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Abstract

We present a new study of linear elasticity for an infinite three-dimensional plate of
finite thickness Ω = IR2×(−1, 1). We first caracterize the kernel of the operator of elas-
ticity as polynomials which can be build from the kernel of the classical Kirchhoff-Love
model of plate. Using this characterization we get optimal uniform elliptic estimates
W k,p, Ck,α on the solution as a function of the exterior forces. We also give an interior
estimate.
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1 Introduction

In this paper we are interested in uniform elliptic estimates for the system of equations of

linear elasticity. We study in details the particular case of an infinite plate.

1.1 General framework

Before to present our results, let us put them in a general framework. We first recall some

well known results on elliptic systems with constant coefficients. For a smooth open set Ω

of IRn, we consider a linear second order elliptic system

Lu = f on Ω (1.1)
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where Lu =
∑

i,j,k

ak
ij

∂2uk

∂xi∂xj

. We assume a first order boundary condition:

Bu = g on ∂Ω (1.2)

where Bu =
∑

i,j,k

νjb
k
ij

∂uk

∂xi

and ν is the exterior unit normal to the boundary ∂Ω. To consider

a well-posed problem, we assume that the boundary condition (1.2) is a supplementing con-

dition in the sense of [33]. The coefficients ak
ij, b

k
ij are assumed constant vectors.

In the particular case of a half space Ω = {xn > 0} we have for instance the well-known

Schauder estimate

[D2u]α;Ω ≤ C ([f ]α;Ω + [Dg]α;∂Ω) (1.3)

Here for a general function v defined on an open subset A we note the Hölder seminorm for

α ∈ (0, 1)

[v]α;A = sup
x,y∈A, x6=y

|v(x) − v(y)|

|x− y|α

More generally we recall the norms

|v|k+α;A =
k
∑

j=0

|Djv|α;A with |v|α;A = |v|0;A + [v]α;A and |v|0;A = sup
x∈A

|v(x)|

Let us mention a few references about some methods to prove Schauder estimates: for

the method of Singular integrals, see for instance S. Agmon, A. Douglis, L. Nirenberg [1, 2],

C.B. Morrey [33] and D. Gilbarg, N.S. Trudinger [21]; for the Trudinger mollification, see

N. Trudinger [37, 38], and Y.-Z. Chen, L.-C. Wu [7]; for the use of Campanato spaces, see

C.B. Morrey [32], S. Campanato [6], M. Giaquinta [19, 20]; for Polynomial approximations,

see M.V. Safonov [35], N.V. Krylov [36]; for the Scaling approach, see L. Simon [36]; for

Smoothing operators, see L. Hörmander, Appendix A of [23].

The literature on elliptic estimates usually focuses on estimates on the whole space or on

the half space. And up to our knowledge, there is not so much work in the direction of uniform

estimates for more general geometries like for instance the case of a slab Ω = {−1 < xn < 1}.

More generally when the open set Ω is not invariant by scaling, there is no hope to get an

estimate similar to (1.3) for general elliptic systems (see remark 4.3 for a counter-example,
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and theorem 7.1 for an example). In particular when Ω = IRk × ω where ω is a smooth

bounded open set of IRn−k, we still have the following estimate:

|u|2+α;B1∩Ω ≤ C (|f |α;B2∩Ω + |g|1+α;B2∩∂Ω + |u|0;B2∩Ω)

Here we are interested in similar inequalities, but without the norm on u on the right hand

side of the inequality (see in particular the works on weighted Sobolev spaces on cylinders

like for instance Kozlov, Maz’ya [24], Maz’ya, Nazarov, Plamenevskij [25, 26]).

In its simplest form, we make the following

Conjecture 1.1 (Schauder Estimate for Elliptic Systems on Infinite Cylinders)

Let us consider a solution u to system (1.1)-(1.2) on Ω = IRk × ω where ω is a smooth

bounded open set in IRn−k. If u ∈ C∞
0 (Ω) (with compact support in Ω), then there exists

d ∈ (0,+∞) such that

N d
2+α(u) ≤ C (|Lu|α;Ω + |Bu|1+α;∂Ω)

where the seminorm N d
2+α is given by

N d
2+α(u) = sup

x∈Ω

inf
P∈Pd

|u− P |2+α;B1(x)∩Ω

Here Pd denotes the kernel of the system caracterized by

Pd =
{

v ∈ C2(Ω), Lv = Bv = 0 and ∃C > 0, |v(x)| ≤ C(1 + |x|)d
}

Let us remark that this conjecture is true with d = 2 for the Laplace operator on a slab

with Neumann boundary conditions. More precisely we have:

Theorem 1.2 For Ω = IRn−1×(−1, 1), L = ∆, B =
∂

∂xn

, conjecture 1.1 is true with d = 2.

Here the degree d = 2 is quite natural. The goal of this article is to prove this conjecture

in the particular case of the elliptic system of linear elasticity for a three-dimensional plate

Ω = IR2 × (−1, 1), is true for d = 4, but false for d ≤ 3. This reveals a striking difference

between elliptic equations and systems.

Before to present our results, let us recall that a lot of work has been done on thin elastic

plates. In particular some Sobolev estimates have been obtained. Among other works, let

us cite [8, 9, 10, 11, 16, 17].
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1.2 Results for the system of linear elasticity

We consider a solution u = (u1, u2, u3) on the slab Ω = IR2× (−1, 1). In the case of isotropic

homogeneous linear elasticity, we have:

Lu =































(λ+ 2µ)∂11u1 + µ(∂22u1 + ∂33u1) + (λ+ µ)(∂12u2 + ∂13u3)

(λ+ 2µ)∂22u2 + µ(∂11u2 + ∂33u2) + (λ+ µ)(∂21u1 + ∂23u3)

(λ+ 2µ)∂33u3 + µ(∂11u3 + ∂22u3) + (λ+ µ)(∂31u1 + ∂32u2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

on Ω

Bu =































µ(∂3u1 + ∂1u3)

µ(∂3u2 + ∂2u3)

λ(∂1u1 + ∂2u2) + (λ+ 2µ)∂3u3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

on ∂Ω

where λ, µ > 0 are Lamé constants.

We prove the conjecture for this particular system:

Theorem 1.3 There exists a constant C > 0 such that for every u ∈ C∞
0 (Ω) we have

N 4
2+α(u) ≤ C (|Lu|α;Ω + |Bu|1+α;∂Ω)

This result is optimal in the sense that

Theorem 1.4 For each n ∈ N, there exists un ∈ C∞
0 (Ω) such that

N 3
2+α(un) > n (|Lun|α;Ω + |Bun|1+α;∂Ω)

We also have interior estimates (see theorem 6.1) and a Lp version of these estimates.

A corollary of theorem 1.3 and of the characterization of the kernel is the following

Theorem 1.5 For any function h = (h1, ..., h11) defined on IR2 we define

P0(h) =



























h1 + x3h4 +
x2

3

2!
h7 +

x3
3

3!
h10

h2 + x3h5 +
x2

3

2!
h8 +

x3
3

3!
h11

h3 + x3h6 +
x2

3

2!
h9


























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Let us denote by P the space of all such functions:

P =
{

P0(h), h ∈ C∞
0 (IR2)

}

Then for any function u ∈ C∞
0 (Ω), we have

∣

∣

∣u− Proj|P(u)
∣

∣

∣

2+α;Ω
≤ C (|Lu|α;Ω + |Bu|1+α;∂Ω)

where Proj|P is any continuous projector from C2+α([−1, 1]) on IR11, which is naturally

extended from C2+α(Ω) on P.

This last result can be put in relation on the one hand with Naghdi models of plates (see

Destuynder [15]) and on the other hand with director models as in Mielke [27].

One interpretation of theorems 1.3 and 1.5 is a dimension reduction phenomena. For some

related questions see [5, 28, 29, 30, 31, 39].

1.3 Organization of the article

We prove our main theorem 1.3 in section 2 and give more general W k,p, Ck,α estimates

in section 3. We prove theorem 1.4 in section 4. Proposition 2.1 was a key argument to

prove theorem 1.3, and this proposition is proved in section 5. In section 6 we present

some extension of the previous results: we establish interior estimates for a finite plate with

boundaries. In section 7 we give the proof of theorem 1.2. In an Appendix, we have rejected

the precise characterization of the kernel of the operator of elasticity (which originally has

been found explicitly by the author using the group representation theory) and some other

technical tools on weighted Sobolev spaces. We finally give an example of a linear operator

with non-polynomial kernel.

2 Schauder estimate: proof of theorem 1.3

The proof of theorem 1.3 uses the following proposition which will be proved later:

Proposition 2.1 (L∞ bounds)

There exist a constant C > 0 and ε ∈ (0, 1) such that for every u ∈ C∞
0 (Ω) we have

∃P ∈ P4, ∀R ≥ 1, |u− P |L∞(BR∩Ω) ≤ CR4+εN 4
2+α(u)
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Lemma 2.2

P4+ε = P4

Proof of lemma 2.2

This lemma is a consequence of theorem 8.1.

We will also use the straightforward

Lemma 2.3

∃B1 ⊂ IR3, N 4
2+α(u) ≤ C inf

P∈P4

|u− P |2+α;B1∩Ω

Proof of theorem 1.3

Here we follow a classical argument which can for instance be found in Morrey [33].

If the inequality to prove is false, then there exists a sequence (un)n ∈ C∞
0 (Ω) such that

N 4
2+α(un) = 1 and |Lun|α;Ω, |Bu

n|1+α;∂Ω −→ 0

From lemma 2.3, up to translate un we can still assume

1 = N 4
2+α(un) ≤ C inf

P∈P4

|un − P |2+α;B1(0)∩Ω

From proposition 2.1, up to substract to un an element of P4, we can assume that uniformly

in n

|un|L∞(BR∩Ω) ≤ CR4+ε for R ≥ 1

Let us recall that the following Schauder estimate still holds

|un|2+α;B1∩Ω ≤ C (|Lun|α;B2∩Ω + |Bun|α;B2∩∂Ω + |un|0;B2∩Ω)

We deduce that up to consider a subsequence we have

un −→ u∞ in C
2+β
loc (Ω) for every β ∈ (0, α) (2.1)

We deduce that

Lu∞ = Bu∞ = 0 and |u∞|L∞(BR∩Ω) ≤ CR4+ε for R ≥ 1
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We deduce that u∞ ∈ P4+ε = P4, and then up to substract u∞ to un we can assume u∞ = 0.

Now because u∞ = 0 in (2.1) we have |un|0;B2∩Ω −→ 0. This implies that the right hand side

of the following inequality tends to zero:

1 = N 4
2+α(un) ≤ C (|Lun|α;B2∩Ω + |Bun|α;B2∩∂Ω + |un|0;B2∩Ω)

Contradiction. This ends the proof of the theorem.

We see that the main difficulty is to prove proposition 2.1 which will be done in section

5.

3 Other Estimates

Using our approach it is easy to prove estimates with more regularity. For instance with

obvious notations we have:

N d
k+2+α(u) ≤ Ck (|Lu|k+α;Ω + |Bu|k+1+α;∂Ω)

On the other hand we can prove Lp-estimates. For an open subset A and a function v

we set the norms on the Banach space W k,p(A):

||v||k,p;A =
k
∑

j=0

||Djv||p;A and ||v||p;A =
(∫

A
|v|p

) 1
p

We also define the uniform norms on the Banach space W k,p
unif(A):

||v||unif
k,p;A =

k
∑

j=0

||Djv||unif
p;A with ||v||unif

p;A = sup
x∈A

||v||p;B1(x)∩A

Then we have easily

Theorem 3.1 There exists a constant C > 0 such that for every u ∈ C∞
0 (Ω) we have

N 4
2,p(u) ≤ C

(

||Lu||unif
p;Ω + ||Bu||unif

1,p;∂Ω

)

where

N 4
2,p(u) = sup

x∈Ω
inf

P∈P4

||u− P ||2,p;B1(x)∩Ω
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4 A counter-example : proof of theorem 1.4

4.1 Preliminaries on symmetry

For a scalar function v defined on Ω, let us define the symmetric and antisymmetric parts

with respect to x3:

vs(x) =
1

2
(v(x1, x2, x3) + v(x1, x2,−x3)) and va(x) =

1

2
(v(x1, x2, x3) − v(x1, x2,−x3))

For a vector function u = (u1, u2, u3) we define the following symmetric and antisymmetric

parts:

uS = (us
1, u

s
2, u

a
3) and uA = (ua

1, u
a
2, u

s
3)

4.2 Characterization of the kernel

We define the following operators acting on functions h = (h1, h2) defined on IR2.

div′u = ∂1u1 + ∂2u2

∆′ = ∂11 + ∂22

We will prove in the Appendix the following result (see Dauge, Gruais, Rössle [12, 13, 14]

for a different approach)

Theorem 4.1 (Characterization of the kernel)

We have

Pd = PS
d ⊕ PA

d

Every element of PA
d can be written

PA(h) =





















−x3∂1h+ a(x3)∂1∆
′h

−x3∂2h+ a(x3)∂2∆
′h

h+
λ

λ+ 2µ

x2
3

2!
∆′h





















where

a(x3) =

(

3λ+ 4µ

λ+ 2µ

)

x3
3

3!
− 2

(

λ+ µ

λ+ 2µ

)

x3

and h is a polynomial in (x1, x2) which satisfies

∆′2h = 0 on IR2
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Similarly, every element of PS
d can be written

P S(h) =





























h1 +
λ

λ+ 2µ

x2
3

2!
∂1div

′h

h2 +
λ

λ+ 2µ

x2
3

2!
∂2div

′h

−
λ

λ + 2µ
x3div

′h





























where h1, h2 are polynomials in (x1, x2) which satisfy

∆′hα +

(

3λ+ 2µ

λ+ 2µ

)

∂αdiv′h = 0 on IR2

4.3 Proof of theorem 1.4

Let us recall that

N 3
2+α(u) = sup

x∈Ω

inf
P∈P3

|u− P |2+α;B1(x)∩Ω

where P3 is the kernel of polynomials of degree less or equal to 3 in (x1, x2).

For a general function h(x1, x2), it is easy to compute

BPA(h) =











c(x2
3 − 1) · ∂1∆

′h

c(x2
3 − 1) · ∂2∆

′h

b3 · ∆′2h

LPA(h) =











l1 · ∂1∆
′2h

l2 · ∂2∆
′2h

l3 · ∆′2h

where c is a constant and b3, l1, l2, l3 are polynoms in x3.

Let us assume that theorem 1.4 is false. Then

∀u ∈ C∞
0 (Ω), N 3

2+α(u) ≤ C (|Lu|α;Ω + |Bu|1+α;∂Ω)

In particular for any function h(x1, x2) ∈ C∞
0 (IR2), we have

N 3
2+α(PA(h)) ≤ C

(

|LPA(h)|α;Ω + |BPA(h)|1+α;∂Ω

)

Looking at the term
x2
3

2!
∆′h in PA(h) we get with g = ∆′h

sup
x′∈IR2

inf
p
|g − p|2+α;B1(x′) ≤ C |∆′g|1+α;IR2
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where the infinmum is taken over polynomials p of degree less or equal to 1. In particular

we deduce

|D2g|α;IR2 ≤ C |∆′g|1+α;IR2

By scaling we get

|D2g|0;IR2+εα
[

D2g
]

α;IR2
≤ C

(

|∆′g|0;IR2 + εα [∆′g]α;IR2 + ε |∇′∆′g|0;IR2 + ε1+α [∇′∆′g]α;IR2

)

where the constant C is independent on ε. At the limit ε = 0 we have for any function

g = ∆′h with h ∈ C∞
0 (IR2)

|D2g|0;IR2 ≤ C|∆′g|0;IR2

This inequality is known to be false for general functions g ∈ C∞
0 (IR2). It is sufficient to

consider the limit case (in regularity) g = q(x1, x2) ln (x2
1 + x2

2) where q is a homogeneous

harmonic polynomial of degree 2, and to reduce the problem to this limit case with help of

mollifier and cut-off functions.

This contradiction ends the proof of theorem 1.4.

Remark 4.2 Simlarly, for a general function h(x1, x2), it is easy to compute

BP S(h) =











0
0
b3 · ∆′div′h

and

LP S(h) =



















































µ

(

∆′h1 +
3λ+ 2µ

λ+ 2µ
∂1div

′h

)

+ λ
x2

3

2!
∂1∆

′div′h

µ

(

∆′h2 +
3λ+ 2µ

λ+ 2µ
∂2div

′h

)

+ λ
x2

3

2!
∂2∆

′div′h

l3 · ∆′div′h

where b3, l3 are polynoms in x3. Moreover we can prove that there exists a sequence of

symmetric vectors un ∈ C∞
0 (Ω) such that N 1

2+α(un) > n (|Lun|α;Ω + |Bun|1+α;∂Ω)

Remark 4.3 Let us remark that the classical Schauder estimate (1.3) fails for the system

of linear elasticity on Ω.
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To see it, it is sufficient to consider a cut-off function ψ ∈ C∞
0 (IR2) satisfying ψ = 1 on

B1(0) ⊂ IR2. We define for ε > 0

uε(x) = ψ(ε2x1, ε
2x2)P

A





(

sin(εx1)

ε

)2 (
sin(εx2)

ε

)





Then we have
[D2uε]α;Ω

[Luε]α;Ω + [DBuε]α;∂Ω

−→ +∞ as ε −→ 0

5 Proof of proposition 2.1

We will prove the following result which implies proposition 2.1.

Proposition 5.1 There exists ε ∈ (0, 1) such that for every function u ∈ C2
0(Ω), we have

∃P ∈ P2,4,



















∣

∣

∣(u− P )S
∣

∣

∣

L∞(BR∩Ω)
≤ CR2+εN

∣

∣

∣(u− P )A
∣

∣

∣

L∞(BR∩Ω)
≤ CR4+εN

where

N = sup
x∈Ω

inf
P∈P2,4

|u− P |W 2,∞(B1(x)∩Ω)

and P2,4 ⊂ P4 is defined by

P2,4 =
{

v ∈ C2(Ω), Lv = Bv = 0, ∃C > 0, |vS(x)| ≤ C(1 + |x|)2, |vA(x)| ≤ C(1 + |x|)4
}

Proof of proposition 5.1: the antisymmetric part

From the expression of PA(h) we naturally introduce the projection TAu of any function u:

TAu =





















−x3(T
A
1 u)1 + a(x3)(T

A
3 u)1

−x3(T
A
1 u)2 + a(x3)(T

A
3 u)2

TA
0 u+

λ

λ+ 2µ

x2
3

2!
TA

2 u





















where TA
i u only depend on (x1, x2).

On way to define precisely a projection operator TA, is to set d0(x3) = 1, d1(x3) = −x3,

d2(x3) = λ
λ+2µ

x2
3

2!
, d3(x3) = a(x3), and to choose four functions ki(x3), i = 0, ..., 3 such that

∫ 1

−1
dx3 ki(x3)di(x3) = δij, for i, j = 0, ..., 3
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Then we set


























(TA
i u)α(x1, x2) =

∫ 1

−1
dx3 ki(x3)uα(x1, x2, x3), i = 1, 3; α = 1, 2

(TA
i u)(x1, x2) =

∫ 1

−1
dx3 ki(x3)u3(x1, x2, x3), i = 0, 2

We moreover remark that the expression of PA(h) exhibits the following sequence of opera-

tors:
(

h

0

)

7−→MA
0 ∇′h 7−→MA

1

(

∆′h

0

)

7−→MA
2 ∇′∆′h 7−→MA

3

(

∆′2h

0

)

where R(MA
i ) ⊃ Ker

(

MA
i+1M

A
i+2...M

A
3

)

. Here MA
0 = MA

2 = ∇′ =

(

∂1

∂2

)

and MA
1 = MA

3 =
(

div′

curl′

)

where div′h = ∂1h1 + ∂2h2, curl′h = ∂1h2 − ∂2h1.

We then introduce the following quantity

NA =
3
∑

i=0

∣

∣

∣MA
i T

A
i u− TA

i+1u
∣

∣

∣

L∞(IR2)

with TA
4 ≡ 0. To estimate TAu, we now use the following lemma (which will be proved in

the Appendix)

Lemma 5.2 For n = 2 and any p > n, α > n
p

such that α− n
p
6∈ N, we consider the space

(with r = (x2
1 + x2

2)
1
2 )

W
k,p
−α =

{

u,
Dlu

(1 + r)k−l+α
∈ Lp(IRn), l ∈ [0, k]

}

with the norm

|u|
W

k,p
−α

=
k
∑

l=0

∣

∣

∣

∣

∣

Dlu

(1 + r)k−l+α

∣

∣

∣

∣

∣

Lp(IRn)

For MA = MA
0 or MA

1 , there exists a constant C > 0 such that

(

MAh ∈ W
0,p
−α

)

=⇒

(

∃P, deg(P ) ≤

[

1 + α−
n

p

]

, MAP = 0, |h− P |W 1,p
−α

≤ C|MAh|W 0,p
−α

)

Here P are polynomials of degree less or equal to
[

1 + α− n
p

]

such that MAP = 0.

Applying four times this lemma successively with α, α + 1, α + 2, α + 3, we get for some

constant C = C(α, p) > 0:

∃P (x1, x2), deg(P ) ≤ 4, ∆′2P = 0, |TAu− PA(P )|W 1,p

−(α+3)
≤ CNA (5.2)

where we have used the fact that for a general function |f |W 0,p
−α

≤ C|f |L∞(IRn).

The end of the proof comes from the following lemma

12



Lemma 5.3

∃P (x1, x2), deg(P ) ≤ 4, ∆′2P = 0, |TAu− PA(P )|L∞(BR) ≤ CR4+εNA

Proof of lemma 5.3

We use the fact that for a general function

∣

∣

∣

∣

∣

f

(1 + r)1+α−n
p

∣

∣

∣

∣

∣

L∞(IRn)

≤ C|f |W 1,p
−α

which is a consequence of the classical Morrey estimate: |f(x)−f(y)| ≤ C|x−y|1−
n
p |∇f |Lp(IRn)

applied to f

(1+r)α and Poincaré-Wirtinger inequality to control f(0). As a consequence of (5.2)

we get for some p large and α− n
p

small that for ε = α− n
p

and

∀R ≥ 1,
1

R4+ε
|TAu− PA(P )|L∞(BR) ≤ CεN

A

Proof of proposition 5.1: the symmetric part

From the expression of P S(h) we naturally introduce the projection T S of any function u:

T Su =





























(T S
0 u)1 +

λ

λ+ 2µ

x2
3

2!
(T S

2 u)1

(T S
0 u)2 +

λ

λ+ 2µ

x2
3

2!
(T S

2 u)2

−
λ

λ + 2µ
x3T

S
1 u





























where T S
i u only depend on (x1, x2). We moreover remark that the expression of P S(h)

exhibits the following operator:

MSh = ∆′hα +

(

3λ+ 2µ

λ + 2µ

)

∂αdiv′h

We then introduce the following quantity

N S =
∣

∣

∣MST S
0 u
∣

∣

∣

L∞(IR2)
+

2
∑

i=0

∣

∣

∣MS
i T

S
i u− T S

i+1u
∣

∣

∣

L∞(IR2)
+
∣

∣

∣MS
1 M

S
0 T

S
0 u− T S

2 u
∣

∣

∣

L∞(IR2)

where MS
0 = div′, MS

1 = ∇′, MS
2 =

(

div′

curl′

)

, and T S
3 ≡ 0. To estimate T Su, we now use

the following lemma (which will be proved in the Appendix)

13



Lemma 5.4 With the same notations as in lemma 5.2, there exists a constant C > 0 such

that

(

MSh ∈ W
0,p
−α

)

=⇒

(

∃P, deg(P ) ≤

[

2 + α−
n

p

]

, MSP = 0, |h− P |
W

2,p
−α

≤ C|MSh|
W

0,p
−α

)

Here P are polynomials of degree less or equal to
[

2 + α− n
p

]

such that MSP = 0.

As previously we get for some universal constant C = C(α, p) > 0:

∃P (x1, x2), deg(P ) ≤ 2, MSP = 0,















|T S
0 u− P |L∞(BR) ≤ CR2+εN S

|MS
0

(

T S
0 u− P

)

|L∞(BR) ≤ CR1+εN S

and then using the definition of N S we get

|T S
1 u−MS

0 P |L∞(BR) ≤ CR1+εN S

For v = T S
0 u− P , we have

|MS
1 M

S
0 v|W 0,p

−α
≤ CN S

which implies (still using the definition of N S)

|T S
2 v|W 0,p

−α
≤ CN S

Moreover we have
∣

∣

∣M2T
S
2 v
∣

∣

∣

W
0,p
−α

≤ CN S

This proves by classical elliptic estimates and usual imbeddings that

∣

∣

∣T S
2 v
∣

∣

∣

L∞(BR)
≤ CRεN S

We finally have proved the following

Lemma 5.5

∃P (x1, x2), deg(P ) ≤ 2, MSP = 0, |T Su− P S(P )|L∞(BR) ≤ CR2+εN S

This ends the proof the proposition for the symmetric part.

End of the proof of proposition 5.1

The proposition follows from

∣

∣

∣u−
(

T Su+ TAu
)∣

∣

∣

L∞(IR2)
+ N S + NA ≤ CN

14



6 Interior estimates

For this section let us note the infinite plate by Ω∞ = IR2 × (−1, 1) in place of Ω which will

be reserved for a finite plate.

Theorem 6.1 Let Ω = ω× (−1, 1) where ω ⊂ IR2 is any open set (possibly unbounded). Let

us denote by dist(x′, ω) the distance of a point x′ ∈ IR2 to ω and

Ωd = ωd × (−1, 1) where ωd =
{

x′ ∈ IR2, dist(x′, ω) < d
}

For a general set A ⊂ Ω∞, we define

N2+α;A(u) = sup
x∈A

inf
h
|u− P (h)|2+α;B1(x)∩A

where h = (h1, h2, h3), P (h) = P S(h1, h2) + PA(h3), and

{

MSh = 0
∆′2h3 = 0

∣

∣

∣

∣

∣

on B2(x
′)

where we recall that (MSh)α = ∆′hα +
(

3λ+2µ
λ+2µ

)

∂αdiv′h. Then there exist constants C, c > 0

such that for any function u ∈ C2+α(Ωd), we have for d ≥ 0

N2+α;Ω(u) ≤ C
(

|Lu|α;Ωd
+ |Bu|1+α;Ωd

+ e−cdN2+α;Ωd
(u)

)

The proof of this theorem is based on the following proposition (which is a variant of

proposition 5.1)

Proposition 6.2 Let u ∈ C2+α(Ω). Then there exists h ∈ C∞(ω) which is a solution of

{

MSh = 0
∆′2h3 = 0

∣

∣

∣

∣

∣

on ω

such that we have the estimates


















∣

∣

∣(u− P (h))S
∣

∣

∣

L∞(BR∩Ω)
≤ CR2+εN2+α;Ω(u)

∣

∣

∣(u− P (h))A
∣

∣

∣

L∞(BR∩Ω)
≤ CR4+εN2+α;Ω(u)

for some constants C > 0 and ε ∈ (0, 1) only depending on λ, µ.
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Proof of theorem 6.1

Theorem 6.1 is a consequence of the following inequality

∀θ ∈ (0, 1), ∃d0 > 0, ∃C > 0,

N2+α;Ω(u) ≤ C
(

|Lu|α;Ωd0
+ |Bu|1+α;Ωd0

)

+ θN2+α;Ωd0
(u)

(6.1)

If this inequality is false, then we can find a θ ∈ (0, 1) and a sequence of solutions (un)n on

Ωn = ωn × (−1, 1) and sequences

dn
0 , Cn −→ +∞

such that

1 = N2+α;Ωn(un) ≥ Cn

(

|Lun|α;Ωn
dn
0

+ |Bun|1+α;Ωn
dn
0

)

+ θN2+α;Ωn
dn
0

With help of proposition 6.2 we can find a sequence hn with bounds on vn = un − P (hn)

which proves that vn → v∞ locally on compact sets. As in the proof of theorem 1.3, we have

v∞ ∈ P2,4 and up to substract v∞ to vn, we can assume that v∞ ≡ 0. Now if we choose the

origine such that

1 = inf
h
|vn − P (h)|2+α;B1(0) ≥ sup

x∈Ω
inf
h
|vn − P (h)|2+α;B1(x)

we see that the classical interior estimate is

1 = inf
h
|vn − P (h)|2+α;B1(0) ≤ C

(

|fn|α;B2(0)
+ |gn|1+α;B2(0) + |vn|L1(B2(0))

)

(6.2)

because LP (h) = BP (h) = 0 on B2(0). Now the contradiction comes from the fact that the

right hand side of (6.2) tends to zero as n tends to infinity. This ends the proof of theorem 6.1.

Remark 6.3 As a consequence of (6.1), we get a more precise result:

N2+α;Ω(u) ≤ C

(

∫ d

0
ds e−cs (|Lu|α;Ωs

+ |Bu|1+α;Ωs
) + e−cdN2+α;Ωd

(u)

)

Proof of proposition 6.2

We simply remark that


















NA :=
∑3

i=0

∣

∣

∣MA
i T

A
i u− TA

i+1u
∣

∣

∣

L∞(ω)
≤ CN2+α;Ω(u)

N S :=
∣

∣

∣MST S
0 u
∣

∣

∣

L∞(ω)
+
∑2

i=0

∣

∣

∣MS
i T

S
i u− T S

i+1u
∣

∣

∣

L∞(ω)
+
∣

∣

∣T Su− P S
(

T S
0 u
)∣

∣

∣

L∞(Ω)
≤ CN2+α;Ω(u)
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Extending these quantities on the whole space IR2 as L∞(IR2) quantities, we can apply the

proof of proposition 5.1. This gives the existence of a function k = (k1, k2, k3) defined on

IR2 × (−1, 1) such that

k = TA(k) + P S(T S
0 k)

such that w = Tu− P (k) satisfies















(

MA
i T

A
i − TA

i+1

)

w = 0

(MST S
0 )w = 0

∣

∣

∣

∣

∣

∣

∣

∣

on ω

which implies






























TAw = PA(TA
0 w)

∆′2(TA
0 w) = 0

MS(T S
0 w) = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

on ω

Moreover there exists P ∈ P2,4 such that



















∣

∣

∣(k − P )S
∣

∣

∣

L∞(BR∩Ω)
≤ CR2+εN2+α;Ω(u)

∣

∣

∣(k − P )A
∣

∣

∣

L∞(BR∩Ω)
≤ CR4+εN2+α;Ω(u)

The antisymmetric part

We can write
TAu = TAw + TAk

= TA(w + P ) + TA(k − P )

= PA
(

TA
0 (w + P )

)

+ (k − P )A

We set

h3 = TA
0 (w + P )
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The symmetric part

We have
T Su = P S

(

T S
0 u
)

+
(

T Su− P S
(

T S
0 u
))

= P S
(

T S
0 u
)

+ q

= P S
(

T S
0 (w)

)

+ P S
(

T S
0 k
)

+ q

= P S
(

T S
0 (w + P )

)

+ P S
(

T S
0 (k − P )

)

+ q

= P S
(

T S
0 (w + P )

)

+ (k − P )S + q

where q = T Su− P S
(

T S
0 u
)

satisfies by definition

|q|L∞(IR2) ≤ N S

We set

hα =
(

T S
0 (w + P )

)

α

Conclusion

Now setting

h = (hα, h3)

we get


















∣

∣

∣(Tu− P (h))S
∣

∣

∣

L∞(BR∩Ω)
≤ CR2+εN S

∣

∣

∣(Tu− P (h))A
∣

∣

∣

L∞(BR∩Ω)
≤ CR4+εNA

The result follows from

∣

∣

∣u−
(

T Su+ TAu
)∣

∣

∣

L∞(IR2)
+ N S + NA ≤ CN

This ends the proof of proposition 6.2.

7 Proof of theorem 1.2

Proof of theorem 1.2

We consider a solution u of


















∆u = f on Ω

∂u

∂xn

= g on ∂Ω

18



Using the notation x′ = (x1, ..., xn−1), we define u(x′) =
1

2

∫ 2

−1
ds u(x′, s). Then by integra-

tion of the equation we get

∆u =
1

2

∫ 2

−1
ds f(x′, s) −

1

2
(g(x′, 1) − g(x′,−1)) =: f

Moreover for every y′ ∈ IRn−1, using a Taylor expansion, we get

u(x′) = Py(x
′)+

1

2

∆u(y′)

(n− 1)
|x′−y′|2+

∫ 1

0
ds

∫ s

0
dβ t(x′−y′)

{

D2u(y′ + β(x′ − y′)) −D2u(y′)
}

(x′−y′)

where Py′ is a polynomial belonging to P2 defined by (using the notation D′ for the gradient

with respect to x′, and Id for the identity matrix):

Py′(x′) = u(y′) + (x′ − y′)D′u(y′) +
1

2
t(x′ − y′)

{

D2u(y′) −
∆u(y′)

(n− 1)
Id

}

(x′ − y′)

From this result, we deduce that for every y′ ∈ IRn−1 we have

|u− Py′ |B1(y′) ≤ C
(

|f |0;IRn−1 + [D2u]α;IRn−1

)

Consequently, we see that we can reduce the problem to the special case
∫ 1

−1
ds u(x′, s) = 0 (7.1)

Under this assumption, the proof follows the proof of theorem 1.3.

More precisely, we assume that there exists a sequence (uk)k of functions such that

N 2
2+α(uk) = 1 and |∆uk|α;Ω,

∣

∣

∣

∣

∣

∂uk

∂xn

∣

∣

∣

∣

∣

1+α;∂Ω

−→ 0

We get an estimate |uk(x)|L∞(BR∩Ω) ≤ CR3 for R ≥ 1. We extract a subsequence, convergent

to u∞ on compact sets of Ω, and check that u∞ satisfies ∆u∞ =
∂u∞

∂xn

= 0. We deduce that

u∞ is a polynomial in x′ only. But by assumption (7.1), still satisfied by the limit function

u∞, we conclude that u∞ ≡ 0. Then the classical Schauder estimate shows that for some

well chosen ball B2 we have

1 = N 2
2+α(uk) ≤ C



|∆uk|α;B2∩Ω +

∣

∣

∣

∣

∣

∂uk

∂xn

∣

∣

∣

∣

∣

1+α;B2∩∂Ω

+ |uk|0;B2∩Ω





We get a contradiction, because the right hand side of the inequality goes to zero. This ends

the proof of the theorem.

We complete the study of this case by the following result:
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Theorem 7.1 Let Ω = IRn−1 × (−1, 1) and α ∈ (0, 1). Then there exists a constant C > 0

such that for every function u ∈ C∞
0 (Ω), we have with f = ∆u, g =

∂u

∂xn

:

[D2u]α;Ω ≤ C ([f ]α;Ω + [Dg]α;∂Ω) (7.2)

Proof of theorem 7.1

We first extend f by symmetry and periodicity on the whole space as follows for x′ =

(x1, ..., xn−1):

f̃(x′, xn) =











f(x′, xn) if xn ∈ [−1, 1]

f(x′, 2 − xn) if xn ∈ [1, 3]

and

f̃(x′, xn + 4) = f̃(x′, xn) for all x ∈ IRn

Then from theorem 8.2 we deduce the existence of a solution u0 of ∆u0 = f on IRn. From the

standard Schauder estimate (see for instance [36]), we deduce that [D2u0]α;IRn ≤ C[f ]α;IRn.

Up to substract u0 to u, this reduces the proof to the case f = 0.

We now work in the case f ≡ 0. Here we have


















∆u = 0 on Ω

∂u

∂xn

= g on ∂Ω

Extending on the whole space u in ũ still by symmetry and periodicity, we get on IRn

∆ũ =
∑

k∈Z
(−2g(x′, 1)δ0(xn − (1 + 4k)) + 2g(x′,−1)δ0(xn − (−1 + 4k)))

=
∂h

∂xn

where we can define

h(x) =











0 if xn ∈ [−1, 1)

−2g(x′, 1) if xn ∈ [1, 3)

and h has the following “periodicity”

h(x′, xn + 4) = h(x′, xn) + 2g(x′,−1) − 2g(x′, 1)

We then define for i = 1, ..., n− 1, ũi =
∂ũ

∂xi

, hi =
∂h

∂xi

. By derivation, we get

∆ũi =
∂hi

∂xn
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From the Schauder estimate (see for instance [36]), we get

[Dũi]α;IRn ≤ C[hi]α;IRn

We deduce that
[

∂2u

∂xi∂xj

]

α;Ω

≤ C[Dg]α;∂Ω for i = 1, ..., n− 1; j = 1, ..., n (7.3)

Finally we remark that
∂2u

∂x2
n

= −
n−1
∑

i=1

∂2u

∂x2
i

and then
[

∂2u

∂x2
n

]

α;Ω

≤ C[Dg]α;∂Ω

Together with (7.3), this proves (7.2) and ends the proof of the theorem.

8 Appendix

8.1 Characterization of the kernel

Theorem 4.1 is a corollary of the following result:

Theorem 8.1 (Characterization of the kernel)

We have

Pd = PS
d ⊕ PA

d

More precisely if we note z = x1 + ix2, z = x1 − ix2 and <,= the real and imaginary part of

a complex number, we have

PS
d =

d
⊕

n=0

Vn

where

Vn = Span
{

<(vn),=(vn),<(∂zv
n+1),=(∂zv

n+1)
}

where

vn = P S

(

(5λ+ 6µ)
zn

n!
− (3λ+ 2µ)

zzn−1

(n− 1)!
, −i(5λ + 6µ)

zn

n!
− i(3λ+ 2µ)

zzn−1

(n− 1)!

)
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Similarly

PA
d =

d
⊕

n=0

Wn

where

Wn = Span
{

<(wn),=(wn),<(∂zw
n+1),=(∂zw

n+1)
}

and

wn = PA

(

zzn−1

(n− 1)!

)

Finally we have

dim V0 = 2, dim Vn = 4 for n ≥ 1

dim W0 = 1, dim W1 = 2, dim W2 = 3, dim Vn = 4 for n ≥ 4

Sketch of the proof of theorem 8.1

1) It is straightforward to check that these polynomials are solutions.

2) We consider solutions u of Lu = Bu = 0 and |u(x)| ≤ C(1+ |x|)d on Ω for some constants

C, d > 0. Then for every x3 ∈ [−1, 1], the function x′ = (x1, x2) 7−→ u(x′, x3) in is the dual of

the Schwarz space, i.e. belongs to S ′(IR2). We can then apply the partial Fourier transform,

and define û(ξ′, x3). Then we build the vector tU(ξ′, x3) =

(

û1, û2,
∂û3

∂x3
,
∂û1

∂x3
,
∂û2

∂x3
, û3

)

. This

vector solves the following ODE as a function U : [−1, 1] −→ (S ′(IR2))
6
:

dU

dx3
= A(ξ′)U

where A(ξ′) is an explicit 6 × 6 matrix, polynomial in ξ ′ of total degree less or equal to 2.

The explicit solution of this ODE is

U(ξ′, x3) = ex3A(ξ′)U(ξ′, 0)

The boundary conditions Bu = 0 are equivalent to

Q(ξ′)U(ξ′, x3) = 0 for x3 = ±1

where Q(ξ′) is an explicit 3× 6 matrix, polynomial in ξ ′ of degree less or equal to 1. Finally

u is a solution if and only if

M(ξ′)U(ξ′, 0) = 0 where M(ξ′) = Q(ξ′)

(

eA(ξ′)

e−A(ξ′)

)
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If there exists some ξ ′0 ∈ IR2 such that M(ξ′0)U0 = 0 for some U0 6= 0, then the inverse partial

Fourier transform of ex3A(ξ′)U0δ0(ξ
′ − ξ′0) is a bounded solution of Lv = Bv = 0. But using a

classical cut-off argument, it is easy to check that every bounded solution of these equations

is constant, which implies ξ ′0 = 0. We deduce that the support of the distribution U(ξ ′, 0)

(and then of U(ξ′, x3)) is {0}, and therefore u(x′, x3) is a polynomial in (x1, x2). It is then

easy to check that it is necessarily a polynomial in x3.

3) It is easy to prove by recurrency on the degree n (in x1, x2) of the polynomials that

Pn =
⊕n

k=0 Vk ⊕Wk. It is in particular sufficient to prove for a polynomial P of degree n in

x1, x2 that
∂P

∂z
,
∂P

∂z
∈ Vn−1 ⊕Wn−1 implies P ∈ Pn.

8.2 On weighted Sobolev spaces

In this subsection we give the proof of lemmata 5.2 and 5.4.

To do this we need the following result

Theorem 8.2 (Amrouche, Girault, Giroire [3],[4])

Let integers n ≥ 1, k ∈ N, and real numbers 1 < p < +∞, α ≥ 0. For any function

f ∈ W
k,p
−α (IRn), there exists a function h ∈ W

k+2,p
−α (IRn) such that ∆h = f and

∃ polynomial P, deg(P ) ≤

[

k + 2 + α−
n

p

]

, ∆P = 0, |h− P |
W

k+2,p
−α

≤ C |∆h|
W

k,p
−α

while α− n
p
6∈ Z. Moreover the constant C only depends on n, p, k, α.

Proof of lemma 5.2

The estimate for the gradient is obvious.

For the operator M1 we want to solve
{

div′u = f1

curl′u = f2

The estimate follows from the following relations.

We define vi given by ∆vi = fi and
{

w1 = ∂1v2 − ∂2v1

w2 = ∂1v1 + ∂2v2

We see that M(u−w) = 0 and then u = w+ P with a polynomial P of degree 1 solution of

MP = 0. The estimate on u− P comes from the fact that w is controled by ∇′v and then
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by f in the corresponding norms.

Proof of lemma 5.4

For the operator M we want to solve
{

∆′h1 + b ∂1div′h = f1

∆′h2 + b ∂2div′h = f2

where b is a positive constant. The estimate follows from the following relations.

Taking the div′ and the curl′ we get







div′∆′h =
1

1 + b
div′f

curl′∆′h = curl′f

Then we define gi by ∆gi = fi and define k = (k1, k2) by







div′k =
1

1 + b
div′g

curl′k = curl′g

We get M1∆
′(h− k) = 0 and then h = k + P with MP = 0 with the corresponding control

on k by f . This ends the proof.

8.3 On the usefulness of groups

Although it is not presented in detail in this paper, we have used the group representation

theory to find the general expression of the polynomial solutions in the kernel (see [22, 18]).

Let us define the generator σ of the rotations with respect to the normal to the plate:

σ(u) =







−u2 + x2∂1u1 − x1∂2u1

u1 + x2∂1u2 − x1∂2u1

x2∂1u3 − x1∂2u3







Then the differential operators ∂1, ∂2, σ generate a Lie algebra caracterized by

[∂1, ∂2] = 0
[∂1, σ] = −∂2

[∂2, σ] = ∂1

In particular it is possible to check that polynomials given in theorem 8.1 are eigenfunctions

of σ.
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8.4 An example of elliptic system where the kernel contains peri-
odic solutions

Let us consider the following system
{

3∂11u1 + ∂22u1 + 2∂12u2 = 0
3∂22u2 + ∂11u2 + 2∂12u1 = 0

∣

∣

∣

∣

∣

on Ω := IR× (−1, 1) (8.1)

with the following boundary conditions
{

∂1u2 + ∂2u1 = 0
(1 + δ)−1∂1u1 + 3∂2u2 = 0

∣

∣

∣

∣

∣

on ∂Ω (8.2)

For δ = 0 this system reduces to the system of linear elasticity with λ = µ = 1 on the strip

Ω. Using Partial Fourier Transform, it can be seen that for δ > 0, there exist non-constant

x1-periodic solutions with frequency ξ satisfying:

sinh (2ξ)

2ξ
= 1 +

δ
4
3

+ δ

In this case, we see in particular that we can increase the dimension of the kernel by

perturbation. Such kind of behaviour has been remarked for other elliptic equations (see

[34]).

Aknowledgments

I am very gratefull to P.G. Ciarlet, M. Dauge, H. Le Dret and F. Murat for stimulating

discussions and their interest in my work. I would like to thank F. Alliot for enlighting

discussions on weighted Sobolev spaces. I also thank an unknown referee for his careful

reading of the manuscript, his valuable suggestions and a proposition of a proof of theorem

7.1. Finally I would like to thank A. Bonnet and H. Berestycki for their encouragements.

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates Near the Boundary for Solutions

of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. I,

Comm. Pure Appl. Math. 12, 623-727 (1959).

[2] S. Agmon, A. Douglis, L. Nirenberg, Estimates Near the Boundary for Solutions

of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. II,

Comm. Pure Appl. Math. 17, 35-92 (1964).

25



[3] C. Amrouche, V. Girault, J. Giroire, Weighted Sobolev Spaces for Laplace’s

equation in IRn, J. Math. Pures Appl. IX. Ser. 73, No.6, 579-606 (1994).

[4] C. Amrouche, Thèse d’habilitation.
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