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Abstract

We study how three-dimensional linearized elasticity for thin plates can be approx-

imated by a two-dimensional projection. The classical approach using formal asymp-

totic expansions in powers of the thickness in the Hellinger-Reissner formulation, only

provides error estimates in the H1 norm for the displacements, assuming at least L2

regularity for the applied forces, plus additional regularity for some components. Here

we make use of elliptic regularity theory. We prove a 3d-2d interior error estimate

between the 3d displacement solution and its 2d projection. Moreover the constants

involved in our estimate are independent on the particular geometry of the plate. Our

approach yields an H2 error estimate, assuming only L2 regularity for the applied

forces, which is optimal from the point of view of elliptic regularity theory. We also

obtain interior W k,p and Ck,α error estimates.
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1 Introduction

1.1 Setting of the problem

Let us consider a linear elastic three-dimensional thin plate Ωε = ω× (−ε, ε) where ω ⊂ IR2

is a bounded open set. We will show a new error estimate in the limit of asymptotically small

thickness 2ε, between the three-dimensional displacement and a two-dimensional projection

of the three-dimensional displacement. In future works, we will apply the present error

estimate to more general linear and nonlinear beam, plate and shell theories.

In the present paper, we are interested in the displacements of the linearly elastic plate Ωε
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under the action of exterior volumic forces f = (f1, f2, f3) and surface forces g = (g1, g2, g3).

It is classical (cf. Ciarlet [7, 6]) to reformulate the problem, and to search for the rescaled

displacements u = (u1, u2, u3) on the rescaled plate

Ω = ω × I, where I = (−1, 1)

which are solutions of the rescaled equations of linear elasticity

(1.1)







Lεu = −f on ω × I

Bεu = g on ω × ∂I

where Lε is a second order elliptic operator, and Bε is a first order operator. The coefficients

of these operators are constant and depend on ε. Since we are interested in interior error

estimates, we do not consider particular boundary conditions on (∂ω)× I.

We denote by x′ = (x1, x2) a point of ω and by x = (x′, x3) a point of Ω. We use greek indices

α, β, ... for values in {1, 2}, and latin indices i, j, ... for values in {1, 2, 3}. The quantity

∂iuj stands for
∂uj

∂xi
. More precisely we set eij = 1

2
(∂iuj + ∂jui), e

ε
ij =

(

eαβ
1
ε
eα3

1
ε
eα3

1
ε2
e33

)

,

σij = λeεkkδij + 2µeεij for λ, µ > 0, and σε
ij =

(

σαβ
1
ε
σα3

1
ε
σα3

1
ε2
σ33

)

. Then (Lεu)j = −∂iσ
ε
ij and

(Bεu)j = σε
3j.

1.2 Why a new error estimate?

Our motivation is the fact that we are able to get a H2 error estimate (at least for some

components) on the difference between the three-dimensional displacement and its two-

dimensional projection, and that we do not know how to get similar results for the Kirchhoff-

Love model.

Error estimates in H2, only assuming the volumic forces f in L2 (for instance for g = 0)

are natural from the point of view of the regularity theory for the solutions of elliptic equa-

tions. Nevertheless the only known results (to our knowledge) are the H 1 error estimates on

the difference between the three-dimensional displacements and the solution to the Kirchhoff-

Love model, assuming the volumic forces in L2 (and even more for certain components). This

result due to Ciarlet, Destuynder [8] and Destuynder [12] is based on the Hellinger-Reissner

formulation which naturally requires different regularities for the x′ coordinates and the x3

coordinates. We also cite the work of Raoult [29] in this direction, and the pioneering work

of Shoikhet [30]. Furthermore we mention the work of Dauge, Gruais [9, 10] for interesting
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estimates with high regularity on the displacements, but requiring more than natural elliptic

regularity on the forces. The reader will find additional results in the large litterature on the

subject (see for instance Destuynder [13, 14], Destyunder, Salaun [15], John [18], Paumier,

Raoult [28], Caillerie [5]). The derivation of the theory of plates can be seen as a dimensional

reduction from the three-dimensional elasticity. For the litterature on dimensional reduc-

tion see Anzelloti, Baldo, Percivale [4], Maz’ya, Nazarov, Plamenevskij [20, 21], Mielke [24],

Vogelius Babuska [31]. Let us mention that this question of dimension reduction for plates

has to be placed in the general framework of hierachical models (see the survey Chapter 8

of [17], Fox, Raoult, Simo [16], and Actis, Szabo, Schwab [1]).

Even if the 3d-2d limit is not strictly speaking a problem of singular perturbations,

the techniques used by the previous authors are close to the singular perturbation theory

developed since the sixties (see Lions [19]). In particular it is well known that singular per-

turbations exhibit a loss of derivative phenomenon.

We cite Jacques-Louis Lions on this subject ([19], p.92):

Les estimations données (...) sont dans l’espace H1. En fait en utilisant les résultats clas-

siques de régularité des problèmes aux limites elliptiques (...), les solutions u (...) sont dans

des espaces plus petits (de Sobolev, de Schauder, etc.). Quelles sont les estimations d’erreur

dans ces espaces?

One goal of this article is to give a possible answer to this question, not to singular pertur-

bations strictly speaking, but to a close problem, namely the 3d-2d limit in linear elastic

plate theory.

1.3 A two-dimensional projection

Given any function h = (h1, ..., h11) defined on ω, we define its “three-dimensional extension”

by

P0(h) =























h1 + x3h4 +
x23
2!
h7 +

x33
3!
h10

h2 + x3h5 +
x23
2!
h8 +

x33
3!
h11

h3 + x3h6 +
x23
2!
h9























Let us denote by P the space of all such functions:

P =
{

P0(h), h ∈ H2(ω)
}
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We define the two-dimensional projection Proj|P(u), where Proj|P is any continuous projector

from L2([−1, 1]) on IR11, which is naturally extended to a projector from H2(Ω) on P . We

will give some estimates on

w = u− Proj|P(u)

Let us give an example of such projection operator. To this end let us consider four functions

di ∈ L2([−1, 1]), i = 0, ..., 3, satisfying for i, j = 0, ..., 3:

∫ 1

−1

dx3 di(x3)
(x3)

j

j!
=







0 if i 6= j

1 if i = j

For u ∈ H2(Ω), we then define











































































hk(x
′) =

∫ 1

−1

dx3 uk(x
′, x3)d0(x3) for k = 1, 2, 3

hk(x
′) =

∫ 1

−1

dx3 uk−3(x
′, x3)d1(x3) for k = 4, 5, 6

hk(x
′) =

∫ 1

−1

dx3 uk−6(x
′, x3)d2(x3) for k = 7, 8, 9

hk(x
′) =

∫ 1

−1

dx3 uk−9(x
′, x3)d3(x3) for k = 10, 11

and then define

Proj|P(u) = P0(h)

1.4 Error estimates

We are then able to prove the following H2 error estimate (at least for certain components),

which is a corollary of a more general result (theorem 2.3):

Theorem 1.1 (H2 error estimate)

We asume that the open set ω` is periodic of size `, i.e.

ω` = `
(

IR2\Z2
)

and we define Ω` = ω`× (−1, 1). To simplify we assume that the surfacic forces satisfy g ≡ 0

and f ∈ L2(Ω`). For λ, µ > 0 fixed, there exists a constant C = C(λ, µ) > 0 such that every
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solution u of (1.1) with ω = ω`, we have the following estimates on w = u− Proj|P(u):
∣

∣eεij (w)
∣

∣

L2(Ω`)

∣

∣∂3
(

eεij (w)
)∣

∣

L2(Ω`)

ε
∣

∣∂α
(

eεij (w)
)∣

∣

L2(Ω`)



























≤ Cε

(

∑

α

|fα|L2(Ω`) + ε|f3|L2(Ω`)

)

In particular the constant C is independent on the size ` of the open set Ω`. Similarly

we get W k,p, Ck,α estimates for the general case with g 6≡ 0.

As a corollary of a uniform W 2,p version of this result (namely theorem 2.4), we have

Corollary 1.2 (L∞ bounds in the periodic case)

Consider a periodic plate (i.e. ω = `(IR2\Z2), for some ` > 0) and g ≡ 0. Then there

exists a constant C > 0 only depending on λ, µ such that if f ∈ L∞(Ω), then the function

w = u− Proj|P(u) satisfies

∣

∣eεij(w)
∣

∣

L∞(Ω)
≤ Cε

(

∑

α

|fα|L∞(Ω) + ε |f3|L∞(Ω)

)

This result gives a particularly interesting L∞ bound on the stress in the plate. This has to

be put in connection for instance with the work of Paumier [27] for periodic plates.

We give now a corollary of our approach (a particular case of theorem 2.3):

Theorem 1.3 (Interior H2 error estimates)

Consider a plate Ω = ω × I where ω is a bounded open set of IR2. We define the following

interior open set

Ωd = ωd × I, where ωd =
{

x′ ∈ IR2, dist
(

x′, IR2\ω
)

> d
}

To simplify we assume that g ≡ 0 and f ∈ L2(Ω). Then there exist three constants C, c, d0 >

0 only depending on λ, µ such that for every d ≥ d0, for every solution u ∈ H2(Ω) of (1.1)

on Ω, we have the following estimates on w = u− Proj|P(u):

|eε(w)|
L2

„

Ω d
ε

«

|∂3e
ε(w)|

L2

„

Ω d
ε

«

ε |∂αe
ε(w)|

L2

„

Ω d
ε

«







































≤ C

















ε

(

∑

α

|fα|L2(Ω) + ε |f3|L2(Ω)

)

+ e−c d
ε

(

|u3|L2(Ω) + ε
∑

α

|uα|L2(Ω)

)
















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Remark 1.4 Let us remark that the prefactor ε in the expression ε |∂αe
ε(w)|

L2

„

Ω d
ε

« does

not allow to get a true error estimate in general. Nevertheless, in the particular case where

fα = 0 we recover a full H2 error estimate which justifies the title H2 interior error estimates.

This is due to the following equality ∂ijwk = ∂iejk(w) + ∂jeik(w)− ∂keij(w), which allows to

recover all L2 estimates on the second derivatives of w.

This last result can be put in relation on the one hand with Naghdi model of plates (see

Destuynder [12]) and on the other hand with the director model as in Mielke [22], although

our approach is different. The exponential factor is also reminiscent of the Saint-Venant

Principle (see Mielke [23]).

1.5 Organization of the article

In section 2, we reduce the problem to the case ε = 1 and give some general 3d-2d interior

error estimates (for the comparison with the 2d projection) which are proved in section 3.

These results are based on some basic estimates which are proved in section 4.

2 Some general interior error estimates

2.1 Preliminaries

2.1.1 The scaling in ε

First of all, let us remark that if we set x = ( x1

ε
, x2

ε
, x3) and

uα(x) = ε2uα(x) ∂α = ε∂α fα(x) = ε4fα(x) gα(x) = ε4gα(x)

u3(x) = εu3(x) ∂3 = ∂3 f 3(x) = ε5f3(x) g3(x) = ε5g3(x)

then






Lεu = −f on ω × I

Bεu = g on ω × ∂I

is equivalent to






L1u = −f on ω
ε
× I

B1u = g on ω
ε
× ∂I

This remark reduces the proofs to the particular case ε = 1.
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2.1.2 Notation (case ε = 1)

We note

Lu =























(λ+ 2µ)∂11u1 + µ(∂22u1 + ∂33u1) + (λ+ µ)(∂12u2 + ∂13u3)

(λ+ 2µ)∂22u2 + µ(∂11u2 + ∂33u2) + (λ+ µ)(∂21u1 + ∂23u3)

(λ+ 2µ)∂33u3 + µ(∂11u3 + ∂22u3) + (λ+ µ)(∂31u1 + ∂32u2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

on Ω

Bu =























µ(∂3u1 + ∂1u3)

µ(∂3u2 + ∂2u3)

λ(∂1u1 + ∂2u2) + (λ+ 2µ)∂3u3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

on ∂Ω

We recall that

e(u) = (eij(u))ij , where eij(u) =
1

2
(∂iuj + ∂jui)

Given a function ζ(x′) = (ζ1(x
′), ζ2(x

′), ζ3(x
′)) for x′ = (x1, x2), we introduce the following

2d approximation of a 3d displacement in the plate:

U(ζ) =









ζα − x3∂αζ3 +
(

λ
λ+2µ

x2
3

2
∂αdiv

′ζ + a(x3)∂α∆
′ζ3

)

ζ3 + λ
λ+2µ

(

−x3div
′ζ +

x2
3

2
∆′ζ3

)









where

div′ζ = ∂1ζ1 + ∂1ζ2, ∆′ = ∂21 + ∂22 , a(x3) =

(

3λ+ 4µ

λ+ 2µ

)

x33
3!
− 2

(

λ+ µ

λ+ 2µ

)

x3

We recall the expression of the Kirchhoff-Love operator:

M0ζ =























M0
αζ = µ

(

∆′ζα +

(

3λ+ 2µ

λ+ 2µ

)

∂αdiv
′ζ

)

M0
3 ζ =

8µ(λ+ µ)

3(λ+ 2µ)
∆′2ζ3

The interesting property of the reconstructed displacement U(ξ) is that it is useful to

build solutions in the kernel of the operator of elasticity:

Proposition 2.1 (On the kernel of the operator of elasticity, Dauge, Gruais,

Rössle [11]; Monneau [25])

If ξ is a solution of the Kirchhoff-Love equations on ω, i.e. satisfies

M0ξ = 0 on ω
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then






L(U(ξ)) = 0 on ω × I

B(U(ξ)) = 0 on ω × ∂I

Reciprocically, if for the infinite slab we introduce the kernel

P∞ =
{

v ∈ C2(IR2 × [−1, 1]), Lv = Bv = 0, ∃C, p > 0, |v(x)| ≤ C(1 + |x|)p
}

,

then we have the following result:

Proposition 2.2 ([25])

If v ∈ P∞, then there exists a (polynomial) solution ξ of

M0ξ = 0 on IR2

such that v = U(ξ).

2.2 Global estimates

We can now state the following general result which implies theorem 1.3:

Theorem 2.3 (Global W k,p interior error estimates, case ε = 1)

Let 1 < p < +∞, k ∈ IN and the plate Ω = ω× I where ω is a bounded open set of IR2. We

define the interior open set

Ωd = ωd × I, where ωd =
{

x′ ∈ IR2, dist
(

x′, IR2\ω
)

> d
}

Then there exist three constants C, c, d0 > 0 only depending on k, p, λ, µ such that for every

d ≥ d0 and for every solution u ∈ W k+2,p(Ω) of







Lu = −f on ω × I

Bu = g on ω × ∂I

for w = u− Proj|P(u), we have

(2.2) |w|W k+2,p(Ωd) ≤ C





|f |W k,p(Ω) + |g|W k+1− 1
p ,p
(ω×∂I)

+e−cd |u|Lp(Ω)




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2.3 Uniform estimates

We also get some uniform a priori estimates, for which we need to introduce the following

notation.

For 1 < p < +∞, we define the following norms

|u|Lp
unif(Ω)

= sup
x∈Ω

|u|Lp(B1(x)∩Ω)

and more generally

|u|
W

k,p
unif(Ω)

= sup
x∈Ω

|u|W k,p(B1(x)∩Ω)

We also define the semi-norms

N
W

k,p
unif(Ω)

(u) = sup
x∈Ω

inf
ξ∈Ξ(x′)

|u− U(ξ)|W k,p(B1(x)∩Ω)

where

Ξ(x′) =
{

ξ ∈ C∞(B2(x
′)), M 0ξ = 0 on B2(x

′)
}

Then we have

Theorem 2.4 (Uniform W k,p interior error estimates, case ε = 1)

Let 1 < p < +∞, k ∈ IN and the plate Ω = ω × I where ω is a (possibly unbounded) open

set of IR2. We define the interior open set

Ωd = ωd × I, where ωd =
{

x′ ∈ IR2, dist
(

x′, IR2\ω
)

> d
}

Then there exist three constants C, c, d0 > 0 only depending on k, p, λ, µ such that for every

d ≥ d0, for every solution u ∈ W
k+2,p
loc (Ω) of






Lu = −f on ω × I

Bu = g on ω × ∂I

we have

(2.3) N
W

k+2,p
unif

(Ωd)
(u) ≤ C







|f |
W

k,p
unif

(Ω) + |g|
W

k+1− 1
p ,p

unif
(ω×∂I)

+e−cd N
W

k+2,p
unif

(Ω)(u)







This implies the

Corollary 2.5 (L∞ Error estimate for a periodic plate, case ε = 1)

For Ω = ω × I with ω periodic, there exists a constant C = C(λ, µ) > 0 such that (in the

special case g = 0) the function w = u− Proj|P(u) satisfies

|e(w)|L∞(Ω) ≤ C|f |L∞(Ω)
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Similarly for a general function v defined on Ω we note the Hölder seminorm for α ∈ (0, 1)

[v]α;Ω = sup
x,y∈Ω, x6=y

|v(x)− v(y)|

|x− y|α

More generally we recall the norms

|v|k+α;Ω =
k
∑

j=0

|Djv|α;Ω with |v|α;Ω = |v|0;Ω + [v]α;Ω and |v|0;Ω = sup
x∈Ω

|v(x)|

We also introduce the following seminorm

Nk+α;Ω = sup
x∈Ω

inf
ξ∈Ξ(x′)

|u− U(ξ)|k+α;B1(x)∩Ω

Then we can also state the Ck+α version of theorem 2.4, whose proof is similar and will

be dropped (see Monneau [25] for similar estimates):

Theorem 2.6 (Uniform Ck+α interior error estimates, case ε = 1)

Let α ∈ (0, 1), k ∈ IN and the plate Ω = ω × I where ω is a (possibly unbounded) open set

of IR2. We define the interior open set

Ωd = ωd × I, where ωd =
{

x′ ∈ IR2, dist
(

x′, IR2\ω
)

> d
}

Then there exist three constants C, c, d0 > 0 only depending on k, α, λ, µ such that for every

d ≥ d0, for every solution u ∈ Ck+2+α(Ω) of







Lu = −f on ω × I

Bu = g on ω × ∂I

we have

Nk+2+α;Ωd
(u) ≤ C





|f |k+α;Ω + |g|k+1+α;ω×∂I

+e−cdNk+2+α;Ω(u)





3 Proofs of a basic error estimate

Here we will prove the following basic error estimate, which will be used in the proof of the

general interior error estimate.

Lemma 3.1 (Basic error estimate)

For x = (x′, x3), we note Cr(x) = Br(x
′)× [−1, 1]. Then we define

M(x) = inf
ξ∈Ξ(x′)

|u− U(ξ)|W 2,p(C1(x))
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and for some r0 > 0 we define

N(x) = |f |Lp(Cr0 (x))
+ |g|

W
1− 1

p ,p
(Br0 (x

′)×∂I)

Then for every θ ∈ (0, 1) there exists C > 0, r0 > 1 such that for every x:

M(x) ≤ CN(x) + θ sup
z∈Cr0 (x)

M(z)

3.1 Preliminaries on the symmetry

For a scalar function v defined on Ω, let us define the symmetric and antisymmetric parts

with respect to x3:

vs(x) =
1

2
(v(x1, x2, x3) + v(x1, x2,−x3)) and va(x) =

1

2
(v(x1, x2, x3)− v(x1, x2,−x3))

For a vector function u = (u1, u2, u3) we define the following symmetric and antisymmetric

parts:

uS = (us
1, u

s
2, u

a
3) and uA = (ua

1, u
a
2, u

s
3)

In particular we can easily check that







L(uS) = −fS

B(uS) = gA
and







L(uA) = −fA

B(uA) = gS

To prove the basic estimates, we need the following proposition

Proposition 3.2 (Polynomial control on the solution)

Let 1 < p < +∞ and Ω = ω×I. There exists δ ∈ (0, 1) and a constant C > 0 only depending

on p, λ, µ, such that for every function u ∈ W
2,p
loc (Ω), there exists ξ ∈ C∞(ω) solution of

M0ξ = 0 on ω

such that for R ≥ 1



















∣

∣

∣
(u− U(ξ))S

∣

∣

∣

L
p
unif

(BR∩Ω)
≤ CR2+δNW

2,p
unif

(Ω)(u)

∣

∣

∣
(u− U(ξ))A

∣

∣

∣

L
p
unif

(BR∩Ω)
≤ CR4+δNW

2,p
unif

(Ω)(u)

The proof of proposition 3.2 is a simple adaptation of the proof of proposition 6.2 of [25].
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3.2 Proof of the basic error estimate: lemma 3.1

We introduce the set of polynomials:

Pq,r =







v ∈ C2(IR2 × [−1, 1]), Lv = Bv = 0 ∃C > 0,
|vS(x)| ≤ C(1 + |x|)q

|vA(x)| ≤ C(1 + |x|)r







To simplify the notations, let us consider the case g ≡ 0. The general case is similar.

Moreover, from the invariance by translations we can take x = 0, and we note Cr = Cr(0) =

Br(0)× [−1, 1] where Br(0) ⊂ IR2.

We will prove the following inequality which implies lemma 3.1:

(3.4)

∀θ ∈ (0, 1), ∃r0 > 1, ∃C > 0,

infξ∈Ξ(x′) |u− U(ξ)|W 2,p(C1(x))
≤ C |f |Lp

unif(Cr0 (x))
+ θ NW

2,p
unif(Cr0 (x)))

(u)

Let us assume that inequality (3.4) is false. Then we can find a θ ∈ (0, 1) and a sequence

of solutions (un)n on Crn
0
with sequences

rn0 , Cn −→ +∞

such that

inf
ξ∈Ξ(0)

|un − U(ξ)|W 2,p(C1)
> Cn |f

n|Lp
unif(Crn

0
) + θNW

2,p
unif(Crn

0
)(u

n)

Up to multiply the solutions by a constant we can assume that the left hand side is equal

to 1:

(3.5) inf
ξ∈Ξ(0)

|un − U(ξ)|W 2,p(C1)
= 1

In particular we deduce that

|fn|Lp
unif(Crn

0
) −→ 0

NW
2,p
unif(Crn

0
))(u

n) ≤ θ−1

With help of proposition 3.2 we can find a sequence (hn)n with bounds on vn = un−U(hn).

This proves that vn → v∞ locally on compact sets where v∞ satisfies Lv∞ = Bv∞ = 0 and

the bounds given by proposition 3.2. In particular we deduce that v∞ ∈ P2+δ,4+δ = P2,4

(from Proposition 2.2) and then there exists a polynomial k such that v∞ = U(k). As a

consequence, up to substract U(hn + k) to un, we can assume that

un −→ 0 locally in Lp on compact sets

12



Now let us recall that we have the classical “interior” elliptic estimate (see Morrey [26];

Agmon, Douglis, Nirenberg [2, 3])

|un|W 2,p(C1)
≤ C

(

|fn|Lp(C2)
+ |un|Lp(C2)

)

which proves that

(3.6) un −→ 0 locally in W 2,p on compact sets

We finally realize that strong convergences (3.6) on un is in contradiction with equality

(3.5) on un. This ends the proof of inequality (3.4), and consequenlty of lemma 3.1.

4 Proof of the general interior error estimate

4.1 Preliminary change of notations

In the first part of the article, it was more convenient to present our interior estimates

denoting by ωd,Ωd some interior open sets. Here, in the proofs of the theorems, it is more

convenient to change these notations, defining some surrounding open sets:

Ωd = ωd × I, where ωd =
{

x′ ∈ IR2, dist (x′, ω) < d
}

4.2 Proof of theorem 2.3

We will prove theorem 2.3 in the case k = 0. More generally the case k > 0 is similar.

Using several times lemma 3.1, we get

M(x) ≤ CN(x) + θ sup
z∈Cr0 (x)

M(z)

≤ CN(x) + θ sup
z∈Cr0 (x)

(

CN(z) + θ sup
z′∈Cr0 (z)

M(z′)

)

≤ CN(x) + Cθ sup
z∈Cr0 (x)

N(z) + θ2 sup
z∈C2r0 (x)

M(z)

≤ C

(

K
∑

k=1

θk−1 sup
z∈C(k−1)r0

(x)

N(z)

)

+ θK sup
z∈CKr0

(x)

M(z)

13



In particular we deduce that

∑

x∈Z2
×{0}∩Ω

M(x) ≤ C

(

K
∑

k=1

θk−1C ′(1 + k2)

)

∑

x∈Z2
×{0}∩ΩKr0

N(x)

+θKC ′(1 +K2)
∑

x∈Z2
×{0}∩ΩKr0

M(x)

≤ C







∑

x∈Z2
×{0}∩ΩKr0

N(x) + e−cKr0
∑

x∈Z2
×{0}∩ΩKr0

M(x)







for some constant c > 0 small enough. This implies with d = Kr0 + 1:

∣

∣u− Proj|P(u)
∣

∣

W 2,p(Ω)
≤ C









|f |Lp(Ωd)
+ |g|

W
1− 1

p ,p
(ωd×∂I)

+e−cd
(

∑

x∈Z2
×{0}∩ΩKr0

(

infξ∈Ξ(x′) |u− U(ξ)|W 2,p(C1(x))

))









where we have used the additivity of the Sobolev norms, and

|u− Proj|P(u)|W 2,p(C1(x)) ≤ C inf
ξ∈Ξ(x′)

|u− U(ξ)|W 2,p(C1(x))

This last inequality follows from the fact that U(ξ) = Proj|P(U(ξ)) for any ξ = ξ(x′).

We recover the full inequality, replacing on the right hand side the W 2,p norm on u by a Lp

one. This is possible because of the following general interior estimate for elliptic systems

(see Morrey [26]):

(4.7) inf
ξ∈Ξ(x′)

|u− U(ξ)|W 2,p(C1(x))
≤ C







|f |Lp(C2(x))
+ |g|

W
1− 1

p ,p
(B2(x′)×∂I)

+ inf
ξ∈Ξ(x′)

|u− U(ξ)|Lp(C2(x))







We get

|w|W 2,p(Ω) ≤ C





|f |Lp(Ωd)
+ |g|

W
1− 1

p ,p
(ωd×∂I)

+e−cd
(

|u|Lp(Ωd)

)





which is exactly inequality (2.2), up to the change of notations for Ωd, ωd (see subsection

4.1). This ends the proof of the inequality (2.2) of theorem 2.3.
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4.3 Proof of theorem 2.4

The proof of inequality (2.3) of theorem 2.4, easily follows (in a very elementar way) from

basic error estimates lemma 3.1, by a recurrency on Ω, Ωr0 , Ω2r0 , Ω3r0 , ...

This ends the proof of theorem 2.4.
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[11] M. Dauge, I. Gruais, A. Rössle, The influence of Lateral Boundary Conditions on

the Asymptotics in Thin Elastic Plates, SIAM Journal on Mathematical Analysis 31,

305-345, (2000).

[12] P. Destuynder, Sur une justification des modèles de plaques et de coques par les
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