,j±1,k

3
(Mi,j±1,k −Mi,j±2,k)

ℓ3
±

i,j,k = Mi,j,k±1 +
s±z
i,j,k±1

3
(Mi,j,k±1 −Mi,j,k±2)

.

Concerning the source term of equation (5b), S(M)∆α, we evaluate S
implicitly and discretize the Laplacian operator at second order. From our
experience, it is crucial to use a centered scheme as much as possible. This is
done in practice by taking into account all finite value neighbours of a
point of interest, including those of the NarrowBand, in the calculation of
the test value. This feature also affects the switches evaluation in (7). In one
space direction, if a left and right values are available, the second derivative is
chosen centered, no matter the causality condition in the NarrowBand (i.e.
we also use points which are not in the Known set). For this reason, the
algorithm is not a fast-marching method in the strictest sense, and we say it
has fast-marching like properties.

More precisely, (S(M)∆α) |i,j,k = S(m)
3
∑

ν=1

∆̂ν , where we express only the

first term for the sake of simplicity

if (αi−1,j,k < INF and αi+1,j,k < INF) then

∆̂1 = ∆̂1c

else
if (ϑ ≥ t1

−
i,j,k or ϑ ≥ t1

+

i,j,k) then

if

(

max
(ϑ− t1

+

i,j,k

△+
1

, 0
)

≥ max
(ϑ− t1

−
i,j,k

△−
1

, 0
)

)

then

∆̂1 = ∆̂1r

else
∆̂1 = ∆̂1ℓ

end if
end if

end if
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with

• ∆̂1c =
αi+1,j,k − 2ϑ+ αi−1,j,k

△x2

• ∆̂1r = s+x
i,j,ks

+x
i+1,j,k

[

ϑ− 2αi+1,j,k + αi+2,j,k

△x2

+s+x
i+2,j,k

(

ϑ− 2αi+1,j,k + αi+2,j,k

△x2
− αi+3,j,k − 2αi+2,j,k + αi+1,j,k

△x2

)]

• ∆̂1ℓ = s−x
i,j,ks

−x
i−1,j,k

[

ϑ− 2αi−1,j,k + αi−2,j,k

△x2

+s−x
i−2,j,k

(

ϑ− 2αi−1,j,k + αi−2,j,k

△x2
− αi−3,j,k − 2αi−2,j,k + αi−1,j,k

△x2

)]

where we recall that INF denotes the huge initial positive value given to
points in the Far set.

The final form of the non linear system on ϑ and m is then



























3
∑

ν=1

max2

(

ϑ− tν
−

i,j,k

△−
ν

,
ϑ− tν

+

i,j,k

△+
ν

, 0

)

=
1

m2
(8a)

3
∑

ν=1

[(

ϑ− tν
−

i,j,k

△−
ν

)+
m− ℓν

−
i,j,k

△−
ν

−
(

tν
+

i,j,k − ϑ

△+
ν

)−
ℓν

+

i,j,k −m

△+
ν

]

= S(m)
3
∑

ν=1

∆̂ν (8b)

Remark 2.2. As in remark 2.1, the first-order accurate version of the equa-
tion (8b) uses the following identities: for the advection part, ℓ1

±
i,j,k = Mi±1,j,k,

ℓ2
±

i,j,k = Mi,j±1,k, ℓ
3±
i,j,k = Mi,j,k±1, and the Laplacien is discretized taking s±x

i±2,j,k =

0, s±y
i,j±2,k = 0 and s±z

i,j,k±2 = 0 in the expressions of ∆̂1, ∆̂2 and ∆̂3 respec-
tively.

Two strategies have been tested for the numerical resolution of the lo-
cal nonlinear system (8) on ϑ and m. Given the current approximation
(

ϑ(p), m(p)
)

, the first approach is a fixed point method which consists in solv-

ing the quadratic equation (8a) on ϑ with m = m(p) to get ϑ(p+1) which is
injected in the equation (8b). This gives us a new value m(p+1) by resolution
with either a new fixed-point iteration or Newton’s method. This procedure
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is repeated until a desired tolerance is met (10−6 in practice). The second
approach is to solve the full coupled system of equations (8) by Newton’s pro-
cedure. Indeed, the system (8) can be written in the generic form G(W) = 0,
where G is a nonlinear function in W = (m,ϑ)t which depends on the values
of α and M around the point (i, j, k) of the NarrowBand. The resolution of
(8) is then done by the following iterative algorithm, for p ≥ 0,

W(p+1) = W(p) −
(

DWG
(

W(p)
))−1 G

(

W(p)
)

,

when the computation of the gradient DWG is allowed, and where the starting
point W(0) is determined from the values of M and α on neighboring points.
Both approaches have been successfully employed, we did not observe any
robustness problem.

2.5. Boundary conditions

Two kinds of boundary conditions are commonly required: outgoing and
rigid walls. In practice, fictious points are added outside of the computational
domain, on which the phase and the Mach number are set. The number of
fictious cells depends on the order of the interior numerical scheme.

The outgoing conditions are used on the artificial limits of a free boundary.
We impose a huge positive value of α on the fictious points to make the
scheme upwind.

When a boundary of the computational domain is bounded by a rigid
body ΓR, a wall condition is used. In this case, a Neumann condition applies:
(n · ∇α)|ΓR

= 0. The numerical implementation is done by reflecting the
values of α and M , by symmetry, on the fictious points. Let us recall here
that Whitham’s model is able to predict only the irregular shock reflection,
namely the Mach reflection or shock-shock singularity in the terminology of
Whitham.

2.6. Summary of the algorithm

The numerical scheme we designed to solve the GSD model (1) is now
summarized. Whitham’s model is first rewritten to avoid the direct discreti-
sation of the curvature. The proposed algorithm is an Eulerian approach
similar to the fast-marching method performed on a cartesian grid. This
algorithm is based on a second order finite difference method and more pre-
cisely on an upwind scheme in the direction of the shock propagation with
a priority queue acceptance of the local solution. The arrival time and the
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Mach number are obtained by solving a local non-linear system.

The overall structure of our algorithm is close to the FMM one but has
two main differences: utilization of points not yet accepted and resolution of
the eikonal equation together with the transport equation on the propagation
velocity. The fast-marching like algorithm contains two main steps, namely
initialisation and iteration, and is organized as follows:

➥ Initialization step

➠ Set all points of the computational domain in the Far set by assigning a
huge INF value to α.

➠ Add each point of the user initial condition in the Known set.

➠ Create the NarrowBand from first neighbours of the Known set.

➥ Iterative step until the NarrowBand is empty

➠ Apply boundary conditions.

➠ For each point in the NarrowBand, compute the test values ϑ and m by
solving the local non-linear system (8), by a Newton or fixed point method.

➠ Pick Pmin ≡ (imin, jmin, kmin) ∈ NarrowBand such that

α(imin, jmin, kmin) = min
(i,j,k)∈NarrowBand

α(i, j, k).

Add Pmin in the Known set/Delete it in NarrowBand.

➠ Add the close neighbors of Pmin in NarrowBand if they were in the Far

set.

3. Reference solutions to GSD

In this section, we provide reference solutions to the GSD equations,
that is geometrical configurations where the exact solution can be either
calculated analytically or approximated with a quick by-calculation (typically
the resolution of a one-dimensional ODE). The numerical solutions of our
fast-marching algorithm can then be compared to these reference solutions to
evaluate its precision. Ideally, they should cover a wide array of cases, to test
the algorithm in the most diverse configurations. Conversely, such reference
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solutions are often hard to provide, and we only expect to determine them
in very simple geometrical configurations.

In the case of the GSD equations, it can be noted that infinitely large
plane fronts of any normalized velocity M > 1 are exact solutions of the
system in the whole space. Reference solutions can also be found in the
radial case, when the configuration is invariant under rotations, and more
interestingly, for the Riemann problem in R

2. Such solutions enable to test
the behaviour of the algorithm on smooth solutions as well as in cases where
the velocity has discontinuities. The simplest test case for discontinuous
solutions is the compression wedge (see Subsections 3.2.5 and 4.2).

In the remainder of this section we will use the conservative form (1) of
the GSD system, with the integral A-M relation

A(M) = A0 exp

(

−
∫ M

M0

mλ(m)

m2 − 1
dm

)

, (9)

where M0 > 1 is the initial condition and A0 the corresponding section area.
We also introduce the notation

β(M) =
M2 − 1

λ(M)
.

The quantity β allows to write the results of this section in a simpler manner.

3.1. Radial solutions

The simplest configuration in which a solution of the GSD equations can
be computed is the radial case where the solution depends only on the radial
coordinate r. More precisely, in dimension d = 2, 3, the velocity M is a
solution of a one-dimensional ODE in the r variable:











M(r)∂rα(r) = 1 (10a)

M(r)∂rM(r) = −β(M(r))
d− 1

r
(10b)

For a given initial condition, this equation can be solved by an high order
algorithm to provide a solution of reference, which is helpfull for convergence
studies. Analytical solutions are easily obtained in the strong shock limit,
M >> 1.
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3.2. Solutions of the Riemann problem in dimension 2

The solutions of the Riemann problem for the GSD equations are of prime
importance since they can exhibit discontinuous velocities and develop new
intermediate states. The behaviour of the algorithm can then be evaluated
on this difficult problem. The simplest test case for discontinuities is the
compression wedge, which will be developed in more details later.

For general hyperbolic systems, the theory for the resolution of the Rie-
mann problem only covers the case where the two initial states are not far
from each other. Solutions of the Riemann problem for far away initial states
are known only for very particular cases, such as the p-system. While the
GSD equations are in a setting that differs from the usual p-system, they
can be linked to the p-system and indeed the full resolution of the Riemann
problem is available.

In his works [28] and [29], Whitham described the form of simple shocks
and simple rarefactions. They are studied respectively as the results of the
compression of a plane front by a wedge and the diffraction of a plane front
by a corner. While these works fully describe the structure of shocks and rar-
efactions, the rarefaction solution is only given with implicit coordinates. In
this part, we describe more explicitly the geometry of the solution. From our
knowledge, this is the first time that a comprehensive solution of the GSD
Riemann problem is given, together with a link to the p-system. Neverthe-
less, one can mention the works of Henshaw, Smyth and Schwendeman [15]
and Schwendeman [20] where the Whitham GSD equations are rewritten in
conservative form. Schwendeman [20] also mentions the fact that the Rie-
mann problem admits simple solutions, but does not give full details.

In this section the GSD equations are recasted as a system of M and θ
where θ parametrizes the front normal as n = (cos θ)ex + (sin θ)ey, with ex
and ey the unit vectors along the x and y axes respectively. For the Riemann
problem, the initial condition is made of two planar fronts as sketched in
figure 1: a shock of velocity Mℓ and angle θℓ interacts with another one of
velocity Mr and angle θr. We work in polar coordinates (ρ, χ), taking χ = 0
for the horizontal axis (Ox). Note that the initial position of the first front

is then the half-line
{

χ = χℓ = θℓ −
π

2

}

. Similarly, the initial position of the

second front is the half-line
{

χ = χr = θr +
π

2

}

. With these notations, the

left front comes before the right one when the angle χ increases. This is
coherent with the standard notations for the theory of the Riemann problem

14



and explains why the left front is on the bottom of the picture.

θ l

θr M
r

χ
r

χ
l

M l

Figure 1: Sketch of the initial condition of the GSD Riemann problem.

3.2.1. The p-system

The full resolution of the Riemann problem is known for the p-system
(see [24], [21]), which can be written in the form

{

∂tv − ∂xu = 0
∂tu+ ∂xp(v) = 0

, (11)

with t > 0, x ∈ R, along with the properties p′ < 0 (and p′′ > 0, but the
sign of p′′ plays no role in the resolution of the Riemann problem and is
only a result of the usual physical interpretation in terms of isentropic gas
dynamics).

As one can note, the p-system is one-dimensional in space, and we want to
solve the stationary GSD equations in a two-dimensional space. Nevertheless,
it can be argued that the level-set function α, is a disguised time variable.

We then introduce the (σ, τ) system of coordinates where eσ = n =
∇α

|∇α|
is the unit vector normal to the front and eτ the unit vector tangent to the
front such that (eσ, eτ ) is direct. One can note that Whitham [29] already
introduced a similar system of coordinates, α and β, proportional to our σ
and τ , but with a non normalized gradient, leading to a slightly different
system.
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Using the fact that (1) implies


















curl
( n

M

)

= 0,

div

(

n

A(M)

)

= 0,

(12)

one can rewrite the GSD system in our system of coordinates as
{

∂σθ + ∂τ log(M) = 0
∂τθ − ∂σ log(A(M)) = 0

,

which bears a strong similarity with the p-system. Keeping in mind that the
setting is different, to write it as a p-system we can take

{

u = θ
v = log(A(M))

.

Given that A is a smooth function in M with A′(M) < 0, it is inversible.
Noting its inverse by A−1, the expression for the function p is

p(v) = log
(

A−1 (ev)
)

.

We can then check that

p′(v) =
ev

A′(A−1(ev))A−1(ev)
< 0,

because A′ < 0, which guarantees that the results obtained in the case of the
p-system still hold.

3.2.2. Geometrical structure of simple rarefactions

A rarefaction is a smooth transition between two constant states (Mℓ, θℓ)
and (Mr, θr) (see for instance figure 2). As a consequence of our analysis, we
will show that admissible solutions have to satisfy ∂χθ ≥ 0 and θr ≥ θℓ, even
if we do not assume it at the beginning of our analysis.

Writing (12) in polar coordinates (ρ, χ), we get






















∂

∂ρ

(

ρ sin(θ − χ)

M

)

− ∂

∂χ

(

cos(θ − χ)

M

)

= 0

∂

∂ρ

(

ρ cos(θ − χ)

A(M)

)

+
∂

∂χ

(

sin(θ − χ)

A(M)

)

= 0

(13)
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Keeping in mind that we are looking for solutions that only depend on
the angular variable χ, we see that equations (13) can be rewritten as



















(∂χθ) sin(θ − χ) = −(∂χM)

M
cos(θ − χ)

(∂χθ) cos(θ − χ) = (∂χM)
A′(M)

A(M)
sin(θ − χ) = −(∂χM)

M

β(M)
sin(θ − χ)

(14)
Combining the equations of system (14), we get the following fundamental

relation

(∂χθ)

(

M sin2(θ − χ)− β(M)

M
cos2(θ − χ)

)

= 0.

From this equation we deduce that either θ is constant (and then M is
also constant), which corresponds to the case where the front is planar, or
M and θ satisfy the relation

tan(θ − χ) = σ

√

β(M)

M
with σ = ±1. (15)

This relation is satisfied for any rarefaction, as soon as θ is not constant.
In particular, we have π

2
> σ(θ − χ) > 0 with σ = 1 for 1-rarefactions, and

with σ = −1 for 2-rarefactions.
The combination of the equations of system (14) also leads to the relation

(∂χθ)
2 =

(∂χM)2

β(M)
, (16)

which gives

∂χθ = ε
(∂χM)
√

β(M)
with ε = ±1. (17)

Plugging equations (17) and (15) in system (14) leads to σε = −1.
We then have

σω(M) + θ = const (18)

with

ω(M) =

∫ M

M0

√

−A′(m)

A(m)m
dm =

∫ M

M0

1
√

β(m)
dm (19)
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It can then be shown with other lengthy calculations involving derviations
of (15) and (18) with respect to χ, that M satisfies the ODE

dM(χ)

dχ
= −σF(M(χ)) (20)

along the rarefaction, with F(M) =
2
√

β(M)(M2 + β(M))

2M2 +Mβ ′(M)
> 0 (when it is

well defined). It can be checked that the denominator of F(M) is positive
when A′′(M) > 0 and this last condition can be checked at least numerically
on some values of γ, or in general for large M .
In particular for M(χ) and θ(χ) solutions of (20) and (15), the quantity

σω(M(χ)) + θ(χ) = const (21)

is independent on χ (it is indeed a Riemann invariant here). This shows in
particular that in any case we have ∂χθ ≥ 0 and then θr ≥ θl. We also deduce
from (21) that

ω(Mℓ)− ω(Mr) = σ(θr − θl). (22)

We can then give the geometrical structure of 1-rarefactions and 2-rarefactions
in detail.

Proposition 3.1. (Structure of simple rarefactions)
Assume that 2M + β ′(M) > 0. Let π > θr − θl > 0. We set χℓ = θℓ − π

2
and

χr = θr +
π
2
.

i) 1-rarefaction
Let Mℓ > Mr > 1 satisfying (23) for σ = 1. Then there exist two angles χr−

1

and χr+
1 , cf. figure 2(a), satisfying χℓ < χr−

1 < χr+
1 < χr − π

2
and such that:

❶ In the sector {χℓ ≤ χ ≤ χr−
1 }, we have M = Mℓ and θ = θℓ.

❷ In the sector {χr−
1 ≤ χ ≤ χr+

1 }, M satisfies (20) and θ is given by (15)
for σ = 1.

❸ In the sector {χr+
1 ≤ χ ≤ χr}, we have M = Mr and θ = θr.

The angles χr−
1 and χr+

1 are given by (15) for σ = 1, so

tan(θℓ − χr−
1 ) =

√

β(Mℓ)

Mℓ

and tan(θr − χr+
1 ) =

√

β(Mr)

Mr

.
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Moreover (21) holds true for σ = 1 for all χ ∈ [χℓ, χr].
ii) 2-rarefaction
Let Mr > Mℓ > 1 satisfying (23) for σ = −1. Then there exist two angles
χr−
2 and χr+

2 , cf. figure 2(b), satisfying χℓ +
π
2
< χr−

2 < χr+
2 < χr and such

that:

❶ In the sector {χℓ ≤ χ ≤ χr−
2 }, we have M = Mℓ and θ = θℓ.

❷ In the sector {χr−
2 ≤ χ ≤ χr+

2 }, M satisfies (20) and θ is given by (15)
for σ = −1.

❸ In the sector {χr+
2 ≤ χ ≤ χr}, we have M = Mr and θ = θr.

The angles χr−
2 and χr+

2 are given by (15) for σ = −1, so

tan(θℓ − χr−
2 ) = −

√

β(Mℓ)

Mℓ
and tan(θr − χr+

2 ) = −
√

β(Mr)

Mr
.

Moreover (21) holds true for σ = −1 for all χ ∈ [χℓ, χr].

χ
r

χ
l

χ r+

1

χ r−

1
l

rM

M

(a) 1-rarefaction

M r

M
l

χ r+

χ r−

χ
l

χ
r

2

2

(b) 2-rarefaction

Figure 2: Geometry of simple rarefaction waves.
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Because M satisfies the ODE (20) for σ = 1 along a 1-rarefaction and for
σ = −1 along a 2-rarefaction, independently of θ, the shape of the front along
a rarefaction is universal. More precisely if we fix a level-set value α = t0,
associated with a time t0 > 0, there exists a spiral St0 of polar equation
ρ = t0ρ1(χ) such that the level set {α = t0} on a rarefaction fan is the image
of a portion of St0 by an isometry (a direct isometry for 1-rarefaction, and
an indirect isometry for a 2-rarefaction). Moreover, when the time goes on,
the shape of the spiral is simply changed by dilation. Finally this spiral is
locally a convex curve, because we have shown that ∂χθ ≥ 0.

3.2.3. Geometrical structure of simple shocks

A shock is a discontinuity between two constant states (Mℓ, θℓ) and (Mr, θr).
Physically, we expect to have θr < θℓ for a simple shock and indeed, while it
is possible to construct functions with a simple shock that are formal solu-
tions of (12) with θr < θℓ, such solutions do not satisfy the entropy condition
and are thus not physical (see Remark 3.2). Both quantities M and θ are
discontinuous through the shock, but the level-set α is continuous, albeit not
smooth (see figure 3).

The trajectory of the (punctual) shock is the half-line χ = χs with χℓ <
χs < χr. In order to satisfy the divergence equation in (1), we need to have

χs − χℓ < π and χr − χs < π and to have either χℓ < χs < χr −
π

2
or

χℓ +
π

2
< χs < χr. Otherwise, the flux of n

A
would be entering the shock

from both sides, which would contradict the fact that n
A
is divergence free.

When χℓ < χs < χr−
π

2
, we have a 1-shock and the continuity of α forces

Mr > Mℓ. Using system (12),
we can get the relations between Mℓ, Mr, θℓ, θr and χs = χs

1 with θℓ, θr >
χs
1. The first equation and the continuity of α lead to

Mℓ

cos(θℓ − χs)
=

Mr

cos(θr − χs)
. (23)

The second equation gives that the flux of
n

A(M)
through the boundary

of a closed domain is zero. If we consider the flux for a tube going through
the interface between the two states, we get

A(Mℓ)

sin(θℓ − χs)
=

A(Mr)

sin(θr − χs)
. (24)
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From (23) and (24) we deduce

tan(θr−χs) =
A(Mr) sin(θℓ − θr)

A(Mℓ)− A(Mr) cos(θℓ − θr)
= −Mℓ −Mr cos(θℓ − θr)

Mr sin(θℓ − θr)
, (25)

and then by symmetry r/ℓ, we get

tan(θℓ−χs) = − A(Mℓ) sin(θℓ − θr)

A(Mr)− A(Mℓ) cos(θℓ − θr)
=

Mr −Mℓ cos(θℓ − θr)

Mℓ sin(θℓ − θr)
. (26)

Notice that this implies

cos(θℓ − θr) =
A(Mℓ)Mℓ + A(Mr)Mr

A(Mr)Mℓ + A(Mℓ)Mr
. (27)

We notice in particular that the general reordering inequality holds: a+b++
a−b− ≥ a+b− + a−b+ for all a+ ≥ a− ≥ 0 and b+ ≥ b− ≥ 0. Therefore, the
fact that A(M) is decreasing in M implies in particular that

0 <
A(Mℓ)Mℓ + A(Mr)Mr

A(Mr)Mℓ + A(Mℓ)Mr
≤ 1

which makes sense for equality (27).

When χℓ+
π

2
< χs < χr, we have a 2-shock and the continuity of α forces

Mr < Mℓ. Moreover, we have θℓ, θr < χs = χs
2. The same reasoning leads to

(23) and (24) which gives the same relations as the ones above.

Remark 3.2. Recall that admissible shocks have to satisfy an entropy condi-
tion in order to be stable: this is the Liu E-condition (which implies the Lax
E-condition), see paragraph 8.4 in [13]. It is also known that Lax E-condition
selects only half of the shock curve (see page 244, paragraph 8.3 in [13]). We
can see it on figure 4. This shows that only the case θr < θℓ is selected for
shocks.

With these informations in mind, we can give the structure of simple
shocks:

Proposition 3.3. (Structure of simple shocks)
Let 0 < θℓ − θr <

π
2
and Mr,Mℓ > 1 satysfying (27).

i) 1-shock
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If Mr > Mℓ > 1, then there exists χs = χs
1 < θℓ, θr given by (25) (or

equivalently by (26)), such that the situation is pictured on figure 3(a).
ii) 2-shock

If Mℓ > Mr > 1, then there exists χs = χs
2 > θℓ, θr given by by (25) (or

equivalently by (26)), such that the situation is pictured on figure 3(b).

r

l

χ
r

χ
l

χ
1

s

M

M

(a) 1-shock

χ
r

χ
l

M
l

M
r

χ s

2

(b) 2-shock

Figure 3: Geometry of simple shock waves.

Remark 3.4. We note that by replacing cos(θℓ − θr) by its expression (27)
in (26), one checks that (26) is equivalent to the relation given in [29] for a
compression wedge.

tan |θℓ − χs| = Aℓ

Mℓ

(

M2
r −M2

ℓ

A2
ℓ −A2

r

)1/2

with Ab = A(Mb) for b = ℓ, r.

(28)

Remark 3.5. Here, we have privileged the geometric interpretation of the
Riemann problem. However, one can use the conservative form (13) of the
GSD model in polar coordinates to obtain in similar manner as in [29] the
equations (26)-(27) and (25)-(27).
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3.2.4. Complete solutions of the Riemann problem

The relations satisfied by the velocities Mℓ and Mr and the angles θℓ and
θr for rarefactions and for shocks lead us to conclude that, as in the case of
the p-system, there always exists a unique solution of the Riemann problem
constituted of at most two transitions (a transition being a rarefaction or a
shock). This happens to be true in a whole domain except in a region where
the model ceases to be physical (see figure 4).

Supposing the left state (Mℓ, θℓ) is fixed, we can define the 1-shock and
2-shock curves functions, S1

(Mℓ,θℓ)
(M) and S2

(Mℓ,θℓ)
(M), by stipulating that for

M > Mℓ, θ = S1
(Mℓ,θℓ)

(M) is the only angle such that (Mℓ, θℓ) and (M, θ) sat-

isfy the shock relation (27) (which implies that there is an acceptable 1-shock
between the states (Mℓ, θℓ) and (M, θ)) and for M < Mℓ, θ = S2

(Mℓ,θℓ)
(M)

is the only angle such that (Mℓ, θℓ) and (M, θ) satisfy the shock relation
(27) (which implies that there is an acceptable 2-shock between the states
(Mℓ, θℓ) and (M, θ)). We define R1

(Mℓ,θℓ)
(M) and R2

(Mℓ,θℓ)
(M) in a similar

manner. For M < Mℓ, θ = R1
(Mℓ,θℓ)

(M) is the only angle such that (Mℓ, θℓ)

and (M, θ) satisfy the 1-rarefaction relation (23) for σ = 1, and for M > Mℓ,
θ = R2

(Mℓ,θℓ)
(M) is the only angle such that (Mℓ, θℓ) and (M, θ) satisfy the

2-rarefaction relation (23) for σ = −1. These functions are drawn in a phase
diagram on figure 4.

Nine cases, depending on the position of (Mr, θr) relatively to (Mℓ, θℓ)
in this diagram, are then defined. The first four ones are the general cases,
containing two transitions and an intermediate state, as in the study of the
p-system (see [24], pp. 306–320). The other five cases are limit cases with at
most one transition.

Case 1: (Mr, θr) is in zone I
The solution contains a 1-rarefaction between states (Mℓ, θℓ) and (M∗, θ∗),
and a 2-shock between states (M∗, θ∗) and (Mr, θr).

Case 2: (Mr, θr) is in zone II
The solution contains a 1-shock between states (Mℓ, θℓ) and (M∗, θ∗), and a
2-shock between states (M∗, θ∗) and (Mr, θr).

Case 3: (Mr, θr) is in zone III
The solution contains a 1-shock between states (Mℓ, θℓ) and (M∗, θ∗), and a
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2-rarefaction between states (M∗, θ∗) and (Mr, θr).

Relations (23) and (27) ensure that solutions of this form always exist when
(Mr, θr) is in zone I, II or III.
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zone IV

S 2
(Mℓ,θℓ) S 1

(Mℓ,θℓ)

zone I

(Mℓ,θℓ)

.
zone II

R2
(Mℓ,θℓ)R2

(1,θ0)

θ=π

θ=−π

θ=−π/2

M=1

R1
(1.5,θℓ)

excluded region

.
R1

(Mℓ,θℓ)

(1,θ0)

Figure 4: Example of a phase diagram for (Mℓ, θℓ) = (10, 0)
(

curves R1
(Mℓ,θℓ)

, R2
(Mℓ,θℓ)

,

S1
(Mℓ,θℓ)

and S2
(Mℓ,θℓ)

)

, for (Mℓ, θℓ) = (1.5, 0)
(

curve R1
(1.5,0)

)

and for (Mℓ, θℓ) = (1, θ0)
(

curve R2
(1,θ0)

)

.

Case 4: (Mr, θr) is in zone IV
Except when (Mr, θr) is in a particular, excluded region, there exists a so-
lution containing a 1-rarefaction between states (Mℓ, θℓ) and (M∗, θ∗), and
a 2-rarefaction between states (M∗, θ∗) and (Mr, θr). The curve R1

(Mℓ,θℓ)
in-

tersects the vertical axis at the point (1, θ0). The boundary of the excluded
region is then given by the curve θ = R2

(1,θ0)
(M).

In zone IV, as the shape of the front along a rarefaction is universal, it is
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possible to find the shape of the front (for example the level set {α = t0})
by noticing that the intermediate plane front must be both tangent to the
(sole) image by a direct isometry of St0 tangent to the front of the state
(Mℓ, θℓ) and tangent to the sole image by an indirect isometry of St0 tangent
to the front of the state (Mr, θr), where we recall that St0 was defined at the
end of subsection 3.2.2. In particular the front is constructed by a simple
geometrical procedure (see figure 5).

M  r

M
l M ∗

Figure 5: Geometrical determination of the intermediate state for a double rarefaction.

We also remark that as in the analysis of [24], some states in the ex-
cluded region (as illustrated in figure 4) can not be joined with (Mℓ, θℓ) by
the means of two rarefactions. The reason is that lim

M→1
ω(M) < +∞, which

means that all curves R1 intersect the line M = 1 at a finite point (1, θ0)
depending on (Mℓ, θℓ). When Mℓ is high enough, θ0 ≥ θℓ + π and there
is a solution for every physically possible initial data (Mr, θr) (that is with
θr < θℓ+π). But when Mℓ is small, θ0 < θℓ+π and in this case, when (Mr, θr)
is above the curve R2

(1,θ0)
, the Riemann problem does not admit a solution

with two rarefactions. The physical interpretation of this is less clear than
in the usual interpretation of the p-system in terms of isentropic gas dynam-
ics, because the GSD approximation does not work as well when M is near 1.

Case 5: Mr > Mℓ and θr = S1
(Mℓ,θℓ)

(Mr)
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The solution only contains a 1-shock between states (Mℓ, θℓ) and (Mr, θr).

Case 6: Mr < Mℓ and θr = S2
(Mℓ,θℓ)

(Mr)

The solution only contains a 2-shock between states (Mℓ, θℓ) and (Mr, θr).

Case 7: Mr < Mℓ and θr = R1
(Mℓ,θℓ

)(Mr)

The solution only contains a 1-rarefaction between states (Mℓ, θℓ) and (Mr, θr).

Case 8: Mr > Mℓ and θr = R2
(Mℓ,θℓ)

(Mr)

The solution only contains a 2-rarefaction between states (Mℓ, θℓ) and (Mr, θr).

Case 9: Mr = Mℓ and θr = θℓ
The solution is a uniform planar front of characteristics (Mℓ, θℓ).

3.2.5. Geometrical interpretation

In the preceding subsection we have constructed the complete solutions
of the Riemann problem in the phase space before describing their geometry.
There is a more geometrical way to view this reconstruction. Indeed, as it is
described by Whitham in [29], a simple shock is the result of the compression
of a plane front by a wedge, and a rarefaction the result of the diffraction
of a plane front by a corner. Such solutions involve a wall boundary, and in
both cases the solution is a plane front near the wall, with a normal vector
n parallel to the wall. As a consequence, two such solutions can be glued
together along the wall boundary to form a complete solution of (1), provided
they have the same velocity M∗ at the wall. The solution thus constructed
is naturally the solution of a Riemann problem.

Conversely, the solution of any Riemann problem can be seen as the re-
union of two such half-solutions involving a wedge or a corner. For a typical
solution constituted of two transitions with an intermediary state, we can
split the solution by a virtual boundary at the angle χw for which θ = χ.
Then the restrictions of the solution on both sectors {χ < χw} and {χ > χw}
are solutions which arise from the interaction of a plane front with a wedge
or with a corner. Figures 6 and 7 illustrate this construction.

26



(a) 2-rarefaction (b) 2-shock (c) 1-rarefaction (d) 2-shock

Figure 6: Half-solutions (with a horizontal wall).

(a) (b) (c) (d)

Figure 7: Complete solutions of the Riemann problem.

4. Algorithm Validation

The algorithm summarized in section 2.6 is now evaluated on a set of
test cases of increasing complexity. For each of them a reference solution is
known or has been introduced previously in section 3. We begin by check-
ing the numerical convergence order of the scheme by comparison with the
smooth radial solution, before looking for discontinuous solutions in the case
of a compression wedge (shock-shock). The analysis of the Riemann problem
completes this experimental study of the numerical scheme. For these refer-
ence solutions in the discontinuous case, explicit expressions are developed
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in the strong shock limit (i.e. M >> 1) using the simplified A-M relation

A

A0
=

(

M0

M

)λ∞

, with λ∞ = 5.0743 for γ = 1.4. (29)

All numerical experiments are performed with the full A-M relation (9) but
for a large enough Mach number value such that the infinite limit is asymp-
totically reached.

4.1. Order of the scheme

The reference solution is obtained by numerically integrating the radial
system (10) with a fourth-order Runge-Kutta scheme in cyclindrical and
spherical coordinates. The convergence study is made on the discrete L∞

norm.

• Cylindrical shock. For this two dimensional case, the computational
domain is reduced to the square [0, 50]× [0, 50] due to the symmetry of the
problem. The initial conditions on α and M are given by the radial solution
(10) on the quarter-circle of radius 4.9 centered at (0.0). We impose M = 10
for r < 1 to avoid the singularity at the origin. The boundary conditions are
of outgoing type on the edges {x = 50} and {y = 50}, and of rigid wall type
on the edges {x = 0} and {y = 0}. For this test case, the determination of
test values ϑ and m is made by the fixed-point algorithm.

The tables (1(a)) and (1(b)) give the norm of the error versus the grid
spacing for both the first-order and second-order schemes respectively. Note
that N is the number of nodes in each direction and that △x = △y. The
discret order is defined by:

order =
log(E2/E1)

log(N1/N2)
,

where E1 and E2 are respectively the errors associated to the meshes with
N1×N1 andN2×N2 elements. A logarithmic representation is given in figures
8(a)-8(b). One can note that the expected order of convergence is recovered
and as expected, the second-order scheme provides a better accuracy level.
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(a) First-order

Mesh Error M Order M Error α Order α
100× 100 9.2577e-02 1.5226e-01
200× 200 4.2359e-02 1.1280 6.7709e-02 1.1691
300× 300 2.7900e-02 1.0298 4.4638e-02 1.0276
400× 400 2.0718e-02 1.0346 3.3047e-02 1.0451
500× 500 1.6447e-02 1.0346 2.6159e-02 1.0475
600× 600 1.3723e-02 0.9930 2.1880e-02 0.9797
800× 800 1.0302e-02 0.9968 1.6198e-02 1.0452
900× 900 9.1333e-03 1.0222 1.4450e-02 0.9692
1000× 1000 8.1830e-03 1.0427 1.2935e-02 1.0514
E.C.O.1 1.0445 1.0597

(b) Second-order

Mesh Error M Order M Error α Order α
100× 100 1.2571e-02 1.6974e-02
200× 200 2.8049e-03 2.1641 3.7407e-03 2.1819
300× 300 1.2828e-03 1.9295 1.6097e-03 2.0797
400× 400 7.1314e-04 2.0409 8.8050e-04 2.0971
500× 500 4.6273e-04 1.9383 5.5824e-04 2.0422
600× 600 3.0824e-04 2.2284 3.8439e-04 2.0466
800× 800 1.5767e-04 2.3303 2.0961e-04 2.1080
900× 900 1.2552e-04 1.9358 1.6077e-04 2.2522
1000× 1000 1.0399e-04 1.7857 1.3119e-04 1.9299
E.C.O. 2.0819 2.1047

Table 1: Mesh convergence in the L∞ norm for the cylindrical case.

1E.C.O. denotes the Experimental Convergence Order given by the linear fit of the
error in the logarithmic scale.
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Figure 8: Mesh convergence in the L∞ norm for the cylindrical case in the logarithmic
scale.
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• Spherical shock. The analysis of the numerical order of the scheme is
also carried on in 3D. Using symmetry conditions, the computational domain
reduces to the cube [0, 10] × [0, 10] × [0, 10]. The initial front is given by
the radial solution on the sphere of radius 2 centered at the origin. As in
the 2D case, we impose M = 10 for r < 1 to avoid the singularity at the
origin. The boundary conditions are of outgoing type on the edges {x = 10},
{y = 10}, {z = 10}, and of rigid wall type on the edges {x = 0}, {y = 0},
{z = 0}. Here, the resolution of the nonlinear system (8) is made by Newton’s
method. The results of the second-order numerical scheme are compared with
the semi-analytical radial solution considered previously. The table 2 gives
the error in the discrete L∞ norm between the two solutions, the logarithms
of these values are displayed in figure 9. The second-order of convergence is
also obtained in 3D.

Mesh Error M Order M Error α Order α
40× 40× 40 0.00557 0.00521
60× 60× 60 0.00234 2.1389 0.00232 1.9953
80× 80× 80 0.00129 2.0700 0.00126 2.1220

100× 100× 100 0.000791 2.1919 0.000808 1.9911
160× 160× 160 0.000309 1.9999 0.000308 2.0520

E.C.O. 2.0895 2.2873

Table 2: Mesh convergence in the L∞ norm for the spherical case.
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Figure 9: Mesh convergence in the L∞ norm in the logarithmic scale.

31



These smooth test cases have proven that our fast-marching like algorithm
doesn’t suffer from using points in the NarrowBand and that the expected
theoretical order of convergence is reached.

4.2. Compression wedge test case

Attention is now paid to discontinuous solutions. We deal here with
a well-know test case, studied by many authors [29, 2], consisting in the
diffraction of an oblique shock by a wedge. It can be seen as an application
of the study of simple shocks. For an incoming front of velocity M0 and angle
θ0 = β interacting with a wedge of angle θw = 0, we are looking for a 2-shock
joining the states (Mℓ, θℓ) = (Mw, 0) and (Mr, θr) = (M0, β), the velocity Mw

of the Mach front and the angle χs
2 of the trajectory of the triple point being

unknown. The analysis of the structure of 2-shocks then gives us that Mw is
governed by the relation (27), and χs

2 by (25).
In the strong shock limit, the equations (28) and (27) can be simplified

in the following implicit relationship between β and χs
2























tanχs
2 = mλ∞

(

1−m2

1−m2λ∞

)1/2

cos β =
m+mλ∞

1 +m1+λ∞

,

(30)

where m =
M0

Mw
< 1 denotes the Mach number ratio on either side of the

shock-shock and λ∞ = 5.0743. The subscripts w and 0 characterize the
quantities on the wall and those of the incident (or initial) shock respectively,
χs
2 is the angle of the shock-shock line with the horizontal axis (Ox). This

analytical solution is displayed as a solid curve in the figure 10.
Here, the wedge is chosen aligned with the (Ox) axis to avoid a difficult

boundary treatment. The rigid wall condition is then imposed on the edge
{y = 0}. The computation was performed on the domain [0, 3] × [0, 3] with
a 300× 300 mesh. The initial shock position is given by

α0(x, y) =
(x− 0.5) cos β − y sin β

M0
,
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where β ∈ [0, π/2] is the angle between the front normal and the wedge, and
M0 = 10. The values of M and α for all points inside the half space on the
left of the initial shock position (i.e. α0(x, y) ≤ 0) are already intercepted
by the front and easily known since the shock is plane. An outflow condition
is imposed on the {x = 3} edge. Special care must be taken for the {y = 3}
edge since it corresponds to an inflow condition, so we set the exact solution
on it.
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Figure 10: Shock-shock angle versus angle of incidence for the first and second order
algorithm in comparison to Whitham’s analytical solution.

For a range of incident shock angle, a comparison between this theoretical
shock-shock locus and the numerical ones obtained by the first and second
order schemes is shown in figure 10. It is worth noting the very good agree-
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ment between the theoretical position and the results of the second-order
version. This result is in agreement with [2] where a classical level-set algo-
rithm was used. One can also notice that the first-order numerical scheme
underestimates the value of χs

2 by several degrees, and follows a nearly lin-
ear behaviour, lying on the tangent (dashed line) to the theoretical curve at
M = 1. A mesh refinement does not improve these results, which demon-
strates the necessity to use the second-order scheme when a shock singularity
is expected. Above nearly 45 degrees, the second order algorithm is also in
default and doesn’t show any shock-shock angle. This may be due to the
switching procedure, applied as it on the wall, which reduces locally the or-
der of the scheme. A better boundary treatment could help improve this
behaviour. Nevertheless, this is not a severe limitation in pratice since the
GSD model is not expected to give accurate results in such an extreme case
[29].

4.3. Test cases for the Riemann problem

A series of numerical experiments is now conducted to assess in more
details the ability of the numerical scheme to solve the two dimensional GSD
Riemann problem. In section 3 we have given the mathematical solutions
and we refer the reader to Appendix A for the detail of their explicit con-
struction in the strong shock limit. We compare these reference solutions to
the numerical ones, by taking varying values of the initial constant states to
cover all configurations of paragraph 3.2.4. The first tests use the left state
(Mℓ, θℓ) connected directly to the right state (Mr, θr) by an elementary wave
(either a shock or a rarefaction), i.e. (Mr, θr) lies on one of the curves R1,
R2, S1, S2 issued from (Mℓ, θℓ) (see figure 4). More general initial datas are
then considered to cover the different zones of the figure 4: zone I, zone II,
zone III and zone IV, i.e. solutions with an intermediate state.

The numerical solution is obtained on the domain [0, 5] × [0, 5] with a
500 × 500 grid. In all cases, the left state (Mℓ, θℓ) = (10, 0) is given and
we make the right state (Mr, θr) vary in the plane (M, θ). We display a
comparison between the isolines of α, obtained by the first and second order
schemes, and the exact solution in each configuration. In these figures, the
red curve represents the numerical solution, the blue one represents the exact
solution and the green lines correspond to the characteristic curves. The
following figures gather all the results obtained for the different solutions of
the Riemann problems.
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4.3.1. Simple waves

Simple waves correspond to cases 5 (1-shock), 6 (2-shock), 7 (1-rarefaction)
and 8 (2-rarefraction) of paragraph 3.2.4. They are difficult to compute in
practice since numerical roundoff on the initial condition may lead to the
emergence of an intermediate state.

The initial right state for the 1-shock and the 2-shock cases are (Mr, θr) =
(12,−22.45) and (Mr, θr) = (8.5,−20.24) respectively. Results are drawn in
figures 11 and 12. As expected from the compression wedge study, one can
note the excellent behaviour of the second order scheme for the 2-shock case,
but also for the 1-shock case. A severe deviation is present for the first order
algorithm applied on the 1-shock case.

(a) 1st order (b) 2nd order

Figure 11: 1-shock case: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (12,−22.45). Comparison of
the numerical solution — and the exact solution —. The characteristic curves — are
displayed for convenience.

35



(a) 1st order (b) 2nd order

Figure 12: 2-shock case: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (8.5,−20.24). Same drawing
convention.

The initial right state for the 1-rarefaction and the 2-rarefaction cases are
(Mr, θr) = (8.5, 20.97) and (Mr, θr) = (12, 23.53) respectively. Figures 13 and
14 exhibit a different behaviour for the first order version: the 1-rarefaction
wave is well captured while the 2-rarefaction one shows large deviation. The
second order scheme is excellent in both cases, nearly superimposed with the
reference solution.
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(a) 1st order (b) 2nd order

Figure 13: 1-rarefaction case: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (8.5, 20.97). Same
drawing convention.

(a) 1st order (b) 2nd order

Figure 14: 2-rarefaction case: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (12, 23.53). Same
drawing convention.

4.3.2. 1-rarefaction, 2-shock

This problem corresponds to case 1 of paragraph 3.2.4. The solution con-
sists of a 1-rarefaction connecting the left state (Mℓ, θℓ) = (10, 0) to a con-
stant intermediate state (M∗, θ∗) followed by a 2-shock connecting (M∗, θ∗)
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to the right state (Mr, θr) = (5, 30), i.e. (Mr, θr) is within zone I on figure 4.
Numerical results are shown on figure 15. One can note that the higher order
scheme allows a much better capture of the intermediate state, retriving a
nearly plane front, while the first order scheme exhibit an unexpected wave
pattern.

4.3.3. 1-shock, 2-shock configuration

This problem corresponds to case 2 of paragraph 3.2.4. The solution
consists of a 1-shock connecting the left state (Mℓ, θℓ) = (10, 0) to a constant
intermediate state (M∗, θ∗) followed by a 2-shock connecting (M∗, θ∗) to the
right state (Mr, θr) = (10,−50), i.e. (Mr, θr) is within zone II on figure 4.
Numerical results are shown on figure 16. As previously noticed, the higher
order scheme allows a better capture of the intermediate state. Here, the first
order scheme leads to an underestimation of the intermediate state’s Mach
number.

4.3.4. 1-shock, 2-rarefaction configuration

This problem corresponds to case 3 of paragraph 3.2.4. The solution
consists of a 1-shock connecting the left state (Mℓ, θℓ) = (10, 0) to a constant
intermediate state (M∗, θ∗) followed by a 2-rarefaction connecting (M∗, θ∗)
to the right state (Mr, θr) = (20, 10), i.e. (Mr, θr) is within zone III on figure
4. Numerical results are shown on figure 17. As expected from the simple
wave results, the 1-shock is badly captured by the first order scheme and the
overall solution behaviour is dramatically affected. Here again, the second
order scheme performs well.

4.3.5. 1-rarefaction, 2-rarefaction configuration

This problem corresponds to case 4 of paragraph 3.2.4. The solution
consists of a 1-rarefaction connecting the left state (Mℓ, θℓ) = (10, 0) to a
constant intermediate state (M∗, θ∗) followed by a 2-rarefaction connecting
(M∗, θ∗) to the right state (Mr, θr) = (10, 50), i.e. (Mr, θr) is within zone IV
on figure 4. Numerical results are shown on figure 18. The superiority and
the necessity of a higher order scheme is clearly stated on this case.
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(a) 1st order (b) 2nd order

Figure 15: 1-rarefaction+2-shock: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (5, 30). Same
drawing convention.

(a) 1st order (b) 2nd order

Figure 16: 1-shock+2-shock: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (10,−50). Same draw-
ing convention.
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(a) 1st order (b) 2nd order

Figure 17: 1-shock+ 2-rarefaction: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (20, 10). Same
drawing convention.

(a) 1st order (b) 2nd order

Figure 18: 1-rarefaction+2-rarefaction: (Mℓ, θℓ) = (10, 0) and (Mr, θr) = (10, 50).
Same drawing convention.

4.3.6. Synthesis

In view of the results obtained in this series of test cases, we note that
both first-order and second-order numerical schemes give, qualitatively, the
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expected behaviour of the exact solution to the Riemann problem. How-
ever, there are substantial differences between the results obtained by each
order. It is observed that the first-order scheme is not accurate enough,
which leads to a significant discrepancy on the position of the shock, while
the second-order scheme provides a much better approximation and coincides
quite strictly with the exact solution for all cases.

5. Conclusion

In this paper, we described a new algorithm for solving the Geometrical
Shock Dynamics model. In this hyperbolic two equations model, the arrival
time, α(x), of a shock wave is given by a nonlinear eikonal equation whose
local speed, or Mach number M(x), is governed by a differential equation
depending on flow parameters and the front curvature. By reformulating the
transport equation on M as a convection–diffusion one, its approximation is
made easier and the lengthy discretization of the mean curvature is avoided.
The new algorithm follows the fast-marching method on a cartesian grid but
uses trial values when updating the current node. First derivatives, appearing
in the eikonal and transport equations, are upwind sided up to second order
depending on the causality condition on α. A key feature of the method
is to use a centered discrete Laplacian for the diffusion part, as much as
possible, whithout taking into account the causality condition (i.e. using
points which are not in the Known set). For this reason, the algorithm is
not a fast-marching method in the strictest sense, and we say it has fast-
marching like properties. The resulting algebraic nonlinear system is solved
by an iterative procedure, fixed point or Newton’s method, at each node.

For validation purpose, reference solutions are built for a smooth radial
expansion wave and the interaction of two shocks. This latter case is a Rie-
mann problem for which a link is made with the p-system in two dimensions.
A detailed analysis of this problem is provided and simple front character-
ization is given in the strong shock limit for any left and right states. In
general, those states are connected by shock or rarefaction waves developing
on the front.

Numerical experiments have shown that, as expected, the algorithm is
second order for smooth fronts and performs remarkably well on disconti-
nous solutions, although the non conservative model equations are solved.
Differences are however observed between the first and second order algo-
rithm on the Riemann problems. The second order scheme is much better
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and very close to the reference solution, except when it locally switches to
first order. This is particularly noticeable on the compression wedge case
where the second order scheme fails above a wedge angle of nearly 45 de-
grees. This is not a severe limitation in pratice since the GSD model is not
expected to give accurate results in such a case.

In the future we plan to extend our algorithm to deal with immersed
rigid bodies and optimize the solver to achieve very fast computations. At
last, we infer that this new algorithm could also be valuable to the detonic
community, mainly for Detonation Shock Dynamics [26].

Appendix A. Reference solutions of the Riemann problem in the
strong shock limit

Based on the geometric description of section 3, we outline the construc-
tion of explicit solutions, in the strong shock limit (M >> 1), for the 2D
Riemann problem. For the sake of simplicity, we give the explicit solution
for specific configurations only: simple waves and a particular case with an
intermediate state. The key tool is to use the simplified relation (29) between
the area section and the Mach number.

We consider initial constant left and right states joined at the origin
O = (0, 0) and use the polar coordinates x = ρ cosχ and y = ρ sinχ.

A.1. Simple shock wave

From the limit form (29) of the A-M relation in the strong shock limit,
the equations (26)-(27) and (25)-(27) become (see also (30))















cos(θℓ − θr) =
mλ∞ +m

1 +mλ∞+1

tan (χs
ν − θℓ) = [−1 + ν(ν − 1)]mλ∞

(

1−m2

1−m2λ∞

)1/2 ,

where m =
Mr

Mℓ
and ν = 1, 2 for the 1-shock or 2-shock cases. Given 0 <

θℓ − θr <
π
2
, from the first equation of this algebraic system, one deduces, by

an iterative procedure, the Mach number ratio m on each side of the shock-
shock singularity. This singularity is characterized by the angle χs

ν which is
obtained by injecting m in the second equation.

42



Figure A.19: Example of geometric construction of 1-shock.

For this case, the geometric construction is straightforward and proceeds
as follows. As shown in figure A.19, we consider the two angular sectors sep-
arated by the shock line extending from the origin O and having the slope
tanχs

ν . At a given time, one starts from a current position P1 ≡ (x1, y1) on
the left state and draws the line segment whose normal makes the angle θℓ
with the (Ox) axis. The other endpoint of this segment, P2 ≡ (x2, y2), lies
on the shock line and so has the polar angle χs

ν . This process is repeated
to draw the front shape at different times to cover the computational domain.

The scalar function α, that characterizes the successive front positions, is
then (see also figure 3)

α(x, y) =



















x cos θℓ + y sin θℓ
Mℓ

, χ ≤ χs
ν

x cos θr + y sin θr
Mr

, χ ≥ χs
ν

.

A.2. Simple rarefaction wave

As mentioned in section 3.2, the rarefaction locus is a spiral

ρ = t0ρ1(χ) where t0 > 0,
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connecting the two constant states. In the strong shock limit (M >> 1),
this spiral is of logarithmic type, and the angle between its normal and the
radial direction is constant (see (15)) and is given by

δ∞ = arctan

√

1

λ∞
.

In other words, the angles in Proposition 3.1 are written

χr−
1,2 = θℓ ∓ δ∞ and χr+

1,2 = θr ∓ δ∞,

where the signs ∓ refer to the 1-rarefaction and the 2-rarefaction respectively.
Moreover equation (23) simplifies to give

θr − θℓ = ∓
√

λ∞ log

(

Mr

Mℓ

)

with π > θr − θℓ > 0 (see Proposition 3.1).
The scalar function α, that characterizes the successive positions of the

shock front, is then written (see figure 2)

α(x, y) =







































x cos θℓ + y sin θℓ
Mℓ

, χ ≤ θℓ ∓ δ∞

Kρ e
± χ√

λ∞ , θℓ ∓ δ∞ ≤ χ ≤ θr ∓ δ∞

x cos θr + y sin θr
Mr

, χ ≥ θr ∓ δ∞

.

with K =
cos δ∞
Mℓ

e
∓

χ
r−
1,2√
λ∞ .

A.3. Complete solutions of the Riemann problem

Whatever the left and right initial conditions, the intermediate state
(θ∗,M∗) can be written in the generic form:























θ∗ − θℓ = GR,S

(

M∗

Mℓ

)

θr − θ∗ = GR,S

(

M∗

Mr

)

, (A.1)
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where, in the strong shock limit, the function GR,S is given by

GR,S(m) =

∣

∣

∣

∣

∣

∣

∣

∣

GR(m) = −
√

λ∞ logm for a rarefaction

GS(m) = − arccos

(

m+mλ∞

1 +m1+λ∞

)

for a shock

.

For illustration purpose, we consider only the 1-rarefaction followed by
2-rarefaction case, for which system (A.1) can be solved explicitly. One then
checks that























θ∗ =
θr + θℓ −

√
λ∞ log

(

Mr

Mℓ

)

2

M∗ =

√

MrMℓe
θℓ−θr√

λ∞

.

Remark A.1. For any other configuration, an iterative procedure is required
to determine the intermediate state.

For the example under consideration, the front is compound of five angu-
lar sectors, according to the values of the polar angle χ (see figure 5). The
Riemann solution consists in two spiral arcs, characterized respectively by
the angles ±δ∞, connecting the intermediate state to the plane shocks on
the left and on the right respectively. Note that in the region between the
two spiral arcs, the shock is plane (i.e. M = M∗ and θ = θ∗) and tangent to
both curves. More precisely, the function α is written

α(x, y) =











































































x cos θℓ + y sin θℓ
Mℓ

, χ ≤ θℓ − δ∞

K1ρ e
χ√
λ∞ , θℓ − δ∞ ≤ χ ≤ θ∗ − δ∞

x cos θ∗ + y sin θ∗

M∗
, θ∗ − δ∞ ≤ χ ≤ θ∗ + δ∞

K2ρ e
− χ√

λ∞ , θ∗ + δ∞ ≤ χ ≤ θr + δ∞

x cos θr + y sin θr
Mr

, χ ≥ θr + δ∞.

,
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with

K1 =
cos δ∞
Mℓ

e
−

(θℓ−δ∞)√
λ∞ , K2 =

cos δ∞
Mr

e
(θℓ+δ∞)√

λ∞ ,

such that the function α is obviously continuous globally.
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