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Abstract
This work is concerned with Hamilton-Jacobi equations of evolution type posed in domains and

supplemented with boundary conditions. Hamiltonians are coercive but are neither convex nor quasi-
convex. We analyse boundary conditions when understood in the sense of viscosity solutions. This
analysis is based on the study of boundary conditions of evolution type. More precisely, we give a new
formula for the relaxed boundary conditions derived by J. Guerand (J. Differ. Equations, 2017). This
new point of view unveils a connection between the relaxation operator and the classical Godunov flux
from the theory of conservation laws. We apply our methods to two classical boundary value problems.
It is shown that the relaxed Neumann boundary condition is expressed in terms of Godunov’s flux while
the relaxed Dirichlet boundary condition reduces to an obstacle problem at the boundary associated with
the lower non-increasing envelope of the Hamiltonian.

1 Introduction
When a partial differential equation is posed in a domain, the boundary condition may be in conflict with
the equation. This typically happens when characteristics reach the boundary. More specifically, such
a phenomenon is observed for evolutive Hamilton-Jacobi (HJ) equations. A classical way to handle this
discrepancy is to impose either the boundary condition or the equation at the boundary, both in terms of
viscosity solutions. Such viscosity solutions are called weak.

The second and third authors studied HJ equations on networks [17] for coercive and convex Hamilto-
nians. The equations are supplemented with conditions at junctions (vertices). When these conditions are
compatible with the maximum principle, it is easy to construct weak viscosity solutions by Perron’s method.
In this previous work, the authors proved that these weak solutions satisfy other boundary (junction) con-
ditions in a strong sense. The family of these relaxed boundary conditions is completely characterized by a
real parameter, the flux limiter.

When Hamiltonians are coercive but not necessarily convex, J. Guerand has shown in the mono-dimen-
sional setting [15] that it is also possible to characterize relaxed boundary conditions associated with general
boundary conditions compatible with the maximum principle. In this case, the family of relaxed boundary
conditions is much richer and is characterized by a family of limiter points. With this tool at hand, she
established a comparison principle for general boundary conditions in this framework.

In this work, we are interested in the multi-dimensional case and we treat both dynamic, Neumann and
Dirichlet boundary conditions. As far as dynamic boundary conditions are concerned, we give a new formula
for the relaxed boundary conditions obtained by J. Guerand. It is easily derived from the definition of
weak viscosity solutions. We also exhibit a deeply rooted connection between the relaxed dynamic boundary
condition and Godunov’s flux for conservation laws. This classical numerical flux also appears in the formula
for the relaxed Neumann boundary condition. As far as the Dirichlet boundary condition is concerned,
relaxation yields an obstacle problem at the boundary.

1.1 Coercive Hamilton-Jacobi equations posed on domains
In this article, we are interested in the study of Hamilton-Jacobi (HJ) equations of evolution type posed in
a C1 domain Ω of Rd and supplemented with boundary conditions. We shall see that the study of boundary

1



conditions of evolution type

(1.1)

{
ut +H(t, x,Du) = 0, t > 0, x ∈ Ω,

ut + F0(t, x,Du) = 0, t > 0, x ∈ ∂Ω

is suprisingly fruitful in the understanding of general boundary conditions that are compatible with the
maximum principle. In particular, it gives a new insight on the classical inhomogeneous Neumann problem,

(1.2)

{
ut +H(t, x,Du) = 0, t > 0, x ∈ Ω,
∂u
∂n + h(t, x) = 0, t > 0, x ∈ ∂Ω

and on the Dirichlet problem,

(1.3)

{
ut +H(t, x,Du) = 0, t > 0, x ∈ Ω,

u = g(t, x), t > 0, x ∈ ∂Ω.

In (1.2) and (1.3), the functions h, g : (0,+∞) × ∂Ω → R are continuous and ∂u
∂n denotes the normal

derivative associated with the outward unit normal vector field n : ∂Ω → Rd. Throughout this work, we
make the following assumption,

(1.4) H,F0 : (0+∞)×Ω×Rd → R are continuous, ∂Ω ∈ C1, F0 is non-decreasing in
∂u

∂n
and H is coercive.

The coercivity of the Hamiltonian H means that H(t, x, p) tends to +∞ as |p| → +∞.We assume very often
that F0 is semi-coercive, that is to say it satisfies the following condition,

(1.5) F0(t, x, p)→ +∞ as p · n(x)→ +∞.

It is also useful to deal with cases in which this condition on the function F0 is not satisfied. It is for instance
interesting to consider constant F0 functions.

Weak and strong viscosity solutions for HJ equations posed in domains. It is known that classical
solutions to Hamilton-Jacobi equations do not exist in general while viscosity solutions are easily constructed
by Perron’s method [22]. As far as boundary conditions are concerned, because characteristics can exit the
domain, boundary conditions are generally “lost” for Hamilton-Jacobi equations. As first observed by H. Ishii
[21], it is useful to consider viscosity solutions that satisfy either the equation or the boundary condition
on ∂Ω. Such viscosity solutions are called weak. They are easily constructed thanks to Perron’s method
[22]. On the contrary, if the boundary condition is always satisfied on ∂Ω, we say that viscosity solutions
are strong. It is usually easier to prove uniqueness of strong viscosity solutions than to prove uniqueness of
weak ones.

In this article, it is proved that weak viscosity solutions associated with (1.1) or (1.2) or (1.3) are strong
viscosity solutions for other boundary conditions that we identify. We start with (1.1).

Theorem 1.1 (Relaxed boundary condition – [17, 18, 15]). Assume that H,F0 : Rd → R are continuous,
p 7→ F0(p) is non-decreasing with respect to p · n, H is coercive and F0 is semi-coercive (in the sense of
(1.5)).

Then, there exists a continuous semi-coercive function RF0 : Rd → R such that a function u : (0,+∞)×Ω
is a weak viscosity solution of (1.1) if and only if it is a strong viscosity solution of{

ut +H(t, x,Du) = 0, t > 0, x ∈ Ω,

ut + RF0(t, x,Du) = 0, t > 0, x ∈ ∂Ω.

If F0 is not semi-coercive, the result still holds true if u satisfies a weak continuity assumption at the
boundary of ∂Ω: for all x ∈ ∂Ω and t > 0,

u∗(t, x) = lim sup
(s,y)→(t,x),y∈Ω

u(s, y),
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see Theorem 3.14 in Section 3.
The application mapping F0 to RF0 is referred to as the relaxation operator. Theorem 1.1 was proved

by the second and the third authors [17, 18] under the additional assumption that the Hamiltonian H is
convex and Ω is a half-space. In this case, the relaxation operator takes a very simple form since RF0 is the
maximum of a constant A0 (depending on H and F0) and the the lower non-increasing envelope of H given
by the formula H−(t, x, p) := infρ≤0H(t, x, p− ρn(x)). When Hamiltonians are coercive but are not convex,
J. Guerand [15] identified the relaxation operator in the monodimensional setting. The formula she obtained
for RF0 is referred in this article as Guerand’s operator and is denoted by JF0; it is given in Definition 4.3.

1.2 A new formula for the relaxation operator
The first main result of this article is a new formula for the relaxation operator. We first present it in the
mono-dimensional setting for the sake of clarity.

1.2.1 The homogeneous mono-dimensional case

To simplify the presentation, we assume here that Ω = (0,+∞) and H and F0 don’t depend on (t, x). Let u
be a (continuous) weak viscosity solution to (1.1). As explained above, this means that either the equation
or the boundary condition is satisfied in the sense of viscosity solutions; see Definition 3.1 for a precise
definition. Consequently, if ϕ is a test function touching u from above at P0 = (t0, 0), then

ϕt +H(ϕx) ≤ 0 or ϕt + F0(ϕx) ≤ 0 at P0

or equivalently ϕt + (F0 ∧H)(ϕx) ≤ 0 at P0 where F0 ∧H denotes the minimum of F0 and H. Keeping in
mind the discussion above about weak and strong viscosity solutions, we obtained a first boundary condition
that is satisfied in a strong sense.

We next derive a more precise one. For any q ≥ ϕx(P0) =: p, the test function ϕ̃(t, x) = ϕ(t, x)+(q−p)·x ≥
u(t, x) also touches u at P0 from above. In particular, we also have ϕt + (F0 ∧H)(q) ≤ 0 at P0. We conclude
that

ϕt +RF0(ϕx) ≤ 0 at P0

where the operator R is defined by

(1.6) RF0(p) := sup
q≥p

(F0 ∧H)(q).

Similarly if a test function ϕ touches a weak solution u of (1.1) from below at P0, we get

ϕt +RF0(ϕx) ≥ 0 at P0

where the operator R is defined by

(1.7) RF0(p) := inf
q≤p

(F0 ∨H)(q).

We refer the reader to Figure 1 for a representation of the effects of R and R on F0.
We next remark that RF0 = RF0 = F0 in {F0 = H} (see Remark 2.2 below). We define the relaxation

operator RF0 as follows,

(1.8) RF0 =

{
RF0 in {F0 ≥ H},
RF0 in {F0 ≤ H}.

We refer the reader to Figure 1 for a representation of the effects of R on F0.
Example 1.2. In the totally degenerate case, i.e. in the case where F0 is constant, the relaxed boundary
function RF0 is given by,

RF0 = max(A,H−) when F0 ≡ const = A with H−(p) := inf
(−∞,p]

H.

This computation is used in the derivation of the relaxed Dirichlet condition, see the proof of Theorem 1.6.
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Figure 1: Effects of R, R and R on F0. The Hamiltonian H is represented with a plain line, while a dashed
line is used for the function F0. The relaxation operators appear in red. We see that RF0 ≤ F0 while
RF0 ≥ F0. We can also observe that RF0 = RF0 in {F0 ≥ H} and RF0 = RF0 in {F0 ≤ H}.

The first main result of this work states that Guerand’s relaxation operator coincides with the one defined
by (1.8).

Theorem 1.3 (Guerand’s operator and the relaxation operator coincide). Assume H,F0 : R → R are
continuous, H is coercive and F0 is non-increasing and semi-coercive (in the sense of (1.5)). Then we have
RF0 = JF0.

Remark 1.4. The definition of Guerand’s operator J is recalled in Section 4, see Definition 4.3.

1.2.2 The heterogeneous multidimensional setting

If dimension is larger than or equal to 2, then the relaxation operator can be defined by freezing tangential
variables. More precisely, if x ∈ ∂Ω and n denotes the outward unit normal, then p ∈ Rd is split into
p = p′ − rn for p′ ⊥ n and r ∈ R. Then

H̄(r) = H(t, x, p′ − rn) and F̄0(r) = F0(t, x, p′ − rn).

We then define RF0(t, x, p′, r) = RF̄0(r) where the relaxation operator in the right hand side is computed
with respect to the coercive Hamiltonian H̄ and defined in (1.8).

We remark that the multi-dimensional relaxation operators can be written as,

(1.9)

{
RF0(t, x, p) = supρ≥0 (F0 ∧H)(t, x, p− ρn),

RF0(t, x, p) = infρ≤0 (F0 ∨H)(t, x, p− ρn).

1.3 The Neumann and Dirichlet problems
We now turn to the study of weak viscosity solutions of the Neumann problem.

Theorem 1.5 (From Neumann to Godunov). Any function u : (0, T )×Ω→ R is a weak solution of Neumann
problem (1.2) if and only if it is a strong solution of{

ut +H(t, x,Du) = 0, t ∈ (0, T ), x ∈ Ω,

ut +N(t, x,Du) = 0, t ∈ (0, T ), x ∈ ∂Ω
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where N is the classical Godunov flux associated to the Hamiltonian ρ 7→ H(t, x, p− ρn),

N(t, x, p) =


max

{
H(t, x, p− ρn) : ρ ∈ [0, p · n(x) + h(t, x)]

}
if p · n(x) + h(t, x) ≥ 0,

min

{
H(t, x, p− ρn) : ρ ∈ [p · n(x) + h(t, x), 0]

}
if p · n(x) + h(t, x) ≤ 0.

We remark that in dimension 1 (taking Ω = (0,+∞) to simplify), Theorem 1.5 can be expressed in terms
of Godunov’s flux. Indeed, when H and h do not depend on (t, x), we get N(p) = G(h, p), where G is the
classical Godunov’s flux defined later in (1.10), and the weak Neumann boundary condition is relaxed in
ut + G(h, ux) = 0. This formulation seems very natural; indeed, at the level of the conservation law, it is
expected that the spatial derivative v := ux (at least formally) is an entropy solution of{

vt +H(v)x = 0 , for x > 0,
v(t, 0) ∈ Gh, for a.e. t ∈ (0,+∞).

where the set Gh is given by1

Gh = {p ∈ R, H(p) = G(h, p)} .
It is easy to check that we have

Gh = {p ∈ R, {sign(p− k)− sign(h− k)} · {H(p)−H(k)} ≤ 0 for all k ∈ R}

which is nothing else that the well-known Bardos-Leroux-Nedelec (BLN) condition. This (BLN) condition
that has been identified in [5], as the natural effective condition associated to the desired Dirichlet condition
for scalar conservation laws, in the vanishing viscosity limit.

In our weak/strong terminology, this shows in this example, that (BLN) condition is a strong boundary
condition associated to the weak Dirichlet boundary condition v(t, 0) = h. Here the Dirichlet condition can
not always be satisfied strongly. In other words, in this example, we see that relaxation of the boundary
condition at the Hamilton-Jacobi level, selects the right choice of the effective boundary condition that is
indeed satisfied strongly by a solution.

We refer the reader to Subsection 6.2, for a further discussion on the relation between Hamilton-Jacobi
equations with boundary conditions and scalar conservation laws with (Dirichlet type) boundary conditions.

Notice that the Neumann problem has been adressed independently by P.-L. Lions and P. Souganidis
[26] in the monodimensional case and the second author with V. D. Nguyen [20] in the case where the
Hamiltonian is convex and the domain Ω is a half-space. In both works, the geometric setting corresponds
to junctions and the junction conditions of Kirchoff type can be handled. These conditions generalize the
Neumann boundary condition to the junction setting.

As far as the Dirichlet problem is concerned, the relaxed boundary condition turns out to be an obstacle
problem.

Theorem 1.6 (Dirichlet to boundary obstacle problem). Consider a function u : (0, T ) × Ω → R which is
weakly continuous at (t, x) for all t > 0 and x ∈ ∂Ω, i.e.

u∗(t, x) = lim sup
(s,y)→(t,x),y∈Ω

u(s, y),

Then u is a weak solution of Dirichlet problem (1.3) if and only if it is a strong solution of{
ut +H(t, x,Du) = 0, t ∈ (0, T ), x ∈ Ω,

max{u− g, ut +H−(t, x,Du)} = 0, t ∈ (0, T ), x ∈ ∂Ω

1Notice that it is possible to show (similarly to the proof of Lemma 6.1 below) that u(t, x) = px + λt is a weak Neumann
solution to (1.2), if and only if λ = −H(p) and

(p− h) · {G(h, p)−H(p)} ≥ 0

which is easily seen to be equivalent to p ∈ Gh.

5



where n : ∂Ω→ Rd is the outward unit normal vector field and

H−(t, x, p) = inf
ρ≤0

H(t, x, p− ρn(x)).

1.4 Godunov’s relaxation
We show that relaxation is directly related to the classical Godunov’s flux. For the sake of simplicity, we
present it in the monodimensional setting. We recall that this “numerical” flux is defined for p, q ∈ R by

(1.10) G(q, p) =

{
max[p,q]H if p ≤ q,
min[q,p]H if p ≥ q.

Theorem 1.7 (Relaxation coincides with Godunov’s relaxation). Assume H,F0 : R→ R are continuous, H
is coercive and F0 is non-increasing and semi-coercive. Then for any p ∈ R, there is one and only one λ ∈ R
such that there exists q ∈ R with λ = F0(q) = G(q, p). If F0G denotes the map p 7→ λ, then it coincides with
the relaxation operator,

RF0 = F0G.

Remark 1.8. For some technical reasons that will appear in the proof of this result, it makes more sense to
define the action of Godunov’s flux G on the right of F0 (rather than on the left).

1.5 Comments
Self-relaxed boundary conditions. We will see that the relaxed boundary condition cannot be further
relaxed, i.e. it satisfies R(RF0) = RF0. When a function F0 satisfies F0 = RF0, then we say that it is
self-relaxed.

The lower non-increasing envelope of the Hamiltonian. The lower non-increasing envelope H− of
H satisfies semi-coercivity condition (1.5), it is self-relaxed, and for any boundary function F0 satisfying
(1.4), we have

RF0 ≥ H−.
In other words, H− is the minimal self-relaxed boundary function. It corresponds to the natural condition
that appears for state contraint problems with convex Hamiltonians, and can be seen as a sort of general-
ization of it to the case of non-convex and coercive Hamiltonian. The previous inequality implies that every
continuous weak F0-subsolution is indeed a strong H−-subsolution (see Proposition 3.12). This explains (at
least for a junction with a single branch) the observation made by P.-L. Lions and P. Souganidis [25] that
only the supersolution condition has to be checked at the junction point. In other words, it is sufficient to
check that the function is a weak (or strong) H−-supersolution.

Weak continuity condition. Notice that when F0 does not satisfy the semi-coercivity condition, it is
necessary to impose a weak continuity condition on the boundary,

∀(t0, x0) ∈ (0,+∞)× ∂Ω, u∗(t0, x0) = lim sup
(s,y)→(t0,x0),y∈Ω

u(s, y).

to ensure that the conclusion of Theorem 1.1 holds true. If none of these conditions is satisfied, then the
conclusion may be wrong, as shown in the counter-example 3.16 below. It is due to J. Gerrand. Such a weak
continuity condition appears for instance in the work by G. Barles and B. Perthame [10] in which they prove
comparison principle for discontinuous viscosity solutions of the Dirichlet problem (in the stationary case).
Such a condition also appears in [17] and in subsequent papers.

The stationary case. A version of Theorem 1.1 is still valid without changes in the definition of RF0 for
stationary equations like {

u+H(x,Du) = 0, for x ∈ Ω,
u+ F0(x,Du) = 0, for x ∈ ∂Ω

with adapted assumptions on H,F0, and naturally adapted definitions of weak and strong viscosity solutions.
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1.6 Review of literature and known results
Boundary conditions for viscosity solutions. The Dirichlet problem is considered in the first papers
dealing with viscosity solutions, see [13, 14, 12]. We mentioned above that the weak continuity condition
first appears in [10] where the authors prove a comparison principle for discontinuous viscosity solutions of
HJ equations with Dirichlet boundary conditions. In this article, the boundary condition is imposed in the
generalized sense recalled earlier.

The state-constraint condition is a boundary condition that has been identified early in the literature
when Hamiltonians are convex. H. M. Soner [30] proved a general uniqueness result by constructing a
special test function pushing contact points inside the domain. As far as the Neumann boundary condition
is concerned, it has been first adressed by P.-L. Lions [24] for Hamiltonians that are not necessarily convex.

This first result for the Neumann boundary condition has been generalized later by G. Barles [6]. In this
work, he also constructed a test function à la Soner. The Neumann boundary condition is easily interpreted
in the optimal control setting.

Convex Hamiltonians and optimal control. In 2007, A. Bressan and Y. Hong studied optimal control
problems on stratified domains. The case of junctions is the simplest geometric setting of stratified domains.
For such a geometry, two groups of authors studied convex Hamilton-Jacobi equations: Y. Achdou, F.
Camilli, A. Cutri and N. Tchou [1] on the one hand and the second and third authors together with H.
Zidani [19] on the other hand. At the same time, in the two domains setting, G. Barles, A. Briani and E.
Chasseigne [7, 8] developped an intermediate approach mixing PDE and optimal control tools for convex
Hamiltonians.

In the monodimensional setting, solutions of a HJ equation are naturally associated with solutions of the
corresponding scalar conservation law. In the two domains setting, B. Andreianov, K. H. Karlsen, N. H.
Risebro [3] developped a theory for existence and uniqueness from which the second and third authors took
inspiration to write [17]. We also mention the work by B. Andreianov and K. Sbihi [4] for the one domain
problem in great generality.

Later, the second and third authors [17] introduced the notion of flux-limited solutions and cook up a
PDE method generalizing the method of doubling of variables to prove comparison principles. The case of
networks is treated in [17] while [18] is concerned with multi-dimensional junctions. They observed that the
state constraint boundary conditions can be interpreted in terms of flux limiters, see [17, Proposition 2.15].
J. Guerand treated the multidimensional case of state constraints in [16]. We also mention that the second
author together with V. D. Nguyen [20] addressed the case of parabolic equations degenerating to Hamilton-
Jacobi equations at the (multi-dimensional) junction.

In [28], Z. Rao, A. Siconolfi and H. Zidani adopted a pure optimal control approach to deal with accumu-
lation of components. More recently, A. Siconolfi [29] proposed another PDE method based on the notion
of maximal subsolutions under trace constraints to prove a comparison principle on networks without loops.
Hamiltonians are convex and depend on the space variable and the uniqueness result holds true for uniformly
continuous sub/supersolutions.

Motivated by the study of a homogeneization problem, the notion of flux-limited solutions has also been
extended by Y. Achdou and C. Le Bris [2] for a convex HJ problem in Rd\ {0} supplemented with a condition
at the origin.

These works have been extended mainly for optimal control problems on stratified domains by Barles,
Chasseigne [11] (see also the recent work of Jerhaoui, Zidani [23]), and recently by the same authors in a
book Barles, Chasseigne [9] which is a reference book on the topic, including boundary conditions, junction
problems in any dimensions, stratified problems, in particular in relation with optimal control problems and
convex Hamiltonians.

Non-convex Hamiltonians. J. Guerand [15] proved comparison principles for non-convex HJ equations
of evolution type posed in the half real line. She adressed both the coercive and non-coercive cases. In order
to prove such uniqueness results, she introduced a relaxation operator J and proved the equivalence between
weak and strong solutions.

P.-L. Lions and P. Souganidis [25, 26] also studied Hamilton-Jacobi equations posed on junctions in the
non-convex case. In particular, they introduced a blow-up method to prove the comparison principle between
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bounded uniformly continuous sub- and super-solutions.

1.7 Organisation of the article
In Section 2, we present the main properties of the relaxation operator R and introduce the notion of
characteristic points. In Section 3, we discuss relations between weak and strong (viscosity) solutions and
propose a new proof of Theorem 1.1 (see Theorem 3.14). In this section, we also discuss existence and
stability of weak viscosity solutions. In Section 4, we recall Guerand’s relaxation formula, and show that it
is equivalent to the new relaxation formula (Theorem 1.3). In Section 5, we introduce Godunov’s relaxation
formula, and show that it is equivalent to the new relaxation formula (Theorem 1.7). In Section 6, we treat
the case of Neumann and Dirichlet boundary conditions and prove Theorems 1.5 and 1.6. We also discuss
the link between the relaxation operator for HJ equations and scalar conservation laws.

Notation. For a, b ∈ R, a ∧ b = min(a, b) and a ∨ b = max(a, b).

2 Relaxation operators and characteristic points
We recall that we always assume that H,F0 satisfy (1.4). In this section, we discuss properties of the
relaxation operators. For clarity, time, space and tangential variables are omitted throughout this section.

2.1 Relaxation operators
We begin by some properties on the sub and super-relaxation operators. We recall that there are defined
respectively in (1.6) and (1.7) and we refer to Figure 1 for a representation of the action of these operators
on the function F0.

Lemma 2.1 (First properties of the operators R and R). Assume (1.4). Then the functions RF0 and RF0

are continuous, nonincreasing and semi-coercice, and

F0 ∧H ≤ RF0 ≤ F0 ≤ RF0 ≤ F0 ∨H

and R(RF0) = RF0 and R(RF0) = RF0.

Remark 2.2. We will use repeatedly the following easy consequences of this lemma: {F0 ≤ H} ⊂ {RF0 = F0}
and {F0 ≥ H} ⊂ {RF0 = F0}.

Proof. We only justify the properties satisfied by RF0 since proofs for RF0 are similar. We have by definition

(F0 ∧H)(p) ≤ RF0(p) = sup
q≥p

(F0 ∧H)(q) ≤ sup
q≥p

F0(q) = F0(p)

where we have used the monotonicity of F0. Moreover, by construction, RF0 is nonincreasing and continuous.
The fact that H is coercive and F0 is semi-coercive implies that F0 ∧H is also semi-coercive, and then RF0

is semi-coercive.
We set F := RF0. On the one hand, by coercivity of H, there exists some minimal q∗ ≥ p such that

F (p) = RF0(p) = (F0 ∧H)(q∗).

Since RF is non-increasing, q∗ ≥ p and F (q∗) ≥ (F0 ∧H)(q∗), we have

F (p) ≥ RF (p) ≥ RF (q∗) ≥ (F ∧H)(q∗) ≥ (F0 ∧H)(q∗) = F (p).

The previous inequalities imply in particular that F = RF .
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We now define the relaxation operator

(2.1) (RF0)(p) :=

{
RF0(p) if F0(p) ≥ H(p)

RF0(p) if F0(p) ≤ H(p).

In particular, it satisfies |RF0−H| ≤ |F0−H| as we will show next. In this sense, we see that RF0 is closer
to H than F0 itself.

Lemma 2.3 (Nice properties of the operator R). Assume (1.4). The function F := RF0 is well-defined,
continuous, non-increasing, semi-coercive and satisfies{

RF = F = RF

RF = F

F = R(RF0) = R(RF0){
F0 ≤ H =⇒ F0 ≤ RF0 ≤ H,
F0 ≥ H =⇒ F0 ≥ RF0 ≥ H.

(2.2)

For H− given by H−(p) = infq≤pH(q), the function F1 := F0 ∨H− is semi-coercive and satisfies

RF0 = RF1.

Proof. The proof is split in several steps.

Step 1: preliminaries. We first notice that from Lemma 2.1, we have

(2.3)
{
F0(p) ≤ H(p) =⇒ RF0 = F0 ≤ RF0 ≤ H at p
F0(p) ≥ H(p) =⇒ RF0 = F0 ≥ RF0 ≥ H at p.

This implies that
F0(p) = H(p) =⇒ RF0 = F0 = RF0 = H at p.

Hence the definition of RF0 is equivalent to the following one,

(RF0)(p) :=


RF0(p) if F0(p) > H(p),

F0(p) if F0(p) = H(p),

RF0(p) if F0(p) < H(p).

In particular we see that F := RF0 is continuous, non-increasing and semi-coercive.

Step 2: Effect of the operators on F = RF0. We have

RF0 ≤ F = RF0 ≤ RF0.

Hence, thanks to Lemma 2.1 and the previous step,

F ≥ RF = RF ≥ R(RF0) = RF0 = F in {F ≥ H}
F ≤ RF = RF ≤ R(RF0) = RF0 = F in {F ≤ H} .

This implies that RF = F . Moreover (2.3) implies that {F ≤ H} ⊂ {RF = F} and {F ≥ H} ⊂ {RF = F}.
We thus also get RF = F = RF.
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Step 3: R(RF0) = F and R(RF0) = F . We only prove the first equality since the proof of the second
one is very similar. It amounts to prove that

R(RF0) =


RF0 in {F0 > H}
F0 in {F0 = H}
RF0 in {F0 < H}.

The equality in the set {F0 = H} follows directly from Lemma 2.1.
To check this equality in {F0 > H}, we recall that Lemma 2.1 implies that {F0 > H} ⊂ {RF0 ≥ H},

and then by Remark 2.2, we get
R(RF0) = RF0 on {F0 > H} .

To check this equality in {F0 < H}, we consider some maximal interval (a, b) ⊂ {F0 < H}. Assume
first that a > −∞. In this case, we have F0(a) = H(a). Recalling that {F0 ≤ H} ⊂ {RF0 = F0} (see
Lemma 2.1), we get that for p ∈ (a, b),

R(RF0)(p) = inf
q≤p

(RF0 ∨H)(q)

= min

{
inf

q∈[a,p]
(RF0 ∨H)(q), H(a)

}
= min

{
inf

q∈[a,p]
(F0 ∨H)(q), H(a)

}
= inf

q≤p
(F0 ∨H)(q)

= RF0(p).

Assume now that a = −∞. Then the same computation works with a = −∞, F0(a) = H(a) = +∞, and
[a, p] replaced by (−∞, p].

Step 4: Proof of (2.2). Combining (2.3) and the fact that RF = R(RF0) = R(RF0), we get the desired
result.

Step 5: properties of F1. We have

RF0(p) = inf
q≤p

(F0 ∨H)(q)

and since H− ≤ H, the function F1 = F0 ∨H− satisfies

RF1(p) = inf
q≤p

((F0 ∨H−) ∨H)(q) = inf
q≤p

(F0 ∨H)(q) = RF0(p).

Hence RF1 = R(RF1) = R(RF0) = RF0. Finally F1 inherits semi-coercivity from H−.

We now have the following tools.

Lemma 2.4 (Optimality and local properties of RF0). Let p ∈ R.

(i) (Optimality properties) Let q ≥ p be minimal such that

RF0(p) = (F0 ∧H)(q).

If F0(p) ≥ H(p) then 
F0(q) ≥ H(q)

RF0 = H(q) in [p, q]

H < H(q) in [p, q).

(ii) (Local properties) If RF0(p) > H(p) then RF0 is constant in [p− ε, p+ ε) for some ε > 0.
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Lemma 2.5 (Optimality and local properties of RF0). Let p ∈ R.

(i) (Optimality properties) Let q ≤ p be maximal such that

RF0(p) = (F0 ∨H)(q).

If F0(p) ≤ H(p), then 
F0(q) ≤ H(q)

RF0 = H(q) in [q, p]

H > H(q) in (q, p].

(ii) (Local properties) If RF0(p) < H(p) then RF0 is constant in (p− ε, p+ ε] for some ε > 0.

As an immediate consequence of Lemmas 2.4 and 2.5 (using moreover definition (2.1)), we get

Corollary 2.6 (Local properties of RF0). If RF0(p) 6= H(p), then RF0 is constant in a neighbourhood of p.

We only do the proof of Lemma 2.4 since the proof of Lemma 2.5 is very similar.

Proof of Lemma 2.4. The proof is split in two steps.
Optimality properties. We assume that F0(p) ≥ H(p) and q ≥ p is minimal such that

RF0(p) = (F0 ∧H)(q).

Using the coercivity of H and the monotonicity of F0, let us define q0 ∈ [p,+∞) such that

q0 := sup {q′ ≥ p, F0 ≥ H in [p, q′]} .

It satisfies F0(q0) = H(q0) = RF0(q0) (see Lemma 2.1) and q0 ≥ p.
We observe first that q ∈ [p, q0]. Indeed,

RF0(p) = max

(
max

q′∈[p,q0]
H(q′), RF0(q0)

)
= max

(
max

q′∈[p,q0]
H(q′), H(q0)

)
= max
q′∈[p,q0]

H(q′).

We thus conclude that the maximum is reached for q′ ∈ [p, q0] and since q is minimal, we get q ∈ [p, q0].
The fact that q ≤ q0 implies that F0(q) ≥ H(q).
Since H(q) = max[p,q0]H, we also get from the minimality of q that H < H(q) in [p, q).
To finish with, monotonicity of RF0 implies that for any q′ ∈ [p, q),

RF0(q) ≤ RF0(q′) ≤ RF0(p) = (F0 ∧H)(q) = H(q) ≤ RF0(q).

This series of inequalities yields that RF0 is constant, equal to H(q).

Local properties. Keeping in mind that (F0∧H) ≤ RF0 ≤ F0, if RF0(p) > H(p) then F0(p) ≥ RF0(p) =
H(q) > H(p), with q defined above. This implies that q > p and so RF0 is constant in [p, q]. Using the
monotonicity of F0 and the continuity of H, we get also that there exists ε > 0 such that

H < H(q) ≤ F0 on [p− ε, p].

Using the monotonicity of RF0, this implies, for all p′ ∈ [p− ε, p], that

RF0(q) ≤ RF0(p′) = max( sup
q′∈[p′,p]

(F0 ∧H)(q′), RF0(p)) ≤ max(H(q), RF0(q)) = RF0(q).

Hence RF0 is constant in [p− ε, q], with q > p. This yields the desired local property.
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Lemma 2.7 (Commutation of max/min with R). Assume that H is continuous and coercive. If Fa, Fb are
continuous non-increasing, then

R(Fa ∧ Fb) = (RFa) ∧ (RFb) and R(Fa ∨ Fb) = (RFa) ∨ (RFb).

Proof. We only prove R(Fa ∧Fb) = (RFa)∧ (RFb) (the proof of the other relation with the max is similar).
Step 1: commutation of min with R. We have

R(Fa ∧Fb)(p) = inf
(−∞,p]

(Fa ∧Fb)∨H = inf
(−∞,p]

(Fa ∨H)∧ (Fb ∨H) =

{
inf

(−∞,p]
(Fa ∨H)

}
∧
{

inf
(−∞,p]

(Fb ∨H)

}
i.e.

R(Fa ∧ Fb) = (RFa) ∧ (RFb).

Step 2: commutation of min with R. We first notice that

R(Fa ∧ Fb) ≤ RFa, RFb i.e. R(Fa ∧ Fb) ≤ (RFa) ∧ (RFb).

Now we want to prove the reverse inequality. For c = a, b, let q∗c ≥ p be minimal such that RFc(p) =
(Fc ∧H)(q∗c ). Setting

q∗ := q∗a ∧ q∗b ,

we get using the monotonicities of Fa, Fb

H(q∗) ≥ H(q∗a) ∧H(q∗b ), Fa(q∗) ≥ Fa(q∗a), Fb(q
∗) ≥ Fb(q∗b ).

Hence

R(Fa ∧ Fb)(p) = sup
[p,+∞)

Fa ∧ Fb ∧H ≥ (Fa ∧ Fb ∧H)(q∗) ≥ (Fa ∧H)(q∗a) ∧ (Fb ∧H)(q∗b ) = (RFa) ∧ (RFb)(p)

which is the reverse inequality. Hence we conclude that

R(Fa ∧ Fb) = (RFa) ∧ (RFb).

Step 3: conclusion. From Steps 1 and 2, we deduce that R = RR also satisfies the same equality.

2.2 Characteristic points
The following definition is concerned by the characteristic points. These characteristic points will be usefull
in particular to reduce the set of test function in the definition of viscosity solutions (see Subsection 3.2.2)

Definition 2.8 (Characteristic points). (i) p is a positive characteristic point of F0 if H(p) = F0(p) and
H > H(p) in (p, p+ ε) for some ε > 0. The set of positive characteristic points is denoted by χ+(F0).

(ii) p is a negative characteristic point of F0 if H(p) = F0(p) and H < H(p) in (p− ε, p) for some ε > 0.
The set of negative characteristic points is denoted by χ−(F0).

(iii) The set of all characteristic points is denoted by χ(F0), i.e. χ(F0) := χ+(F0) ∪ χ−(F0).

We present some example of characteristic points in Figure 2. We would like to point out that in the
case d), the intersection point is not a characteristic point for F0. Nevertheless, we will use this notion of
characteristic point with the relaxation of F0. In that case the left point of the plateau is in χ−(RF0) and
the right point is in χ+(RF0).

In order to manipulate simply characteristic points, we use the notation introduced by J. Guerand in [15]
and consider upper and lower points p± which only depend on p and H. The definition of p± is only related
to the Hamiltonian H while characteristic points give information about the intersection of the graphs of H
and of F0. An illustration of these points is given in Figure 3

Definition 2.9 (Upper and lower points). Let p ∈ R.
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Figure 2: Characteristic points of F0 (along H)

(i) If there exists pn → p such that pn > p and H(pn) ≤ H(p), then the upper point p+ is equal to p. If
not,

p+ = sup {q > p : H > H(p) in (p, q)} .

(ii) If there exists pn → p such that pn < p and H(pn) ≥ H(p), then the lower point p− is equal to p. If
not,

p− := inf {q < p : H < H(p) in (q, p)} .

Remark 2.10. The coercivity of H implies that −∞ < p− ≤ p ≤ p+ ≤ +∞.

p “ p`

H
H

p p`
p´ p`

p “ p´

H
H

p “ p` “ p´p´

Figure 3: Points p+ and p− associated to p (and H)

Lemma 2.11 (Characteristic points and relaxation operators). Let p ∈ R.

(i) If p ∈ χ+(RF0), then RF0 is constant and equal to H(p) < H in (p, p+). Moreover H(p+) = H(p) if
p+ < +∞.

(ii) If p ∈ χ−(RF0), then RF0 is constant and equal to H(p) = H(p−) > H in (p−, p).

Proof. We only do the proof for negative characteristic points since the proof for positive ones is very similar.
Let p ∈ χ−(RF0). Then H(p) = RF0(p), p− < p and H < H(p) in (p−, p). For p′ ∈ (p−, p), we then

have H(p′) < H(p) = RF0(p) ≤ RF0(p′) ≤ F0(p′). This implies

RF0(p−) = max( sup
[p−,p]

H,RF0(p)) = RF0(p).

Since RF0 is non-increasing, this yields the desired result.
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Corollary 2.12 (Property of RF0). The function RF0 satisfies

RF0 = constant = H(p)

{
in [p−, p] if p ∈ χ−(RF0),

in [p, p+] ∩ R if p ∈ χ+(RF0).

Remark 2.13. In Corollary 2.12, we only need [p, p+]∩R instead of [p, p+] in the special case where p+ = +∞.

Proof. We only do the proof for negative characteristic points since the proof for positive ones is similar.
Let F1 = RF0. In particular RF0 = RF1. If p ∈ χ−(RF0) = χ−(RF1), then Lemma 2.11 implies that

for p′ ∈ (p−, p), we have in particular F1(p′) ≥ RF1(p′) > H(p′). This implies that (p−, p) ⊂ {F1 > H}.
Moreover,

{F1 > H} = {RF0 > H} ⊂ {F0 > H}

since {F0 ≤ H} ⊂ {RF0≤H} by Lemma 2.1. By definition of RF0, we have RF0 = RF0 in {F0 > H} and
in particular in (p−, p). We conclude by Lemma 2.11 that RF0 is constant and equal to H(p) in (p−, p). By
continuity, we get the result in [p−, p].

We also have another corollary of the previous results.

Corollary 2.14 (Values of RF0 at its characteristic points). We have RF0 ≤ F0 in χ−(RF0) and RF0 ≥ F0

in χ+(RF0).

Proof. We only do the proof for negative characteristic points since the proof for positive ones is similar.
Let F = RF0 and p ∈ χ−(F ). This means

H < F (p) = H(p) in (p−, p) 6= ∅.

Since F is non-increasing, this implies that

H < F = RF0 in (p−, p).

In other words, (p−, p) ⊂ {F > H}. Lemma 2.3 implies that {F > H} ⊂ {F0 > H}. Hence (p−, p) ⊂ {F0 >
H}. By continuity of F0 and H, we then get F0(p) ≥ H(p) and by Lemma 2.3 F0(p) ≥ RF0(p).

3 Viscosity solutions: properties, stability and existence
In this section, time, space and tangential variables are not omitted anymore. We first discuss the notion of
viscosity solutions and then explain how to reduce the set of test functions for verifying that a function is
indeed a strong viscosity solution. As an application, we get our first main result, see Theorem 1.1 in the
introduction and Theorem 3.14 below.

3.1 Definitions of weak and strong viscosity solutions
We consider two notions of viscosity solutions for the boundary value problem (1.1). Weak viscosity solutions
are useful to get existence since they are naturally stable. Strong viscosity solutions are useful to prove
uniqueness.

Before defining weak and strong viscosity solutions of (1.1), we recall that a function ϕ touches a function
u from above (resp. from below) in a set Q at a point P0 ∈ Q if ϕ ≥ u in Q (resp. ϕ ≤ u in Q) and u = ϕ
at P0. We also recall that if a function u is locally bounded from below (resp. from above), then its lower
semi-continuous envelope u∗ (resp. upper semi-continuous envelope u∗) is the largest lower semi-continuous
function lying below u (resp. smallest upper semi-continuous function lying above u).

In order to define weak and strong viscosity solutions of the three boundary value problems (1.1), (1.2)
and (1.3), we consider a real-valued continuous function L = L(t, x, v, p0, p) such that

(3.1) L : (0,+∞)× Ω× R× R× Rd → R is non-decreasing in v, p0 and p · n(x).
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The associated boundary value problem is the following one,

(3.2)

{
ut +H(t, x,Du) = 0, t > 0, x ∈ Ω,

L(t, x, u, ut, Du) = 0, t > 0, x ∈ ∂Ω.

The corresponding functions L are respectively L = p0 +F0(t, x, p), L = v−g(t, x) and L = p ·n(x)+h(t, x).

Definition 3.1 (Weak viscosity solutions). Let Q = (0,+∞)× Ω and u : Q→ R.

(i) Let u be upper semi-continuous. We say that u is a weak L-subsolution of (1.1) if for any point
P0 = (t0, x0) ∈ Q, and any C1 function ϕ touching u from above, then

if x0 ∈ Ω, ϕt +H(t, x,Dϕ) ≤ 0 at P0

if x0 ∈ ∂Ω, either ϕt +H(t, x,Dϕ) ≤ 0 or L(t, x, ϕ, ϕt, Dϕ) ≤ 0, at P0.

(ii) Let u be lower semi-continuous. We say that u is a weak L-supersolution of (1.1) if for any point
P0 = (t0, x0) ∈ Q, and any C1 function ϕ touching u from below, then

if x0 ∈ Ω, ϕt +H(t, x,Dϕ) ≥ 0, at P0

if x0 ∈ ∂Ω, either ϕt +H(t, x,Dϕ) ≥ 0 or L(t, x, ϕ, ϕt, Dϕ) ≥ 0, at P0.

(iii) Let u be locally bounded. We say that u is a weak L-solution (weak viscosity solution) of (1.1), if u∗
is a weak L-subsolution of (1.1), and u∗ is a weak L-supersolution of (1.1).

Definition 3.2 (Strong viscosity solutions). Let Q := (0,+∞)× Ω and u : Q→ R.

(i) Let u be upper semi-continuous. We say that u is a strong L-subsolution of (1.1) if for any point
P0 = (t0, x0) ∈ Q, and any C1 function ϕ touching u from above, then

if x0 ∈ Ω, ϕt +H(t, x,Dϕ) ≤ 0 at P0

if x0 ∈ ∂Ω, L(t, x, ϕ, ϕt, Dϕ) ≤ 0, at P0.

(ii) Let u be lower semi-continuous. We say that u is a strong L-supersolution of (1.1) if for any point
P0 = (t0, x0) ∈ Q, and any C1 function ϕ touching u from below, then

if x0 > 0, ϕt +H(t, x,Dϕ) ≥ 0, at P0

if x0 = 0, L(t, x, ϕ, ϕt, Dϕ) ≥ 0, at P0.

(iii) Let u be locally bounded. We say that u is a strong L-solution (strong viscosity solution) of (1.1), if
u∗ is a strong F0-subsolution of (1.1), and u∗ is a strong F0-supersolution of (1.1).

Remark 3.3. In the case where L = ut + F0(t, x,Du), weak/strong L-sub/super-solutions are simply called
weak/strong F0-sub/super-solutions.

3.2 Reducing the set of test functions
3.2.1 Critical normal slopes and weak continuity

We consider the equation without the boundary condition,

(3.3) ut +H(t, x,Du) = 0 in Q

where we recall that Q denotes (0,+∞) × Ω and Ω is a C1 domain of Rd. The regularity of the domain
amounts to assume that for all x0 ∈ ∂Ω, there exists r0 > 0 such that

(3.4) Ω ∩Br0(x0) = {(x′, xd) ∈ Br0(x0) : xd > γ(x′)}

for some C1 function γ : Rd−1 → R such that γ(x′0) = 0 and D′γ(x′0) = 0 where D′ denotes the derivative
with respect to x′. In particular, n(x0) = (0,−1) ∈ Rd−1 × R. The following lemma is proved in [16] for
Hamiltonians that do not depend on (t, x) and that have convex sub-level sets. The reader can check that
neither the (t, x) dependency nor the quasi-convex assumption play a role in the proof.
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Lemma 3.4 (Critical normal slope for supersolutions – [16]). Assume that H is continuous and coercive
and ∂Ω is C1. Let u : Q→ R be lower semi-continuous. Assume that u is a viscosity supersolution of (3.3)
and let ϕ be a test function touching u from below at P0 := (t0, x0) with t0 > 0 and x0 ∈ ∂Ω. Let γ be a C1

function and r0 > 0 such that (3.4) holds true. Then the critical normal slope defined by

p := sup {p ∈ R, ∃r ∈ (0, r0), ϕ(t, x) + p(xd − γ(x′)) ≤ u(t, x) for all (t, x) ∈ Br(t0, x0) ∩Q}

is non-negative. If it is finite (p < +∞) then ϕt +H(t, x,Dϕ− pn(x0)) ≥ 0 at P0.

Remark 3.5. In the case where Ω is a half space (i.e. when ∂Ω is a hyperplane) and the Hamiltonian is
quasi-convex, this lemma is proved in [20, Lemma 3.4].

We now get a similar result for subsolutions. In this case, the critical normal slope is necessarily finite.

Lemma 3.6 (Critical normal slope for subsolutions – [16]). Assume that H is continuous and coercive and
∂Ω is C1. Let u : Q→ R be upper semi-continuous. Assume that u is a viscosity supersolution of (3.3) and
let ϕ be a test function touching u from below at P0 := (t0, x0) with t0 > 0 and x0 ∈ ∂Ω. Let γ be a C1

function and r0 > 0 such that (3.4) holds true. Then the critical normal slope defined by

p := inf {p ∈ R, ∃r ∈ (0, r0), ϕ(t, x) + p(xd − γ(x′)) ≥ u(t, x) for all (t, x) ∈ Br(t0, x0) ∩Q}

is non-positive. If

(3.5) u∗(t0, 0) = lim sup
(s,y)→(t0,0), y>0

u(s, y)

then it is finite (p > −∞) and ϕt +H(t, x,Dϕ− pn(x0)) ≤ 0 at P0.

Remark 3.7. In the case where Ω is a half space (i.e. when ∂Ω is a hyperplane) and the Hamiltonian is
quasi-convex, this lemma is proved in [20, Lemma 3.4].

Notice that Condition (3.5) is always satisfied for subsolutions of (3.2) when H is coercive and L is
semi-coercive.

Lemma 3.8 (Weak continuity of weak subsolutions). Assume that H and L are continuous, H is coercive
and λ 7→ L(t, x, v, p0, p− λn(x)) is non-increasing and semi-coercive for all (t, x, v, p0, p),

inf
p′⊥n(x)

L(t, x, v, p0, p
′ + λn(x))→ +∞ as λ→ +∞.

If u is a weak L-subsolution of (3.2), then for all t > 0, we have

u∗(t, x) = lim sup
(s,y)→(t,x),y∈Ω

u(s, y).

Proof. In the case where Ω is a half-space, the result corresponds to [20, Lemma 2.3]. The reader can check
that the convexity of sub-level sets of H are not used in this proof and that the only needed assumptions
are the ones from the statement.

In the case where Ω is a C1 domain, we consider x0 ∈ ∂Ω and r > 0 and a C1 function γ : Rd−1 → R such
that (3.4) holds true. We reduce to the case of the half-space by considering the function ū(t, x) defined by
ū(t, x) = u(t, x′, γ(x′)+xd). It is a weak L̄-subsolution of (3.2) in an open ball centered (t0, x

′
0, 0) intersected

with {xd > 0} with H̄ and L̄ given

L̄(t, x′, xd, v, p0, p
′, pd) = L(t, x′, xd + γ(x′), v, p0, p

′ −D′γ(x′)pd, pd)

H̄(t, x, p) = H(t, x′, xd + γ(x′), p′ −D′γ(x′)pd, pd).

One can choose r > 0 such that |D′γ(x′)| < 1/2 in Br(t0, x0). With such a choice at hand, we have
|p′ −D′γ(x′)pd| + |pd| ≥ |p′| + 1

2 |pd| and this ensures the coercivity of H̄. Moreover, the assumption on L
implies that L̄ is semi-coercive. The weak continuity of ū at (t0, x

′
0, 0) implies the weak continuity of u at

(t0, x
′
0, x

0
d).
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3.2.2 Reduction of the set of test functions

In the two following results, we do not assume that F0 is semi-coercive.

Proposition 3.9 (Reducing the set of test functions for strong subsolutions). Assume that H,F0 satisfy
(1.4). Let u : Q→ R be upper semi-continuous and be a subsolution of (3.3) in Q∩Br(t0, x0) with x0 ∈ ∂Ω
with r and γ such that (3.4) holds true. We assume that

u∗(t0, x0) = lim sup
(s,y)→(t0,x0),y∈Ω

u(s, y).

We then consider the class of test functions of the form

(3.6) ϕ(t, x) = ψ(t, x′) + pdxd

with ψ continuously differentiable in (t, x′) and pd a negative characteristic point of qd 7→ RF0(t0, x0, p
′
0, qd)

where p′0 = D′ψ(t0, x
′
0).

If for any ϕ of the form (3.6) touching u from above at P0 = (t0, x0), we have

ϕt +RF0(t, x,Dϕ) ≤ 0 at P0

then u is a strong RF0-subsolution of (1.1) at P0.

Proof. Let φ be an arbitrary test function touching u from above at P0 = (t0, x0) with t0 > 0. Let
λ := −φt(P0). We want to show that

(3.7) RF0(t, x,Dφ) ≤ λ at P0.

Let p ∈ (−∞, 0] be given by Lemma 3.6. In particular, H(t, x,Dφ − pn(x)) ≤ λ at P0. Let Dφ(P0) =

(p′0, p
0
d) and p0

d
:= p0

d + p. Let us drop the (t0, x0, p
′
0) dependency for clarity. We thus know that H(p0

d
) ≤ λ.

If RF0(p0
d) ≤ H(p0

d
), then we get (3.7). We are left with treating the case RF0(p0

d) > H(p0
d
). In this case,

we have RF0(p0
d
) ≥ RF0(p0

d) > H(p0
d
) and Lemma 2.4 implies that RF0 is constant in [p0

d
, p0
d

+ ε) for some
ε > 0. From the coercivity of H and the monotonicity of F , we also deduce that there exists some p∗ > p0

d
such that

RF0 = const > H on [p0
d
, p∗)

with const = RF0(p∗) = H(p∗). In other words, p∗ is a negative characteristic point of RF0: p∗ ∈ χ−(RF0).
We now write p∗ = p0

d
+ δ = p0

d + (p+ δ) for some δ > 0. Moreover, the definition of p from Lemma 3.6
implies that there exists r0 > 0 such that we have

φ(t, x) + (p+ δ/2)(xd − γ(x′)) ≥ u(t, x) in Br0(t0, x0) ∩Q.

Moreover,
φ(t, x) ≤ φ(t, x′, γ(x′)) + (p0

d + δ/2)(xd − γ(x′)) in Br1(t0, x0) ∩Q

for some r1 < r0. Hence,

ϕ(t, x) := φ(t, x′, γ(x′)) + (p0
d + p+ δ)︸ ︷︷ ︸

p∗

(xd − γ(x′)) ≥ u(t, x) in Br1(t0, x0) ∩Q.

By assumption, we have λ ≥ RF0(p∗) = RF0(p0
d
) ≥ RF0(p0

d) which in turn yields (3.7).

As far as strong supersolutions are concerned, it is not necessary to impose a weak continuity assumption,
and we show similarly the following result.

Proposition 3.10 (Reducing the set of test functions for strong supersolutions). Assume that H,F0 satisfy
(1.4). Let u : Q → R be lower semi-continuous and be a viscosity supersolution of (3.3) in Q ∩ Br(t0, x0)
with x0 ∈ ∂Ω with r and γ such that (3.4) holds true.
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We then consider the class of test functions of the form

(3.8) ϕ(t, x) = ψ(t, x′) + pdxd

with ψ continuously differentiable and pd a positive characteristic point of qd 7→ RF0(t0, x0, p
′
0, qd) where

p′0 = D′ψ(t0, x
′
0).

If for any ϕ of the form (3.8) touching u from below at P0 = (t0, x0), we have

ϕt +RF0(t, x,Dϕ) ≥ 0 at P0

then u is a strong RF0-supersolution of (1.1) at P0.

3.3 Weak F0-solutions are strong RF0-solutions
Lemma 3.11 (Weak F0 sub/super-solutions are strong RF0/RF0 sub/super-solutions). (i) Let u : Q →

R be upper semi-continuous. Then u is a weak F0-subsolution of (1.1) if and only if u is a strong
RF0-subsolution of (1.1) .

(ii) Let u : Q → R be lower semi-continuous. Then u is a weak F0-supersolution of (1.1) if and only if u
is a strong RF0-supersolution of (1.1).

Proof. We only prove the result for subsolutions since the case of supersolutions is treated similarly.

Weak implies strong. Assume that u is a weak F0-subsolution. Consider a test function φ touching u
from above at P0 = (t0, x0) with t0 > 0 and x0 ∈ ∂Ω. Let r0 > 0 and γ ∈ C1(Rd−1) such that (3.4) holds
true. Then for any q̄ ≥ 0, consider

ϕ(t, x) := φ(t, x) + q̄(xd − γ(x′))

which is also touching u from above at P0. Then, either the equation or the boundary condition is satisfied
at P0,

ϕt + (F0 ∧H)(t, x,Dϕ) ≤ 0 at P0.

We used the fact that D′γ(x′0) = 0. With p := Dφ(P0), the previous inequality reads,

φt(P0) + (F0 ∧H)(p− q̄n(x0)) ≤ 0.

Because q̄ ≥ 0 is arbitrary and recalling the definition of RF0 in (1.9), the previous inequality implies that
u is a strong RF0-subsolution.

Strong implies weak. Assume that u is a strong RF0-subsolution. Consider a test function ϕ touching u
from above at P0 = (t0, x0) with t0 > 0 and x0 ∈ ∂Ω. Then we have

ϕt(P0) +RF0(t, x, p) ≤ 0 with p := Dϕ(P0).

Because RF0 ≥ (F0 ∧H), we deduce that

ϕt(P0) + (F0 ∧H)(t, x, p) ≤ 0

which shows that u is a weak F0-subsolution.

Even if Lemma 3.11 gives a full characterization of weak solutions in terms of strong solutions, it is not
completely satisfactory, because we may have RF0 < RF0, and we would like to have the same boundary
function. This is achieved in the following two results (for subsolutions and for supersolutions) where the
common boundary function is RF0.

Proposition 3.12 (Weak F0-subsolutions are strong RF0-subsolutions). Assume that H,F0 satisfy (1.4).
Consider an upper semi-continuous function u : Q→ R.
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(i) If u is a weak F0-subsolution of (1.1) and if for all t > 0 and x0 ∈ ∂Ω,

(3.9) u∗(t, x0) = lim sup
(s,y)→(t,x0),y∈Ω

u(s, y)

then u is a strong RF0-subsolution of (1.1).

(ii) If u is a strong RF0-subsolution of (1.1), then u is a weak F0-subsolution of (1.1).

Proof. Let F := RF0.
Let u be a weak F0-subsolution of (1.1) satisfying the weak continuity condition (3.9). Consider a test

function ϕ touching u from above at P0 = (t0, x0) with t0 > 0 and x0 ∈ ∂Ω. Setting p := Dϕ(P0) and
λ := −ϕt(P0), we have

(F0 ∧H)(t0, x0, p) ≤ λ.
Since we have F = RF (see Lemma 2.3), we know from Proposition 3.9 that we can assume that p = (p′, pd)
where pd is a negative characteristic point of qd 7→ F (t0, x0, p

′ − qdn(x0)). From Corollary 2.14, we deduce
that H(t0, x0, p) = F (t0, x0, p) ≤ F0(t0, x0, p) and then F (t0, x0, p) ≤ λ which shows that u is a strong
F -subsolution.

If we assume now that u is a strong F -subsolution, because F = RRF0 ≥ RF0, we deduce that u is also
a strong RF0-subsolution. Then (ii) of Lemma 3.11 shows that u is a weak F0-subsolution.

Similarly, we show the following result.

Proposition 3.13 (Weak F0-supersolutions are strong RF0-supersolutions). Assume that H,F0 satisfy
(1.4). Consider a lower semi-continuous function u : Q→ R. Then u is a weak F0-supersolution of (1.1) if
and only if u is a strong RF0-supersolution of (1.1).

As a corollary of Lemma 3.8, and of Propositions 3.12, 3.13, we get the following equivalence between
weak F0-solutions and strong RF0-solutions.

Theorem 3.14 (Weak F0-solutions are strong RF0-solutions). Assume that H,F0 satisfy (1.4). Assume
that one of the following two conditions is satisfied:

(i) either F0 satisfies the semi-coercivity condition (1.5),

(ii) or u is weakly continuous at the boundary ∂Ω, i.e. it satisfies (3.9).

Then a function u : Q→ R is a weak F0-solution if and only if u is a strong RF0-solution.

Remark 3.15. This result under assumption (i) is exactly the same result as in [15, Theorem 1.3], when we
use our identification result Theorem 1.3.
Counter-example 3.16. When we have neither the semi-coercivity of F0, nor the weak continuity of the
solution u, then u can be a weak F0-solution without being a strong F -solution for F := RF0, as shows the
following counter-example. We consider Ω = (0,+∞) and

H(p) := |p|, F0 ≡ 0, F (p) = (RF0)(p) = max(−p, 0)

where F is semi-coercive, and for all t > 0, we consider

u(t, x) =

{
1 if x = 0

0 if x > 0.

One can check that u is a (discontinuous) weak F0-solution, but is not a strong RF0-solution, neither a weak
RF0-solution.

On the contrary, for instance the function

v(t, x) =

{
−1 if x = 0,

0 if x > 0

is both a (discontinuous) weak F0-solution, and a strong RF0-solution (and then also a weak RF0-solution).
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3.4 Existence and stability of weak solutions
Given T > 0, we consider the following problem,

(3.10)

{
ut +H(t, x,Du) = 0 in (0, T )× Ω

ut + F0(t, x,Du) = 0 on (0, T )× ∂Ω

supplemented with the following initial condition

(3.11) u(0, ·) = u0 in {0} × Ω.

We have the following results. Their proofs are standard, so we skip it.

Proposition 3.17 (Stability of weak solutions by infimum/suppremum). Assume that H,F0 satisfy (1.4).
Let A be a non-empty set and let (ua)a∈A be a family of weak F0-subsolutions (resp. weak F0-supersolutions)
of (3.10). Let us assume that

u := sup
a∈A

ua (resp. u := inf
a∈A

ua)

is locally bounded on (0, T ) × Ω. Then u∗ is a weak F0-subsolution (resp. u∗ is weak F0-supersolution) of
(3.10).

Proposition 3.18 (Stability of weak solutions by half-relaxed limits). Assume that H,F0 satisfy (1.4). Let
(uε)ε be a family of weak F0-subsolutions (resp. weak F0-supersolutions) of (3.10). Let us assume that the
half-relaxed limit

u := lim sup
ε→0

∗uε (resp. u := lim inf
ε→0

∗u
ε)

is locally bounded on (0, T )× Ω. Then u is a weak F0-subsolution (resp. weak F0-supersolution) of (3.10).

Finally, we have the following existence result.

Theorem 3.19 (Existence of weak solutions). Assume that H,F0 satisfy (1.4) and Ω is bounded and that
the initial data u0 : Ω→ R is uniformly continuous. Then there exists a function u : [0, T )× Ω→ R that is
a weak F0-solution of (3.10)-(3.11) satisfying for some constant CT > 0

|u(t, x)− u0(x)| ≤ CT for all (t, x) ∈ [0, T )× Ω.

Remark 3.20. The boundedness of Ω can be removed if one assumes for instance that

sup
t∈(0,T ),x∈Ω,p∈BR

|H(t, x, p)|+ |F0(t, x, p)| < +∞

for all R > 0.

Such a result is proved by using Perron’s method. We recall that this method was introduced for
viscosity solution by H. Ishii in [22]). Here we skip the proof since it is completely similar to the proof of
[17, Theorem 2.14].

4 Guerand’s approach
This section is devoted to the proof of Theorem 1.3. We first recall the definition of Guerand’s relaxation
operator.

4.1 Guerand’s relaxation operator
The definition of Guerand’s relaxation operator relies on the notion of limiter points. We split the set of
limiter points AF0

into two subsets A+
F0

and A−F0
.
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Definition 4.1 (Positive and negative limiter points). (i) A real number p is a positive limiter point of
F0 if p+ > p and H(p) ≥ F0(p) and for all q ∈ R,

H(p) > H(q) ≥ F0(q)⇒ (q−, q+) ∩ (p, p+) = ∅.

The set of all positive limiter points is denoted by A+
F0
.

(ii) A real number p is a negative limiter point of F0 if p− < p and H(p) ≤ F0(p) and for all q ∈ R,

F0(q) ≥ H(q) > H(p)⇒ (q−, q+) ∩ (p−, p) = ∅.

The set of all negative limiter points is denoted by A−F0
.

(iii) The set of all positive and negative limiter points is denoted by AF0 .

Remark 4.2. Remark that AF0
=
⋃
α∈I {pα} where I is at most countable. Moreover, open intervals (p−α , p

+
α )

are disjoint, see [15, Lemma 3.7].

Definition 4.3 (Guerand’s relaxation operator). We set for p ∈ R

(JF0)(p) :=

{
H(pα) if p ∈ [p−α , p

+
α ] for some pα ∈ AF0 ,

H(p) elsewhere.

Remark 4.4. In [15], JF0 is denoted by FAF0
.

Proposition 4.5 (Property of JF0, [15]). The function JF0 is well-defined, continuous and non-increasing.

4.2 Relaxation operators coincide
In order to prove that RF0 and JF0 coincide, we first prove that it is the case for limiter and characteristic
points.

Proposition 4.6 (Limiter points coincide with characteristic points of the relaxed function). We have
χ±(RF0) = A±F0

. In other words, the characteristic points of the relaxed function coincide with the limiter
points of the original function.

Proof. We only do the proof for negative characteristic points since the proof for positive ones is very similar.
Let F = RF0.
Step 1: negative characteristic points are negative limiter points. Let p ∈ χ−(F ). We have in
particular p− < p and H(p) = F (p). Then Corollary 2.12 implies that

(4.1) F = RF0 = constant = H(p) in [p−, p].

We argue by contradiction and assume that p 6∈ A−F0
. This means that there exists some q ∈ R such that

(4.2) F0(q) ≥ H(q) > H(p) and (q−, q+) ∩ (p−, p) 6= ∅.

Then (4.2) and (2.2) imply in particular

(4.3) F (q) ≥ H(q) > H(p) = F (p) = F (p−).

This implies in particular that q < p−.
We next prove that p > q+. In order to do so, we first justify the fact that p 6∈ [q, q+]. Assume by

contradiction that p ∈ [q, q+]. Then this implies H(p) ≥ H(q), which contradicts (4.3). Then p 6∈ [q, q+]. If
p ≤ q then by monotonicity we have F (p) ≥ F (q) that contradicts (4.3). Hence p > q+.

We deduce from (4.2) and q < p− and p > q+ that

q− ≤ q < p− ≤ q+ < p.
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This implies that H(p) = H(p−) > H(q) = H(q+), but this is in contradiction with (4.3). Hence p ∈ A−F0
.

Step 2: negative limiter points are negative characteristic points. For p ∈ A−F0
, we have,

p− < p

H < H(p) ≤ F0(p) ≤ F0 in (p−, p)(4.4)
F (p) = RF0(p) = RF0(p) ≥ H(p).

From (i) of Lemma 2.4, we know that there exists q ≥ p minimal such that

(4.5) RF0(p) = (F0 ∧H)(q)

with


F0(q) ≥ H(q)

RF0 = constant = H(q) in [p, q],

H(q) > H in [p, q).

Hence by monotonicity of F0, we have F0 ≥ H on [p, q], and then

F = RF0 = constant = H(q) > H on [p, q).

Combined with (4.4), this implies

H < H(q) on (p−, q) with p− < p ≤ q.

We can now consider the lower point q− associated with q. We deduce from the previous inequality that

q− ≤ p− < p ≤ q.

In particular (q−, q+) ∩ (p−, p) 6= ∅.
If q > p, then we have F0(q) ≥ H(q) > H(p), in contradiction with the fact that p ∈ A−F0

.
We thus conclude that q = p, then (4.5) shows that F (p) = H(p). Combined with (4.4), this yields

p ∈ χ−(F ).

We can now state and prove that the two relaxation operators are in fact the same one.

Theorem 4.7 (Relaxation operators coincide). We assume that H is continuous and coercive, and that F0

is continuous, nonincreasing, and semi-coercive. Then RF0 = JF0.

Proof. We set E = E− ∪ E+ with

E− :=
⋃
α∈I

[p−α , pα] and E+ :=
⋃
α∈I

[pα, p
+
α ]

where I is an at most countable set (see Proposition 4.5) such that

AF0
=
⋃
α∈I
{pα}

with p−α ≤ pα ≤ p+
α and p−α < p+

α . We also set F := RF0.
Step 1: relaxation operators coincide in E. We only prove the result in E− since it can be obtained
in E+ similarly. In the case where pα ∈ A−F0

, Proposition 4.6 implies that pα ∈ χ−(F ), that is to say p−α < pα
and, using also Corollary 2.12,

H < F (pα) = H(pα) = H(p−α ) = JF0 in (p−α , pα).

Since F is non-increasing, we have
RF0 = F > H in (p−α , pα).
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This implies that

(4.6) H < F = RF0 ≤ F0 in (p−α , pα).

Thanks to the continuity of H, F and RF0, we deduce from (4.6) that

H(pα) = F (pα) = RF0(pα).

Hence

F (p−α ) = RF0(p−α )

= max

{
sup

q′∈[p−α ,pα)

(F0 ∧H)(q′), sup
q′≥pα

(F0 ∧H)(q′)

}
≤ max(H(pα), RF0(pα))

= F (pα).

From the monotonicity of F , we deduce that

F = constant = H(pα) = JF0 in [p−α , pα].

Step 2: {F 6= H} is contained in E. If p ∈ {F 6= H}, then we know from Corollary 2.6 that there exists
ε > 0 such that

F = constant in (p− ε, p+ ε).

We can then consider the largest interval (a, b) 3 p such that

(a, b) ⊂ {F 6= H} .

Then F is constant in (a, b). The fact that F is semi-coercive implies that a > −∞. We distinguish two
cases.

If F (p) > H(p), then from the coercivity of H and the monotonicity of F , we have a, b ∈ R and

H(a) = F (a) = F (p) = F (b) = H(b) > H in (a, b).

This implies that b ∈ χ−(F ) = A−F0
and a := b− and in turn (a, b) ⊂ E−. In particular, p ∈ E− in this case.

If F (p) < H(p), we can then argue as in the previous case and get, thanks to Proposition 4.6, that

a ∈ χ+(F ) = A+
F0
, b = a+ ∈ R ∪ {+∞}

and thus (a, b) ⊂ E+. In particular, p ∈ E+ in this case.

Step 3: conclusion. We proved that F = JF0 in E and also that F = H outside E. Since JF0 = H
outside E too (by definition), we thus get F = JF0 everywhere.

5 Godunov fluxes

5.1 Definition of Godunov fluxes
We still consider a coercive and continuous Hamiltonian H and we recall the standard Godunov flux asso-
ciated to H defined by

G(q, p) =


max
[p,q]

H if p ≤ q,

min
[q,p]

H if p ≥ q.

In particular, G is non-decreasing in the first variable and non-increasing in the second one. Moreover, we
have G(p, p) = H(p). We define next the action of the Godunov flux on a semi-coercive, continuous and
non-increasing function F0.
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Proposition 5.1 (Godunov’s operator). Assume that F0 is semi-coercive, continuous and non-increasing
and that H is continuous and coercive. Let p ∈ R, then the following properties hold true.

(i) There exists at least one q ∈ R such that F0(q) = G(q, p). The common value is denoted by λq.

(ii) The value λq defined above is independent on q. We denote this unique value by λ = λ(p) =: (F0G)(p)

Proof. We first prove (i). Given p ∈ R, the function φ(q) = F0(q)−G(q, p) is continuous and non-increasing.
On the one hand, if q ≤ p, then G(q, p) ≤ H(p) and φ(q) ≥ F0(q) −H(p). Using that F0 is semi-coercive,
we deduce that

lim
q→−∞

φ(q) = +∞.

On the other hand, if q ≥ p, using that F0(q) ≤ F0(p) < +∞, the fact that G(q, p) = max[p,q]H ≥ H(q) and
the fact that H is coercive, we deduce that

lim
q→+∞

φ(q) = −∞.

Since φ is continuous and non-increasing, we deduce the existence of a q such that φ(q) = 0, that is to say
that F0(q) = G(q, p).

We now turn to (ii). By contradiction, assume that there exist q1 and q2 such that

λq1 = F0(q1) = G(q1, p) > λq2 = F0(q2) = G(q2, p).

Since F0 is non-increasing, we deduce that q1 < q2. Using that G is non-decreasing in its first argument, we
deduce that G(q1, p) ≤ G(q2, p) which is a contradiction.

The goal is now to prove that RF0 = F0G. More precisely, we have the following theorem.

Theorem 5.2 (Relaxation operator coincide with Godunov’s operator). Assume that F0 is semi-coercive,
continuous and non-increasing and that H is continuous and coercive. Then

RF0 = F0G.

In order to prove this theorem, we need to introduce the Godunov semi-fluxes. This is done in the next
section. The proof of Theorem 5.2 is postponed until Subsection 5.3.

5.2 Godunov semi-fluxes
We introduce the Godunov semi-fluxes, G and G, which are set-valued applications defined by

G(q, p) =


{−∞} if q < p,

[−∞, H(p)] if q = p,{
max
[p,q]

H

}
if q > p

and

G(q, p) =



{
min
[q,p]

H

}
if q < p,

[H(p),+∞] if q = p,

{+∞} if q > p.

As before, we can define the action of these semi-fluxes on non-increasing semi-coercive continuous functions.
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Proposition 5.3 (Lower Godunov operator F0G). Assume that F0 is semi-coercive, continuous and non-
increasing and that H is continuous and coercive. Let p ∈ R. We define the sets

Q := {q ∈ R, F0(q) ∈ G(q, p)} and Λ := {F0(q), q ∈ Q}.

Then the following properties hold true.

(i) The set Q is non-empty and contained in [p,+∞[.

(ii) The set Λ is reduced to a singleton that we denote by {(F0G)(p)}.

Proof. We first prove (i). In order to do so, we distinguish two cases.
Suppose first that F0(p) > H(p). In that case, we remark that G(q, p) = {G(q, p)} for all q > p. Then,

the proof is the same as the one of Proposition 5.1. Indeed, if we define φ(q) = F0(q) − G(q, p), then
φ(p) = F0(p) − G(p, p) = F0(p) −H(p) > 0 and so the zero of φ defined in the proof of Proposition 5.1 is
greater than p and satisfies the desired condition.

Suppose now that F0(p) ≤ H(p). In that case, we remark that p ∈ Q since G(p, p) = [−∞, H(p)].
The proof of (ii) follow the same lines as the one of (ii) from Proposition 5.1.

In the same way, we have the following proposition concerning G. Since the proof is similar to the
previous one, we skip it.

Proposition 5.4 (Upper Godunov operator F0G). Assume that F0 is semi-coercive, continuous and non-
increasing and that H is continuous and coercive. Let p ∈ R. We define the sets

Q := {q ∈ R, F0(q) ∈ G(q, p)} and Λ := {F0(q), q ∈ Q}.

Then the following properties hold true

(i) The set Q is non-empty and contained in ]−∞, p].

(ii) The set Λ is reduced to a singleton that we denote by {(F0G)(p)}.

In order to compose semi-Godunov operators, we first need to make sure that F0G satisfy the same
assumptions as F0.

Lemma 5.5 (Properties of F0G and F0G). Under the same assumptions, F0G and F0G are non-increasing,
continuous and semi-coercive.

Proof. We do the proof only for F0G, the one for F0G being similar.
We first show that F0G is non-increasing. Let p1 > p2 and q1, q2 be such that (F0G)(pi) = F0(qi) ∈

G(qi, pi) for i ∈ {1, 2}. In particular, since qi ∈ Q, we have qi ≥ pi thanks to (i) from Proposition 5.3.
We assume by contradiction that (F0G)(p1) > (F0G)(p2). This implies F0(q1) > F0(q2) and in particular

q2 > q1 ≥ p1 > p2. Hence G(q2, p2) = {G(q2, p2)} and so F0(q2) = G(q2, p2) ≥ G(q1, p1) ≥ G(p1, p1). The
inequalities follow from monotonicity properties of G in both variables. If q1 > p1, then F0(q1) = G(q1, p1)
and we get a contradiction: F0(q1) ≤ F0(q2). If q1 = p1, then G(p1, q1) = [−∞, H(p1)] from which we get
F0(q1) ≤ H(p1) = G(p1, p1) ≤ F0(q2) and we get the same contradiction.

We now prove that F0G is semi-coercive. Let M > 0. There exists p0 such that for every p < p0,
H(p) ≥M and F0(p) ≥M . Let p < p0. Proposition 5.3 implies that there exists q ≥ p such that (F0G)(p) =
F0(q) ∈ G(q, p). If q = p, then (F0G)(p) = F0(p) ≥M . If q > p, then (F0G)(p) = G(q, p) ≥ H(p) ≥M . This
shows that F0G is semi-coercive.

We now prove that F0G is continuous. Let pn → p and qn ≥ pn be such that (F0G)(pn) = F0(qn) ∈
G(qn, pn). From the coercivity of H, we get that (qn)n is bounded: indeed, either qn = pn or F0(pn) ≥
F0(qn) = G(qn, pn) ≥ H(qn). Hence, up to extract a subsequence (still denoted by (qn)n), we have qn →
q0 ≥ p.

Assume first that qnj = pnj along a subsequence {nj}. In this case F0(pnj ) = F0(qnj ) ≤ H(pnj ). This
implies that F0(p) ≤ H(p) and so F0(p) ∈ G(p, p). This means that p ∈ Q and F0(p) = (F0G)(p) and

(F0G)(pnj ) = F0(qnj )→ F0(p) = (F0G)(p).
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Assume now that qn > pn for n large enough, then (F0G)(pn) = F0(qn) = G(qn, pn). Since qn → q0 ≥ p
and F0(qn) ≤ F0(pn), we get F0(q0) ≤ F0(p) and F0(q0) = G(q0, p).

If q0 = p then F0(p) = H(p) ∈ G(p, p). If q0 > p then F0(q0) ∈ G(q0, p). In both cases, q0 ∈ Q and thus
F0(q0) = (F0G)(p). We thus proved that F0G(pn) = F0(qn) → F0(q0) = F0G(p). This implies that indeed
the whole sequence {(F0G)(pn)} converges to (F0G)(p).

We now want to prove that the action of G on the action of G on F0 is in fact the action of G on F0.

Proposition 5.6 (Composition of Godunov semi-fluxes). We have (F0G)G = F0G = (F0G)G.

In order to prove this proposition, the following lemma is needed.

Lemma 5.7 (Key composition result). (i) For all (q, p) ∈ R2, there exists q′ ∈ R such that G(q, q′) ∩
G(q′, p) 6= ∅. Moreover, for such a real number q′, we have G(q, q′) ∩G(q′, p) = {G(q, p)}.

(ii) For all (q, p), there exists q′ ∈ R such that G(q, q′) ∩ G(q′, p) 6= ∅. Moreover, for such a real number
q′, we have G(q, q′) ∩G(q′, p) = {G(q, p)}.

Proof. We only prove (i) since the proof of (ii) follows the same reasoning.
We first show that G(q, q′) ∩G(q′, p) is either empty or equal to the singleton {G(q, p)}.
Remark that the intersection can only contain real numbers, but neither +∞ nor −∞. Hence, if the

intersection is not empty, then p ≤ q′ and q ≤ q′. We now distinguish four cases.

Case 1: p = q = q′. In that case G(p, p) = [−∞, H(p)] and G(p, p) = [H(p),+∞] and so the intersection is
reduced to a singleton of element H(p) = G(p, p) = G(q, p).

Case 2: p < q = q′. In that case G(q, q′) = [H(q),+∞] and G(q′, p) = {G(q′, p)} = {G(q, p)}. Since q ≥ p,
we have G(q, p) ≥ G(q, q) = H(q) and so the intersection is non-empty and then reduced to G(q, p).

Case 3: q < p = q′. In that case G(q, q′) = {G(q, p)} and G(q′, p) = [−∞, H(p)]. Since q ≤ p, we have
G(q, p) ≤ G(p, p) = H(p) and so the intersection is reduced to G(q, p).

Case 4: q < q′ and p < q′. In that case G(q, q′) = {G(q, q′)} and G(q′, p) = {G(q′, p)}. If the interscetion
is not empty, then G(q, q′) = G(q′, p), which means that

max
[p,q′]

H = min
[q,q′]

H,

i.e. H is constant on [max(q, p), q′]. If p < q, this implies in particular that

G(q, p) = max
[p,q]

H = max
[p,q′]

H = G(q′, p).

Similarly if p > q, we get G(q, p) = G(q, q′). In the last case p = q, we get

G(q, p) = G(q, q′) = G(q′, p).

We now prove that we can always find a q′ such that the intersection is non empty. If p = q, we can take
q′ = p = q as in Case 1. If p < q, we can take q′ = q as in Case 2, while if p > q, we can take q′ = p as in
Case 3.

We are now able to prove Proposition 5.6.

Proof of Proposition 5.6. Let F1 = F0G. We use successively the definition of F0G, (i) from Lemma 5.7, the
definitions of F0G and of F1G to write,

{F0G(p)} = {F0(q) for some q s.t. F0(q) ∈ G(q, p)}
= {F0(q) for some q and q′ s.t. F0(q) ∈ G(q, q′) ∩G(q′, p)}

{F1(q′)} = {F0G(q′)} = {F0(q) for some q s.t. F0(q) ∈ G(q, q′)}
{F1G(p)} = {F1(q′) for some q′ s.t. F1(q′) ∈ G(q′, p)}

= {F0(q) for some q and q′ s.t. F0(q) ∈ G(q, q′) ∩G(q′, p)}.

This implies that F0G(p) = F1G(p) = (F0G)G.
Using (ii) from Lemma 5.7, we can follow the same reasoning and get F0G(p) = (F0G)G.
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5.3 Relaxation and Godunov fluxes
The proof of Theorem 5.2 is a direct consequence of the following proposition which makes the link between
the semi-relaxation of F0 and the actions of the Godunov semi-fluxes on F0.

Proposition 5.8 (Semi-relaxations and Godunov’s semi-fluxes). Assume that F0 is semi-coercive, continu-
ous and non-increasing and that H is continuous and coercive. Then F0G = RF0 and F0G = RF0.

Proof. We only prove that F0G = RF0 since the proof of the other equality is similar. Let p and q′ ≥ p be
such that

(F0G)(p) = F0(q′) ∈ G(q′, p).

If q′ = p, then (F0G)(p) = F0(p) ≤ H(p). Using Lemma 2.1, we deduce that

RF0(p) = F0(p) = F0G(p).

If q′ > p, then F0(q′) = G(q′, p) = max
[p,q′]

H. In particular F0(q′) ≥ H(q′) and by Lemma 2.1, we have

RF0(q′) ≤ F0(q′). Recall also that

RF0(p) = max

(
sup
[p,q′]

(F0 ∧H), RF0(q′)

)
.

Since F0 is non-increasing, we have for all q ∈ [p, q′],

F0(q) ≥ F0(q′) = max
[p,q′]

H.

In particular,
sup

q∈[p,q′]

(F0 ∧H)(q) = max
q∈[p,q′]

H(q) = F0(q′) ≥ RF0(q′)

and we finally get
RF0(p) = F0(q′) = (F0G)(p).

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2. Lemma 5.5 implies that F0G satisfies the assumptions of Proposition 5.8. Using
Proposition 5.8 first to F0 and then to F̂0 = F0G, we have

R(RF0) = R(F0G) = (F0G)G.

Using Lemma 2.3 and Proposition 5.6, we then get RF0 = F0G.

6 The Neumann and Dirichlet problems

6.1 Strong solutions for the Neumann problem
This subsection is devoted to the proof of Theorem 1.5.

Proof of Theorem 1.5. The proof is split in several steps.
Step 1: the condition N is self-relaxed. We recall that

N(t, x, p) =


max

{
H(t, x, p− ρn) : ρ ∈ [0, p · n(x) + ρ0]

}
if p · n(x) + ρ0 ≥ 0,

min

{
H(t, x, p− ρn) : ρ ∈ [p · n(x) + ρ0, 0]

}
if p · n(x) + ρ0 ≤ 0
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with ρ0 = h(t, x). For p = p′ − ρn with p′ ⊥ n, it is convenient to consider H0(ρ) = H(t, x, p′ − ρn) and
N0 : ρ 7→ N(t, x, p′ − ρn). In particular,

N0(ρ) =


min
[ρ0,ρ]

H0 if ρ ≥ ρ0,

max
[ρ,ρ0]

H0 if ρ ≤ ρ0.

In other words, N0(ρ) = G(ρ0, ρ) where G denotes the Godunov flux function. We remark that N0 is
self-relaxed in the sense that RN0 = N0. Indeed, we remark that

(H0(ρ)−N0(ρ))(ρ− ρ0) ≥ 0.

In particular, thanks to Lemma 2.1, we know that RN0 = N0 in (ρ0,+∞) ⊂ {N0 ≤ H0}. For ρ ≤ ρ0, we
write

RN0(ρ) = max
q≥ρ

(N0 ∧H0)(q)

=

(
max
q∈[ρ,ρ0]

H0(q)

)
∨RN0(ρ0)

= N0(ρ) ∨N0(ρ0)

= N0(ρ).

Hence RN0 = N0 in R. Similarly, RN0 = N0 and RN0 = N0.

We observe next that negative characteristic points of N0 are contained in (−∞, ρ0]. Indeed, if ρ > ρ0 and
N0(ρ) = H0(ρ), then N0(ρ) = min[ρ0,ρ]H0 and in particular, H0 ≥ N0(ρ) = H0(ρ) in [ρ0, ρ]. In particular, ρ
is not a negative characteristic point of N0.

Step 2: weak solutions of the Neumann problem are strong N-solutions. We only treat the
case of weak subsolutions since weak supersolutions can be treated similarly.

Let u : Q→ R be a weak solution of (1.2). Then Lemma 3.8 implies that u is weakly continuous.
Thanks to Proposition 3.9, we only consider a C1 test function φ touching u∗ from above at P0 = (t0, x0)

with x0 ∈ ∂Ω of the form
φ(t, x) = ψ(t, x′) + ρxd

for a negative characteristic point ρ of N0 (recall that RN0 = N0). In particular, ρ ≤ ρ0.
Consider r > 0 and γ ∈ C1(Rd−1) such that (3.4) holds true. Then we have the viscosity inequality,

φt +H(t, x,Dφ) = min (φt +H(t, x,Dφ), ρ0 − ρ) ≤ 0 at P0.

For p = Dφ(P0) and R ∈ [0, ρ0 − ρ], the function ϕ(t, x) = φ(t, x) +R(xd − γ(x′)) is still a test function for
u at P0. Since D′γ(x′0) = 0 and R+ ρ ≤ ρ0,

φt(t0, x0) + max
R∈[0,ρ0−ρ]

H(t0, x0, Dφ(t0, x0)−Rn(x0)) ≤ 0.

Since ρ = −∂φ∂n (t0, x0), this precisely means φt +N(t0, x0, Dφ) ≤ 0 at P0.

Step 3: strong N-solutions are weak solutions of the Neumann problem. We show it for
strong N -subsolutions since the proof for strong N -supersolutions is similar. Assume that u is a strong
N -subsolution. Let ϕ be a C1 test function touching u∗ from above at P0 = (t0, 0). Letting λ := ϕt(P0) and
p := Dϕ(P0), we have

λ+N(t0, x0, p) ≤ 0.

If ρ = −p · n(x0) ≤ ρ0 = h(t0, x0), then N(t0, x0, p) = N0(ρ) ≥ H0(ρ) = H(t0, x0, p), which implies

λ+H(t0, x0, p) ≤ 0.

In particular,
min(λ+H(t0, x0, p), h(t0, x0) + p · n(x0)) ≤ 0.

If ρ = −p · n(x0) > ρ0 = h(t0, x0), the previous inequality also holds true.
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6.2 Connection with scalar conservation laws
In this subsection, we would like to make a link between the relaxation operator RF0 and the theory of
boundary conditions for scalar conservation laws2. To this end, we consider a linear function,

u(t, x) = px+ λt.

It is straightforward to check that it is a weak viscosity solution of (1.1) if and only if λ = −H(p) and

(6.1) (RF0)(p) ≤ H(p) = −λ ≤ (RF0)(p).

Then we have

Lemma 6.1 (Relation with the germ). Assume (1.1). An element p ∈ R satisfies (6.1) if and only if p is
an element of the set (which is called a germ)

(6.2) G = {q ∈ R, H(q) = RF0(q)} .

Remark 6.2. For the notion of germ and its properties (maximal germs, complete germs) we refer the reader
to [3].

Remark 6.3. The fact that RF0 is nonincreasing provides to the set G the property to be a germ for H.
Moreover it is possible to check that this germ is maximal if and only if it is of the form of (6.2) for some
suitable F0. With some further work, it is also possible to show that the germ G is complete for instance if
H ∈ C1 (but it is out of the scope of this paper).

Proof. Recall from Lemma 2.1 and Remark 2.2 that

(RF0)(p)

{
= F0(p) if F0(p) ≥ H(p)
∈ [F0(p), H(p)] if F0(p) ≤ H(p)

(RF0)(p)

{
∈ [H(p), F0(p)] if F0(p) ≥ H(p)
= F0(p) if F0(p) ≤ H(p)

RF0 ≤ RF0

(RF0)(p) = H(p) = (RF0)(p) if F0(p) = H(p).

Hence we deduce that (6.1) is equivalent to

−λ = H(p) =

{
(RF0)(p) if F0(p) ≤ H(p)
(RF0)(p) if F0(p) ≥ H(p)

}
= (RF0)(p)

i.e. p ∈ G := {H = RF0} which ends the proof of the lemma.

6.3 Strong solutions for the Dirichlet problem
In this subsection, we compute the relaxed Dirichlet boundary condition.

Proof of Theorem 1.6. Let u : Q → R be a weak viscosity subsolution of (1.3). Let φ be a C1 test function
touching u∗ from above at P0 = (t0, x0) with x0 ∈ ∂Ω. Then we have

min(u∗ − g, φt +H(t, x,Dφ)) ≤ 0 at P0.

2Morally if u is a strong RF0-solution that is Lipschitz continuous, then the function v := ux is expected to be an entropy
solution of {

vt +H(v)x = 0, on (0,+∞)t × (0,+∞)x,
v(t, 0) ∈ G, for a.e. t ∈ (0,+∞)

where v(t, 0) is a strong (quasi)-trace of v in the sense of Panov [27]. It is possible to prove it, if H is C1 and H′ is not constant
on every interval of positive length. But it requires some additional work which is out of the scope of the present paper.
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This boundary condition can be interpreted as follows,

φt + min(u∗ − g − λ,H(t, x,Dφ) ≤ 0 at P0

where λ = φt(t0, x0) (recall that we look at pointwise inequality and that only the behavior in the normal
gradient is taken into account). We can argue similarly for weak viscosity supersolutions of (1.3) and we
conclude that the Dirichlet condition can be interpreted as a dynamic boundary condition with F0(p) =
u∗(t0, x0)− g(t0, x0)− λ =: A0.

Recalling the definition of RF0 and RF0, see (1.9), we compute,

RF0(p) = sup
ρ≥0

min(A0, H(t0, x0, p− ρn(x0))

= min(A0, sup
ρ≥0

H(t0, x0, p− ρn(x0))

= A0

RF0(p) = inf
ρ≤0

max(A0, H(t0, x0, p− ρn(x0))

= max(A0, inf
ρ≤0

H(t0, x0, p− ρn(x0))

= max(A0, H−(t0, x0, p)).

Recalling now the definition of the relaxation operator, see (1.8),

RF0(p) =

{
A0 if H(t0, x0, p) ≤ A0,

max(A0, H−(t0, x0, p)) if H(t0, x0, p) ≥ A0

= max(A0, H−(t0, x0, p)).

We used the fact thatH ≥ H− to get the last line. Recalling that A0 = u∗(t0, x0)−g(t0, x0)−λ, Theorem 3.14
implies the conclusion of Theorem 1.6.
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