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Abstract

In this paper we are interested in pointwise regularity of solutions to elliptic equations. In a first

result, we prove that if the modulus of mean oscillation of ∆u at the origin is Dini (in L
p average),

then the origin is a Lebesgue point of continuity (still in L
p average) for the second derivatives

D
2
u. We extend this pointwise regularity result to the obtacle problem for the Laplace equation

with Dini right hand side at the origin. Under these assumptions, we prove that the solution to the

obstacle problem has a Taylor expansion up to the order 2 (in the L
p average). Moreover we get a

quatitative estimate of the error in this Taylor expansion for regular points of the free boundary. In

the case where the right hand side is moreover double Dini at the origin, we also get a quatitative

estimate of the error for singular points of the free boundary.

Our method of proof is based on some decay estimates obtained by contradiction, using blow-up

arguments and Liouville Theorems. In the case of singular points, our method uses moreover a

refined monotonicity formula.
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1 Introduction

1.1 The Laplace equation

In this paper, we are interested in the pointwise regularity properties of solutions to elliptic
problems. We first consider the solutions to the following Laplace equation

(1.1)







∆u = f in B1

f ∈ Lp(B1) and f(0) = 0
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where in R
n, we denote by Br = Br(0) the open ball of radius r and of center the origin 0.

Here p ∈ (1,+∞), and we only assume that 0 is a Lebesgue point of f , in order to define
f(0) when it is necessary.

It is well-known that, if f is Hölder continuous on the ball B1, then this is also true
for the second derivatives of the solution u (see for instance Gilbarg, Trudinger [26] for a
classical proof of this result based on the potential theory).
Let us introduce the following modulus of continuity of f on the ball B1:

(1.2) σ(r) = sup
|x−y|≤r, x,y∈B1

|f(x) − f(y)|

Definition 1.1 (Dini modulus of continuity / double Dini)
A modulus of continuity σ is said Dini if it satisfies the following integral condition:

(1.3)

∫ 1

0

σ(r)

r
dr < +∞

It is said double Dini if

(1.4)

∫ 1

0

dr

r

(∫ r

0

ds

s
σ(s)

)

< +∞

It is also well-known that if σ is Dini, then the second derivatives of the solution u are contin-
uous in any ball striclty contained in B1, with a modulus of continuity which is proportional
to
∫ r

0
σ(s)ds/s+r

∫ 1

r
σ(s)ds/s2. For proofs based on potential theory, see Hartman, Wintner

[28], Matiichuk, Eidel’man [35], Burch [4], and for a proof based on Dini-Campanato spaces
and explicit approximations of the solution by polynomials, see for instance Kovats [33]. For
similar results for the regularity of solutions of elliptic systems in divergence form based on
the harmonic approximation lemma, see Duzaar, Gastel [21], Duzaar, Gastel, Mingione [22],
and also Wolf [43] with a different approach.

The previous results were obtained assuming a modulus of continuity in an open set.
Here we change the point of view, and only want to consider pointwise modulus of mean
oscillation. For any p ∈ (1,+∞), let us introduce the following modulus of mean oscillation
(in Lp average) of the function f at the origin:

(1.5) σ̃p(ρ) = sup
r∈(0,ρ]

inf
c∈R

(

1

|Br|

∫

Br

|f(x) − c|p
) 1

p

Let us denote by P̃2 the set of polynomials of degree less or equal to 2, and let us set

M̃(u, ρ) = sup
r∈(0,ρ]

(

inf
P∈P̃2

(

1

rn+2p

∫

Br

|u− P |p
) 1

p

)

Theorem 1.2 (Pointwise BMO estimates for the Laplace equation)
Let p ∈ (1,+∞) be given. Then there exist α ∈ (0, 1] and constants C > 0, r0 ∈ (0, 1),
such that, given a function u ∈ Lp(B1) satisfying (1.1) with a modulus of mean oscillation
σ̃p defined in (1.5), we have
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i) Pointwise BMO estimate

(1.6) M̃(u, 1) ≤ C

{

(∫

B1

|u|p
) 1

p

+

(∫

B1

|f |p
) 1

p

+ σ̃p(1)

}

ii) Pointwise VMO estimate
Moreover, we have

(

σ̃p(r) −→ 0 as r → 0+
)

=⇒
(

M̃(u, r) −→ 0 as r → 0+
)

iii) Pointwise control on the solution
Finally, if σ̃p is Dini, then M̃(u, ·) is Dini, and there exists a harmonic polynomial P0 of
degree less or equal to 2, such that for every r ∈ (0, r0):

(1.7)

(

1

|Br|

∫

Br

∣

∣

∣

∣

u(x) − P0(x)

r2

∣

∣

∣

∣

p) 1
p

≤ C

(

M̃0r
α +

∫ r

0

σ̃p(s)

s
ds+ rα

∫ 1

r

σ̃p(s)

s1+α
ds

)

and

P0(x) = a+ b · x+
1

2
tx · c · x

with

|a| + |b| + |c| ≤ CM̃0 and M̃0 =

∫ 1

0

σ̃p(s)

s
ds+

(∫

B1

|u|p
) 1

p

+

(∫

B1

|f |p
) 1

p

Here b · x denotes the scalar product between the vectors b and x.

Remark 1.3 In other words, Theorem 1.2 iii) implies in particular (using elliptic estimates)
that we have a Lebesgue point of continuity of the second derivatives D2u (in the Lp average)
if ∆u has a Dini modulus of mean oscillation (in the Lp average) at the same point.

Remark 1.4 A straightforward corollary of Theorem 1.2 gives in particular that the second
derivatives D2u are Hölder continuous in an open set Ω, if ∆u is Hölder continuous in Ω.

Theorem 1.2 gives a kind of Taylor expansion up to the second order with a quantitative
estimate of the rest in the Lp norm. This notion of continuity of derivatives seems quite
natural and is related to the notion of approximate derivatives (for p = 1, see section 2.9 of
Federer [25], for p = n see Caffarelli [10], see also Campanato spaces [18], the generalized
Campanato-John-Nirenberg spaces in [12], the tp2 class of Calderon, Zygmund [17], or the
notion of generalized derivatives in Diederich [20]). For a characterization of such pointwise
regularity in terms of wavelet coefficients, we refer the interested reader to Jaffard [29] (see
also Jaffard, Meyer [30]).

We would like to emphasis that the result of Theorem 1.2 is completely pointwise, which
does not seem so usual in the literature (see for instance the article of Simon [40] obtaining
Schauder estimates by a scaling argument joint to compactness). Even if part of this result
is somehow contained in a proof of Kovats [33] in the special case p = +∞ (see the proof
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of his Lemma 2.1), our method of proof is completely different. Here we do not use an
explicit construction of approximate polynomials, but on the contrary prove the result by
contradiction, using a blow-up argument. The consequence is that we do not recover the
best exponent α = 1. Nevertheless, we think that our method of proof is quite flexible, and
present below new consequences for the obstacle problem.

1.2 The model obstacle problem

In this article we are in particular interested in the regularity of the free boundary for
solutions to obstacle problems. The model problem is the following. We consider bounded
functions u, satisfying in the unit ball B1, for p ∈ (max(n/2, 1),+∞)

(1.8)







































∆u = f(x) · 1{u>0}

u ≥ 0

∣

∣

∣

∣

∣

∣

in B1

u, f ∈ Lp(B1) and f(0) = 1

0 ∈ ∂ {u > 0}

where 1{u>0} is the characteristic function of the set {u > 0} which is equal to 1 if u > 0 and
0 if u = 0. From classical elliptic estimates joint to Sobolev imbbedings with our assump-
tion p > n/2, every solution u is in particular continuous, which allows us to consider the
boundary of the open set {u > 0}. Here ∂ {u > 0} is called the free boundary. We assume
that 0 is a Lebesgue point of f in order to define f(0).

Let us introduce the following pointwise modulus of continuity (in Lp average) of the
function f at the origin:

(1.9) σp(ρ) = sup
r∈(0,ρ]

(

1

|Br|

∫

Br

|f(x) − f(0)|p
) 1

p

We have the following general regularity result.

Proposition 1.5 (Quadratic growth)
Let p ∈ (max(n/2, 1),+∞). Then there exists a constant C > 0 such that if u is a solution
of (1.8) with σp bounded given by (1.9), then

∀x ∈ B1/2, 0 ≤ u(x) ≤ C1|x|
2 with C1 = C

{

(∫

B1

|u|p
) 1

p

+ σp(1) + 1

}

Let us mention that a certain Wiener criterion has been established for the continuity of
the solution for the two-obstacle problem with irregular obstacles. We refer the interested
reader to the work of Dal Maso, Mosco, Vivaldi [19] where the right hand side of the equa-
tion is estimated in the Kato space, and to Kilpeläinen, Ziemer [31] for related results for
nonlinear operators.

When we assume furthermore that p ≥ 2n/(n+1), it is interesting to present the following
preliminary result which distinguishes if 0 is a degenerate, regular or a singular point of the
free boundary.
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Theorem 1.6 (Definition of degenerate/regular/singular points by the mono-
tonicity formula)
Given a solution u of (1.8), we define for r ∈ (0, 1)

(1.10) Φ(r) =
1

rn+2

∫

Br

1

2
|∇u|2 + u−

1

rn+3

∫

∂Br

u2

for some p ∈ (max(n/2, 1),+∞) with p ≥ 2n/(n+1). If the modulus of continuity σp defined
in (1.9) is Dini, then Φ has a limit at r = 0, that we denote by Φ(0+). Moreover there exists
a constant α = α(n) > 0, such that either
i) Φ(0+) = 0 and then the point 0 is called a degenerate point, or
ii) Φ(0+) = α and then the point 0 is called a regular point, or
iii) Φ(0+) = 2α and then the point 0 is called a singular point.
Moreover in the special case where f ≡ 1, the function Φ is nondecreasing in r.

Remark 1.7 Under the present assumptions, it is possible to build examples (see Section
5) with degenerate points. On the contrary, if we assume moreover that f ≥ δ0 > 0, then it
is classical that 0 can not be a degenerate point (see Caffarelli [7], Blank [5]).

Let us recall that this result is originally due to Weiss [42] for f ≡ 1 (see also Monneau
[36] for a version for some Dini modulus of continuity, and Petrosyan, Shahgholian [38]
for a similar monotonicity formula for double Dini modulus of continuity, but for obstacle
problems with no sign condition on the solution).

Let us introduce the following quantity (which is finite by Proposition 1.5)

Mreg(u, ρ) = sup
r∈(0,ρ]

(

inf
P∈Preg

(

1

rn+2p

∫

Br

|u− P |p
) 1

p

)

where

Preg =

{

P, ∃ν ∈ Sn−1, P (x) =
1

2
max (0, x · ν)2

}

Our main results are the following three statements in the regular case and in the singular
case.

Theorem 1.8 (Modulus of continuity at a regular point of the free boundary)
Let p ∈ (max(n/2, 1),+∞). There exist α ∈ (0, 1] and constants C > 0, M0, r0 ∈ (0, 1) such
that, given a function u satisfying (1.8), we have the following property.
If the modulus of continuity σp defined in (1.9) is assumed Dini, and if

Mreg(u, r0) ≤M0

then there exists P0 ∈ Preg such that for every r ∈ (0, r0):
(1.11)

(

1

|Br|

∫

Br

∣

∣

∣

∣

u(x) − P0(x)

r2

∣

∣

∣

∣

p) 1
p

≤ C

(

Mreg(u, r0) r
α +

∫ r

0

σp(s)

s
ds+ rα

∫ 1

r

σp(s)

s1+α
ds

)

Remark 1.9 With the same methods of proof, it would be possible to get a similar estimate
for any p ∈ (1,+∞), but under the stronger assumption that the coefficient of the right hand
side of the equation is bounded from above and from below, i.e. 0 < δ0 ≤ f ≤ 1/δ0.
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Theorem 1.10 (Uniqueness of the blow-up limit at singular points)
Let p ∈ (max(n/2, 1),+∞) with p ≥ 2. If the modulus of continuity σp defined in (1.9)
is assumed Dini, then there exists a non-negative polynomial P0 homogeneous of degree 2
satisfying ∆P0 = 1, such that

(1.12)

(

1

|Br|

∫

Br

∣

∣

∣

∣

u(x) − P0(x)

r2

∣

∣

∣

∣

2
) 1

2

−→ 0 as r −→ 0

Let us define the set

Psing =

{

P, ∃Q ∈ R
n×n
sym , P =

1

2
tx ·Q · x, trace (Q) = 1, Q ≥ 0

}

We also define

Msing(u, ρ) = sup
r∈(0,ρ]

(

inf
P∈Psing

(

1

rn+4

∫

Br

|u− P |2
) 1

2

)

Then we have

Theorem 1.11 (Modulus of continuity at a singular point of the free boundary)
Let p ∈ (n/2,+∞) with p ≥ 2. There exists α ∈ (0, 1] and constants C > 0, M0, r0 ∈ (0, 1)
such that, given a function u satisfying (1.8), we have the following property.
If the modulus of continuity σp defined in (1.9) is assumed double Dini, and if

Msing(u, r0) ≤M0

then there exists P0 ∈ Psing such that for every r ∈ (0, r0):
(1.13)
(

1

|Br|

∫

Br

∣

∣

∣

∣

u(x) − P0(x)

r2

∣

∣

∣

∣

2
) 1

2

≤ C

(

Msing(u, r0)r
α +

∫ r

0

Σp(s)

s
ds+ rα

∫ 1

r

Σp(s)

s1+α
ds

)

with

Σp(s) = σp(s) +

∫ s

0

dt
σp(t)

t

Remark 1.12 In particular the boundary ∂ {P0 > 0} can be interpreted as the tangent j-
dimensional subspace to the free boundary at the origin 0. Here j = n− 1 for regular points,
and j = dim Ker Q for singular points.

Remark 1.13 Theorem 1.11 remains true if we replace Σp(s) by

Σ̃p(s) = σp(s) +

(∫ s

0

dt
σ2

p(t)

t

)

1
2

assuming only that Σ̃p is Dini. This is a sharper result, because we always have Σ̃p ≤ CΣp

and for instance for σp(s) = | ln s|−
3
2 , we have that Σ̃p is Dini while Σp is not.
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Let us emphasis again that these results are pointwise, and seem the first pointwise re-
sults for the obstacle problem, up to our knowledge. The regularity of the free boundary
can be easily deduced from these theorems (see Theorem 8.3).

Concerning regular points, let us mention slightly more precise results on the regularity
of the free boundary when the modulus of continuity is not only controled at the origin 0,
but controled at any points (see Blank [5] for sharp results). See the previous works of Caf-
farelli [6, 7, 8, 9], Weiss [42], and Caffarelli, Karp, Shahgholian [13] for Lipschitz coefficients,
and also the work of Caffarelli, Kinderlehrer [14] for some related estimates on the modulus
of continuity of the solution or of its gradient. Let us mention that very recently, similar
regularity results have been obtained in Petrosyan, Shahgholian [38] for the regular points
of the free boundary, for an obstacle problem with no sign assumption on the solution.
These results are obtained under geometric and energetic conditions and the assumption

that

∫ 1

0

dr
σ(r) ln 1

r

r
is finite, which can easily be seen to be equivalent to the double Dini

assumption. See also Lee, Shahgholian [34] for regularity results for fully nonlinear obstacle
problems.

Concerning singular points, the first result of regularity has been proved by Caffarelli
[8] using the monotonicity formula of Alt, Caffarelli, Friedman [1], and this result has been
generalized for Lipschitz coefficients (and for an obstacle problem without sign assumption
on the solution) by Caffarelli, Shahgholian [16]. For the classical obstacle problem, pointwise
regularity results of the singular set have been obtained for double Dini coefficients in Mon-
neau [36]. This result was based on a monotonicity formula devoted to singular points (see
also Monneau [37]). In the proof of Theorem 1.10, this monotonicity formula for singular
points has been refined, which allows us to get the result assuming the modulus of continuity
to be only Dini.

The proof of theorems 1.2, 1.8 and 1.11 are based on a decay estimate (see Propositions
2.5, 6.2 and 7.4), similar to other decay estimates obtained for dynamical systems converging
to stable states (see for instance Simon [39]). Our proof of this decay estimate is done by
contradiction, and uses blow-up techniques like in Caffarelli [7] and the stability of the
obstacle problem. Our approach is strongly inspired on the one hand from the epiperimetric
inequality given in Weiss [42], and on the other hand on blow-up techniques and Caccioppoli
inequalities as used in Evans [23], Evans, Gariepy [24], and finally on classical results for
Dini-continuity results for solutions of elliptic equations or systems (see the references cited
in subsection 1.1).

Remark 1.14 From our proofs, we can check that all the previous estimates are still true
(with different constants), if we replace σp(s) by σp(γs) for a fixed constant γ ∈ (0, 1].

1.3 Organization of the article

In Section 2, we prove a fundamental decay estimate (Proposition 2.5) for the Laplace
equation and give the proof of a weak version of Theorem 1.2, namely Theorem 2.1, and
finally give the proof of Theorem 1.2. The proof of the Theorem also uses some general large
scales estimates (Lemma 2.9 and Proposition 2.7) that are proved in Section 3.
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In Section 4, we start the study of the obstacle problem, giving the proof of the growth
estimate Proposition 1.5 and the monotonicity formula Theorem 1.6. In Section 5, we study
degenerate points of the free boundary and give an example of such points. In Section 6, we
study the regular points of the free boundary and prove Theorem 1.8, also based on a decay
estimate (Proposition 6.2).
Section 7 is devoted to the study of singular points of the free boundary. We first prove two
monotonicity formulas (one for double Dini coefficients and another one for Dini coefficients
assuming moreover p ≥ 2). We then show Theorem 1.10 on the uniqueness of the blow-up
limits. The quantitative estimate Theorem 1.11 is proved using a decay estimate. This decay
estimate (Proposition 7.4) is in particular based on new Liouville type results.
In Section 8, we give some applications to the regularity of the free boundary for general
second order linear elliptic operators. In the Appendix (Section 9), we also give an application
to the regularity of solutions to fully nonlinear elliptic equations.

2 A decay estimate for Laplace equation and proof of

Theorem 1.2

2.1 Proof of a weak version of Theorem 1.2

We will start to prove a weak version of Theorem 1.2 (namely Theorem 2.1) whose proof
is slightly simpler and enlights the method we use. Moreover this method of proof will be
directly adapted later for the obtacle problem. The proof of Theorem 1.2 will be done in
Subsection 2.4 and will consist in an adaptation of the proof of the following result:

Theorem 2.1 (Pointwise modulus of continuity for the Laplace equation)
Let p ∈ (1,+∞) given. Then there exist α ∈ (0, 1] and constants C > 0, r0 ∈ (0, 1), such
that, given a function u ∈ Lp(B1) satisfying (1.1) with a modulus of continuity σp defined in
(1.9) which is assumed Dini, then there exists a harmonic polynomial P0 of degree less or
equal to 2, such that for every r ∈ (0, r0):

(2.14)

(

1

|Br|

∫

Br

∣

∣

∣

∣

u(x) − P0(x)

r2

∣

∣

∣

∣

p) 1
p

≤ C

(

M0r
α +

∫ r

0

σp(s)

s
ds+ rα

∫ 1

r

σp(s)

s1+α
ds

)

and

P0(x) = a+ b · x+
1

2
tx · c · x

with

|a| + |b| + |c| ≤ CM0 and M0 =

∫ 1

0

σp(s)

s
ds+

(∫

B1

|u|p
) 1

p

For the reader’s convenience, we recall the equation (1.1) satisfied by u, namely

(2.15)







∆u = f in B1

f ∈ Lp(B1) and f(0) = 0

We will use the following
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Definition 2.2 (Quantities M and N)
We introduce the following set of functions

P2 = {P, with P polynomial of degree less or equal to 2 such that ∆P = 0}

and define

M(u, ρ) = sup
r∈(0,ρ]

N(u, r) with N(u, r) = inf
P∈P2

(

1

rn+2p

∫

Br

|u− P |p
) 1

p

When there is no ambiguity on the choice of function u, we simply denote these quantities
by M(ρ) and N(r).

Let us remark that M and N give a measure of the distance between the function u and
the set P2 which contains the possible limit behaviour of the solution at the origin.

At this stage, it is not clear if M is finite or not. Nevertheless, we have the following
property which will be proved at the end of Subsection 2.3. We claim the following

Proposition 2.3 (Finiteness of M)
There exists a constant C > 0 such that

(2.16) M(u, 1) ≤ C

{

(∫

B1

|u|p
) 1

p

+ σp(1)

}

Remark 2.4 Proposition 2.3 is sharp, in view of the following example. In dimension
n = 2, let us consider P (x) = x2

1 − x2
2 for x = (x1, x2). Then u(x) = P (x) ln |x| satisfies

∆u(x) = 4P (x)/|x|2. Therefore ∆u is bounded, while D2u is not.

Then we have the following cornerstone result which will be proved in Subsection 2.3.

Proposition 2.5 (Decay estimate in a smaller ball)
Given p ∈ (1,+∞), there exist constants C0 > 0, r0, λ, µ ∈ (0, 1) (depending only on p
and dimension n) such that for every functions u and f satisfying (1.1) with a modulus of
continuity σp given by (1.9), then we have the following property

(2.17) ∀r ∈ (0, r0), M(u, λr) < µM(u, r) or M(u, r) < C0σp(r)

Remark 2.6 Here the problem is linear, so M(u, r) does not need to be small to satisfy the
decay estimate.

Contrarily to Proposition 2.5, the following result does not depend on the particular PDE
that we study, but can be considered as a routine result and will be proved in Section 3.

Proposition 2.7 (Modulus of continuity of the solution up to the second order)
Let us consider any function u which satisfies (2.17) with constants C0 > 0, r0, λ, µ ∈ (0, 1),
and a Dini modulus of continuity σp. Let us define α = lnµ/ lnλ. Then there exist P0 ∈ P2

and a constant C ′
0 > 0 depending only on C0, r0, λ, µ, such that for every ρ ∈ (0, λr0/2), we

have

(2.18)

(

1

ρn+2p

∫

Bρ

dy |u− P0|
p

) 1
p

≤ C ′
0

{

M(u, r0) ρ
α +

∫ ρ

0

σp(r)

r
dr + ρα

∫ r0

ρ

σp(r)

r1+α
dr

}
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Proof of Theorem 2.1
The proof of Theorem 2.1 follows from estimates on M(u, r0) and on P0 that we establish
successively.
Estimate on M(u, r0)
Because the right hand side of the inequality (2.18) is non-increasing with respect to α, it is
sufficient to replace α by min(1, α). Let us choose r1 such that C ′

0r
α
1 ≤ 1/2 and r1 ≤ λr0/2.

Then we have

M(u, r0) ≤M(u, r1) + sup
ρ∈[r1,r0]

(

1

ρn+2p

∫

Bρ

|u|p

) 1
p

and

M(u, r1) = N(u, ρ0) ≤

(

1

ρn+2p
0

∫

Bρ0

|u− P0|
p

) 1
p

for some ρ0 ∈ (0, r1] for which we deduce from (2.18) that

M(u, r1) ≤ 2C ′
0

{∫ ρ0

0

σp(r)

r
dr + ρα

0

∫ r0

ρ0

σp(r)

r1+α
dr

}

Because the right hand side is a non-decreasing function of ρ0, we deduce that there exists
a constant C1 > 0 depending only on C ′

0, r0, α, n, p such that

M(u, r0) ≤ C1





∫ r0

0

σp(r)

r
dr +

(

∫

Br0

|u|p

) 1
p





Estimate on P0

Let us remark that for some ρ0 (for instance ρ0 = λr0/4) we have

(

1

ρn+2p
0

∫

Bρ0

|P0|
p

) 1
p

≤

(

1

ρ0
n+2p

∫

Bρ0

|u|p

) 1
p

+

(

1

ρ0
n+2p

∫

Bρ0

|u− P0|
p

) 1
p

Then from (2.18), we deduce that for some constant C2 > 0

(

1

ρn+2p
0

∫

Bρ0

|P0|
p

) 1
p

≤ C2





∫ ρ0

0

σp(r)

r
dr +

(

∫

Bρ0

|u|p

) 1
p





Finally, if P0(x) = a+ b · x+ 1
2

tx · c · x, it can be easily checked that there exists a constant
C3 (independent of P0) such that

|a| + |b| + |c| ≤ C3

(

1

ρn+2p
0

∫

Bρ0

|P0|
p

) 1
p

This implies the result and ends the proof of the Theorem.
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2.2 Preliminary results

Before performing the proof of Proposition 2.5, we need two lemmata. We first state and
prove the following Caccioppoli type estimate.

Lemma 2.8 (Caccioppoli type estimate)
Let ζ ∈ C∞

0 (Rn) with supp ζ ⊂ BR(0) with R > 0. Let P ∈ P2 and u be a solution of (1.1)
and σp defined in (1.9) for some p ∈ (1,+∞). Then we have for W = (u− P )|u− P |

p
2
−1

and
1

p
+

1

p′
= 1

∫

Rn

4(p− 1)

p2
ζ2|∇W |2 ≤

∫

Rn

4

p− 1
W 2|∇ζ|2 + 2|BR|σp(R)

(

1

|BR|

∫

BR

ζ2p′ |W |2
) 1

p′

(2.19)

Proof of Lemma 2.8
On the ball B1, we have

−∆u+ f = 0 and − ∆P = 0 = f(0)

for every P ∈ P. Taking the difference of the equations, and multiplying by ζ2w|w|p−2 for
w = u− P , we get

∫

Rn

−ζ2w|w|p−2∆w =

∫

BR

−ζ2w|w|p−2(f(x) − f(0))

An integration by parts shows that we get with W = w|w|
p
2
−1

∫

Rn

−ζ2w|w|p−2∆w =

∫

Rn

4(p− 1)

p2
ζ2|∇W |2 +

4

p
ζW ∇ζ · ∇W

Therefore for λ =
4(p− 1)

p2
, we get with

1

p
+

1

p′
= 1

∫

Rn

λζ2|∇W |2

≤

∫

Rn

−
4

p
ζW ∇ζ · ∇W +

∫

BR

ζ2|W |
2(p−1)

p |f(x) − f(0)|

≤

∫

Rn

1

2

{

λζ2|∇W |2 +
16

p2
λ−1W 2|∇ζ|2

}

+ |BR|σp(R)

(

1

|BR|

∫

BR

(

ζ2|W |
2(p−1)

p

)p′
) 1

p′

≤

∫

Rn

1

2

{

λζ2|∇W |2 +
4

p− 1
W 2|∇ζ|2

}

+ |BR|σp(R)

(

1

|BR|

∫

BR

ζ2p′ |W |2
) 1

p′

Substracting the term
1

2

∫

Rn

λζ2|∇W |2 to the left hand side, this gives (2.19). This ends

the proof of the Lemma.

We will also use the following result which shows that we can control a distance between
the function u and a particular element of P2, once we control an integral of M(u, s)/s:

11



Lemma 2.9 (Control of u by M)
Let us assume that the set P is either the set of harmonic polynomials of degree less or equal
to 2, or that each element of P is homogeneous of degree 2 and that for each a ≥ 0, the set
Ka =

{

P ∈ P, |P |Lp(B1) ≤ a
}

is compact.
For p ∈ (1,+∞), there exists a constant C1 > 0 (which only depends on p and the dimension
n) such that if

N(u, 1) =

(∫

B1

|u− P1|
p

) 1
p

for some P1 ∈ P

and if u is defined in B2ρ with ρ ≥ 1, then we have

(

1

ρn+2p

∫

Bρ

|u− P1|
p

) 1
p

≤ C1

∫ 2ρ

1

M(u, s)

s
ds

This result will be proved in Section 3.

2.3 Proof of the decay estimate Proposition 2.5

Proof of Proposition 2.5
We perform the proof by contradiction in two Steps. For simplicity, we fix the exponent p,
and set

σ(r) = σp(r)

By the way, we will have to consider sequences of modulus of continuity σ that we denote
by (σm)m indexed by m, with no possible confusion.

Step 1: A priori estimates on a sequence vm

If the Proposition is false, then there exist sequences (rm)m, (Cm)m, (λm)m, (µm)m, (fm)m,
(um)m, (σm)m such that







rm, λm −→ 0
Cm −→ +∞
µm −→ 1

and

(2.20) M(um, rm) ≥ Cmσm(rm) and M(um, λmrm) ≥ µmM(um, rm)

From Proposition 2.3, M(um, ·) is bounded (and non-decreasing). Therefore there exists
ρm ∈ (0, λmrm], such that N(um, ρm) is arbitrarily close to M(um, λmrm) and satisfies for
instance

M(um, λmrm)

1 + 1/m
≤ N(um, ρm) =: εm

with

N(um, ρm) =

(

1

ρn+2p
m

∫

Bρm

|um − Pm|
p

) 1
p

for some Pm ∈ P2

12



We now apply Lemma 2.9 to uρm
m (x) = um(ρm · x)/ρ2

m, P ρm
m (x) = Pm(ρm · x)/ρ2

m and get for
every s ∈ (1, sm/2) with sm = rm/ρm ≥ 1/λm −→ +∞ :

(2.21)

(

1

(sρm)n+2p

∫

Bsρm

|um − Pm|
p

) 1
p

=

(

1

sn+2p

∫

Bs

|uρm
m − P ρm

m |p
) 1

p

≤ C1

∫ 2s

1

ds′
M(uρm

m , s′)

s′

≤ C1

∫ 2s

1

ds′
M(um, s

′ρm)

s′

≤ C1
(1 + 1/m)εm

µm

ln(2s)

We now define the renormalized function

vm(y) :=
1

εmρ2
m

(um − Pm) (ρmy)

which satisfies

∆vm = gm with gm(y) =
fm(ρmy)

εm

with for fixed R > 0

(2.22)

(

1

|BR|

∫

BR

|gm|
p

) 1
p

=
σm (ρmR)

εm

−→ 0 as m −→ +∞

Indeed, from (2.20), for s ∈ (0, sm), we deduce that

σm(sρm) ≤ σm(smρm) = σm(rm) ≤
εm(1 + 1/m)

µmCm

and therefore for every s ∈ (0, sm) we have

(2.23)
σm(ρms)

εm

≤
1 + 1/m

µmCm

−→ 0

Moreover we have (because here P2 is a vector space)

(2.24) inf
P∈P2

(∫

B1

|vm − P |p
) 1

p

= 1,

and for s ∈ (1, sm/2)

(2.25)

(

1

sn+2p

∫

Bs

|vm|
p

) 1
p

≤
C1(1 + 1/m)

µm

ln(2s) −→ C1 ln(2s)

13



where the limits are taken as m goes to infinity.
We now apply the Caccioppoli type estimate (2.19) to vm, we get for supp ζ ⊂ BR and
Wm = vm|vm|

p
2
−1

(2.26)
∫

Rn

4(p− 1)

p2
ζ2|∇Wm|

2 ≤

∫

Rn

4

p− 1
W 2

m|∇ζ|
2 + 2|BR|

σm(ρmR)

εm

(

1

|BR|

∫

BR

ζ2p′ |Wm|
2

) 1
p′

Step 2: Convergence of the sequence vm

From (2.22),(2.26) and (2.25), we get that for every R > 0, there exists a constant CR > 0
such that uniformly in m we have

|Wm|H1(BR) ≤ CR

Then, up to extracting a subsequence, we can assume that

{

Wm −→ W∞ = v∞|v∞|
p
2
−1 in L2

loc(R
n) and a.e. in R

n

Wm −→ W∞ weakly in H1
loc(R

n)

where v∞ has to be seen as the limit of vm. More precisely, remark that we have the following
convergence for all R > 0:

|vm|
p
Lp(BR) = |Wm|

2
L2(BR) −→ |W∞|2L2(BR) = |v∞|pLp(BR)

and then
vm → v∞ in Lp

loc(R
n)

This implies in particular

(2.27) inf
P∈P2

(∫

B1

|v∞ − P |p
) 1

p

= 1,

and

(2.28)

(

1

sn+2p

∫

Bs

|v∞|p
) 1

p

≤ C1 ln(2s) for every s ≥ 1

and by (2.22), we deduce that v∞ satisfies

∆v∞ = 0 in R
n

Together with (2.28), we see that v∞ ∈ S ′ (the dual of the Schwarz space) and then v∞ is a
polynomial, whose degree is less or equal to 2 by (2.28). Therefore this is in contradiction
with (2.27).
This ends the proof of the Proposition.

Remark 2.10 Remark that in the proof of Proposition 2.5, the Caccioppoli estimate can be
replaced by any reasonable bound that implies the compactness of the sequence in Lp

loc(R
n).
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Proof of Proposition 2.3
We will perform the proof in two steps. For simplicity, we fix the exponent p, and set

σ(r) = σp(r)

By the way, we will have to consider sequences of modulus of continuity σ that we denote
by (σm)m indexed by m, with no possible confusion.
Step 1: finiteness of M(u, 1)
The proof of the finiteness of M(u, 1) follows almost lines by lines the proof of Proposition
2.5 for the decay estimate on M .
Assumme that M(u, 1) = +∞. This implies that there is a sequence (ρm)m such that

N(u, ρm) −→ +∞ with ρm −→ 0

and
N(u, r) ≤ N(u, ρm) for r ∈ (ρm, r0)

Still defining εm = N(u, ρm) (which this times goes to infinity), we see that

vm(y) :=
1

εmρ2
m

(u− Pm) (ρmy)

still satisfies

(2.29) inf
P∈P2

(∫

B1

|vm − P |p
) 1

p

= 1

and for s ∈ (1, sm/2) with this time sm = r0/ρm → +∞

(2.30)

(

1

sn+2p

∫

Bs

|vm|
p

) 1
p

≤ C1 ln(2s)

where we have used the fact that the maximum of M(u, ·) is reached at ρm in (2.21), and
the Caccioppoli type estimate for supp ζ ⊂ BR and Wm = vm|vm|

p
2
−1

(2.31)
∫

Rn

4(p− 1)

p2
ζ2|∇Wm|

2 ≤

∫

Rn

4

p− 1
W 2

m|∇ζ|
2 + 2|BR|

σ(Rρm)

εm

(

1

|BR|

∫

BR

ζ2p′ |Wm|
2

) 1
p′

where we see directly this time that
σ(Rρm)

εm

→ 0, because εm → +∞ and σ is assumed

finite. Finally, using the fact that εm → +∞, we get that the limit v∞ of vm is harmonic,
and we get the contradiction following Step 2 of the proof of Proposition 2.5.
Step 2: bound on M(u, 1)
We now know that M(u, 1) is bounded. Let us assume that the Proposition is false. Again,
we can find sequences (Cm)m, (fm)m, (um)m, (σm)m such that

Cm −→ +∞

and

M(um, 1) ≥ Cm

{

(∫

B1

|um|
p

) 1
p

+ σm(1)

}

15



Therefore there exists ρm ∈ (0, 1], such that N(um, ρm) is arbitrarily close to M(um, 1).

Therefore, we have ρm −→ 0 (because N(um, r) is bounded by Cr0

(

∫

B1
|um|

p
) 1

p
for some

constant Cr0 > 0 for r ≥ r0 > 0). Consequently, we can choose ρm satisfying for instance

M(um, 1)

1 + 1/m
≤ N(um, ρm) =: εm

and
N(u, r) ≤ N(u, ρm) for r ∈ (ρm, 1)

We finally proceed as in Step 1 of the present proof, but defining

vm(y) :=
1

εmρ2
m

(um − Pm) (ρmy)

Moreover in (2.30), C1 is replaced by C1(1 + 1/m), and in (2.31),
σ(Rρm)

εm

can be replaced

by
σm(1)

εm

≤
1 + 1/m

Cm

→ 0. This ends the proof of Proposition 2.3.

2.4 Proof of Theorem 1.2

The proofs of Theorem 1.2 i), ii) and iii) are respectively an adaptation of the proofs of
Proposition 2.3, Proposition 2.5 and Theorem 2.1. We give below the results that we have
to adapt.

Step 1: preliminaries
First, we consider a constant cr such that

inf
c∈R

∫

Br

|f(x) − c|p =
1

|Br|

∫

Br

|f(x) − cr|
p .

Then, we fix a polynomial P∗ homogeneous of degree 2 satisfying ∆P∗ = 1 (for instance

P∗(x) =
x2

2n
), and define

M̂(u, ρ) = sup
r∈(0,ρ]

N̂(u, r) with N̂(u, r) = inf
P∈P2

(

1

rn+2p

∫

Br

|u− P − crP∗|
p

) 1
p

where P2 is still the set of harmonic polynomials of degree less or equal to 2. The renormalized
function is then

vm(y) :=
1

εmρ2
m

(u− Pm − cρmP∗) (ρmy)

with Pm ∈ P2 realizing the infimum in the definition of N̂(u, ρm).

Step 2: proof of the analogue of Proposition 2.5
Assuming first that M̂(u, ·) is finite, we prove a decay estimate similar to Proposition 2.5,
with M(u, ·) and σp respectively replaced by M̂(u, ·) and σ̃p (remark that this decay estimate
implies in particular the VMO estimate ii) of Theorem 1.2). To prove this decay estimate,
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we check easily that the proof of Lemma 2.9 applies perfectly in our case. Indeed, it is
sufficient to work with the polynomials P̂r = Pr + crP∗ which gives with the same constant
C1 the result for ρ ≥ 1 (and then for u rescalled):

(

1

ρn+2p

∫

Bρ

|u− P1 − c1P∗|
p

) 1
p

≤ C1

∫ 2ρ

1

M̂(u, s)

s
ds

Then the rest of the proof is similar with the choice

gm(y) =
fm(ρmy) − cρm

εm

which introduces an additional factor 1 + lnR (for R ≥ 1) in the analogue of (2.22) which
does not affect the conclusion of the proof.

Step 3: proof of the analogue of Proposition 2.3
The proof of the analogue of Proposition 2.3 is the same, except that here N(um, r) is

bounded by Cr0

(

(

∫

B1
|um|

p
) 1

p
+
(

∫

B1
|fm|

p
) 1

p

)

for some constant Cr0 > 0 for 1 ≥ r ≥ r0 >

0.

Step 4: proof of the analogue of Theorem 2.1
Lemmata 3.3 and 3.4 are still true with M(u, ·) and σp replaced by M̂(u, ·) and σ̃p. Noticing
that

M̃(u, r) ≤ M̂(u, r) ,

we get (1.7) (i.e. the analogue of Proposition 2.7) as previously as a consequence of Lemma
3.5 applied to M̃(u, ·) with P = P̃2.

Finally, in the rest of the proof of Theorem 1.2 consisting to control the coefficients of P0,
the only change appears applying (1.7) instead of (2.18). Therefore we use the bound (1.6)
to get the estimate on the coefficients of the polynomial. This makes appear an additional

term
(

∫

B1
|f |p
) 1

p
, and finishes the proof of Theorem 1.2.

3 General large scale estimates : proof of Lemma 2.9

and Proposition 2.7

3.1 Proof of Lemma 2.9

Before proving Lemma 2.9, we need the following easy result:

Lemma 3.1 (Larger ball/smaller ball)
There exists a constant C2 ≥ 1 only depening on p and the dimension n such that for every
polynomial P of degree less or equal to 2, we have for any r ≥ 1:

(3.32)

(

1

rn+2p

∫

Br

|P |p
) 1

p

≤ C2

(∫

B1

|P |p
) 1

p
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Proof of Lemma 3.1
We simply remark that if P (x) = a + b · x + 1

2
tx · c · x, then there exists a constant C0 > 0

such that
(

1

rn+2p

∫

Br

|P |p
) 1

p

≤ C0

(

|a|

r2
+

|b|

r
+ |c|

)

On the other hand there exists a constant C1 > 0 (easily checked by contradiction) such that

|a| + |b| + |c| ≤ C1

(∫

B1

|P |p
) 1

p

Putting together these two inequalities, we get the result for r ≥ 1, which ends the proof of
the Lemma.

Proof of Lemma 2.9
For every r > 0, we have

N(r) =

(

1

rn+2p

∫

Br

|u− Pr|
p

) 1
p

for some Pr ∈ P

Then for α ∈ (1, 2] we have
(3.33)
(

1

rn+2p

∫

Br

|Pαr − Pr|
p

) 1
p

≤

(

1

rn+2p

∫

Br

|u− Pr|
p

) 1
p

+

(

1

rn+2p

∫

Br

|u− Pαr|
p

) 1
p

≤

(

1

rn+2p

∫

Br

|u− Pr|
p

) 1
p

+ α
n+2p

p

(

1

(αr)n+2p

∫

Bαr(0)

|u− Pαr|
p

) 1
p

≤ α
n+2p

p (N(r) +N(αr))

≤ C0M(αr) with C0 = 2
n+3p

p

In the case where the elements P ∈ P are 2-homogeneous, i.e. satisfy P (rx) = r2P (x),
we simply have

(∫

B1

|P2r − Pr|
p

) 1
p

=

(

1

rn+2p

∫

Br

|P2r − Pr|
p

) 1
p

≤ C0M(2r)

In the case where P is the set of harmonic polynomials of degree less or equal to 2, we deduce
from (3.32) and a rescaling that for ρ ≥ r > 0:

(

1

ρn+2p

∫

Bρ

|P2r − Pr|
p

) 1
p

≤ C2

(

1

rn+2p

∫

Br

|P2r − Pr|
p

) 1
p

≤ CM(2r) with C = C2C0

Similarly, we get

(

1

ρn+2p

∫

Bρ

|Pr − P1|
p

) 1
p

≤ C2

(

1

rn+2p

∫

Br

|Pr − P1|
p

) 1
p

≤ CM(1)
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where we have used (3.33) with 1 = αr and α = 1/r ∈ (1, 2].

Now for every ρ ≥ 1, we write ρ = 2kr with an integer k ≥ 1 and r ∈ [
1

2
, 1). Then we

have

(3.34)

(

1

ρn+2p

∫

Bρ

|u− P1|
p

) 1
p

≤

(

1

ρn+2p

∫

Bρ

|u− Pρ|
p

) 1
p

+

(

1

ρn+2p

∫

Bρ

|Pρ − P1|
p

) 1
p

We get
(3.35)
(

1

ρn+2p

∫

Bρ

|Pρ − P1|
p

) 1
p

≤

(

1

ρn+2p

∫

Bρ

|Pr − P1|
p

) 1
p

+
k
∑

j=1

(

1

ρn+2p

∫

Bρ

|P2jr − P2j−1r|
p

) 1
p

≤ CM(1) + C
k
∑

j=1

M(2jr)

From (3.34)-(3.35), we deduce that:

(

1

ρn+2p

∫

Bρ

|u− P1|
p

) 1
p

≤ M(ρ) + C

k
∑

j=1

M(2jr) + CM(1)

≤ 3C
k
∑

j=1

M(2jr)

≤ 6C
k
∑

j=1

M(2jr)

2j+1r

(

2j+1r − 2jr
)

≤ 6C

∫ 2k+1r

2r

M(s)

s
ds

≤ 6C

∫ 2ρ

1

M(s)

s
ds

which ends the proof of the Lemma with C1 = 6C.

3.2 Proof of Proposition 2.7

We will prove the following result which will imply Proposition 2.7 because Proposition 2.5
shows that we can choose the threshold M0 = +∞:

Proposition 3.2 (Modulus of continuity of the solution up to the second order)
Let us assume that the set P is either the set of harmonic polynomials of degree less or equal
to 2, or that each element of P is homogeneous of degree 2 and that for each a ≥ 0, the set
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Ka =
{

P ∈ P, |P |Lp(B1) ≤ a
}

is compact.
For p ∈ (1,+∞), let us consider any function u which satisfies

∀r ∈ (0, r0), (M(u, r) ≤M0) =⇒ (M(u, λr) < µM(u, r) or M(u, r) < C0σp(r))

for some constants M0, C0 > 0, r0, λ, µ ∈ (0, 1), and a Dini modulus of continuity σp. Let
us define α = lnµ/ lnλ. If M(u, r0) ≤ M0, then there exist P0 ∈ P and a constant C ′

0 > 0
depending only on C0, r0, λ, µ, such that for every ρ ∈ (0, λr0/2), we have

(

1

ρn+2p

∫

Bρ

dy |u− P0|
p

) 1
p

≤ C ′
0

{

M(u, r0) ρ
α +

∫ ρ

0

σp(r)

r
dr + ρα

∫ r0

ρ

σp(r)

r1+α
dr

}

Before proving Proposition 3.2, we will need several Lemmata. In all what follows, we
will set

σ(r) = σp(r)

Lemma 3.3 (Decay estimate of M)
Under the assumptions of Proposition 3.2, we have for every r ∈ (0, λr0],

M(u, r) ≤ max

(

C2r
α, C0r

α sup
ρ∈[r,λr0]

σ(ρ)

ρα

)

with α = lnµ/ lnλ and C2 = M(u, r0)/(λr0)
α.

Proof of Lemma 3.3
If r ≤ λr0, we write it r = λkr1 with an integer k ≥ 1 and r1 ∈ (λr0, r0]. Then we have

M(u, r) ≤ max (C0σ(r), µM(u, r/λ))

≤ max (C0σ(r), C0µσ(r/λ), µ2M(u, r/λ2))

≤ max
(

C0σ(r), C0µσ(r/λ), C0µ
2σ(r/λ2), ..., C0µ

k−1σ(r/λk−1), µkM(u, r/λk)
)

Now for ρ = r/λj with j ≥ 1, we have on the one hand

µjσ(r/λj) = σ(ρ)ej ln µ

= σ(ρ)eln(r/ρ) ln µ
ln λ

=
σ(ρ)

ρα
rα

20



where α = lnµ/ lnλ. On the other hand, we have

µkM(u, r/λk) ≤ µkM(u, r1)

≤ µkM(u, r0)

= C2µ
k (λr0)

α

≤ C2µ
krα

1

= C2µ
k
( r

λk

)α

= C2r
α

Therefore we deduce that

M(u, r) ≤ max

(

C0r
α sup

ρ∈[r,λr0]

σ(ρ)

ρα
, C2r

α

)

which ends the proof of the Lemma.

Lemma 3.4 (Decay estimate)
Under the assumptions of Proposition 3.2, there exists C = C(λ, µ, C0) > 0 such that for
R ≤ r0 we have

∫ λR

0

M(u, r)

r
dr ≤ M(u, r0)

1

α

(

R

r0

)α

+ C

(∫ λR

0

σ(r)

r
dr +Rα

∫ r0

λR

σ(r)

r1+α
dr

)

with α = lnµ/ lnλ.

Proof of Lemma 3.4
We first remark that for r ≤ λr0 we have

sup
ρ∈[r,λr0]

σ(ρ)

ρα
=
σ(ρ0)

ρα
0

for some ρ0 ∈ [r, λr0]

≤
1

ρα
0

1

tρ0

∫ ρ0 + tρ0

ρ0

σ(ρ) dρ with t =
1 − λ

λ
> 0

≤
1

tλ1+α

∫

ρ0

λ

ρ0

σ(ρ)

ρ1+α
dρ with t =

1 − λ

λ
> 0

≤ C3

∫ r0

r

σ(ρ)

ρ1+α
dρ with C3 =

1

(1 − λ)λα
> 0

We deduce that
∫ λR

0

M(u, r)

r
dr ≤ C2

∫ λR

0

rα−1 dr + C0C3J
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with

J :=

∫ λR

0

dr rα−1

(∫ r0

r

σ(ρ)

ρ1+α
dρ

)

=

∫ λR

0

dr
rα

α

σ(r)

r1+α
dr + [A(r)]λR

0 with A(r) =
rα

α

(∫ r0

r

σ(ρ)

ρ1+α
dρ

)

=
1

α

∫ λR

0

σ(r)

r
dr + A(λR)

where for the second line we have used integration by parts, and for the third line the fact
that A(0+) = 0, comming from the dominated convergence theorem applied to

αA(r) =

∫ r0

0

hr(ρ)

(

σ(ρ)

ρ

)

dρ with hr(ρ) := 1{ρ≥r}

(

r

ρ

)α

with 0 ≤ hr(ρ) ≤ 1 and hr(ρ) −→ 0 for a.e. ρ ∈ [0, r0] as r −→ 0.
We get the result with C = C0C3/α.

Lemma 3.5 (Modulus of continuity of the solution up to the second order)
If u is defined in Br0, then there exists P0 ∈ P such that for every ρ ∈ (0, r0/2), we have

(

1

ρn+2p

∫

Bρ

dy |u− P0|
p

) 1
p

≤ C1

∫ 2ρ

0

M(u, r)

r
dr

Proof of Lemma 3.5
We assume that u is defined on Br0 . From Lemma 2.9 applied to ur(x) = u(rx)/r2, we get

N(ur, 1) =

(∫

B1

|ur − P r|p
) 1

p

for some P r ∈ P

and for 2γr ≤ r0 with γ ≥ 1, we have

(

1

γn+2p

∫

Bγ(0)

|ur − P r|p

) 1
p

≤ C1

∫ 2γ

1

M(ur, s)

s
ds

A change of variables with ρ = γr and P r(x) = Pr(rx)/r
2 allows to see that (usingM(ur, s) =

M(u, rs))
(

1

ρn+2p

∫

Bρ

|u− Pr|
p

) 1
p

≤ C1

∫ 2ρ

r

M(u, t)

t
dt

Now for ρ ∈ (0, r0/2) fixed, we can pass to the limit as r goes to zero, and up to extraction
of a subsequence we can assume that Pr −→ P0 ∈ P, and we get

(

1

ρn+2p

∫

Bρ

|u− P0|
p

) 1
p

≤ C1

∫ 2ρ

0

M(u, t)

t
dt
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This ends the proof.

We are now ready to prove Proposition 3.2.
Proof of Proposition 3.2
Just apply Lemma 3.5 and Lemma 3.4. We get

(

1

ρn+2p

∫

Bρ

dy |u− P0|
p

) 1
p

≤ C1

{

M(u, r0)
1

α

(

2ρ

λr0

)α

+ C

(∫ 2ρ

0

σ(r)

r
dr +

(

2ρ

λ

)α ∫ r0

2ρ

σ(r)

r1+α
dr

)}

which implies the result with σ(r) = σp(r). This ends the proof of the Proposition.

4 General results for the obstacle problem: proof of

Proposition 1.5 and of Theorem 1.6

We recall that we are interested in solution u of (1.8), that we recall for the convenience of
the reader for p ∈ (max(n/2, 1),+∞)

(4.36)







































∆u = f(x) · 1{u>0}

u ≥ 0

∣

∣

∣

∣

∣

∣

in B1

f ∈ Lp(B1) and f(0) = 1

0 ∈ ∂ {u > 0}

In this section we will prove estimates on the pointwise quadratic growth and on the
classification in degenerate/regular/singular points using the “monotonicity formula”.

4.1 Quadratic growth of the solution

Proof of Proposition 1.5
For simplicity, we fix the exponent p, and set

σ(r) = σp(r)

By the way, we will have to consider sequences of modulus of continuity σ that we denote
by (σm)m indexed by m, with no possible confusion.
Let us first remark that defining

g = f · 1{u>0}

we have with obvious notation for the corresponding modulus of continuity

σg ≤ σf + |f(0)|

therefore we can apply Proposition 2.3 with finite modulus of continuity σg, and conclude
that

(4.37) ∀r ∈ (0, 1), ∃Pr ∈ P2,

(

1

|Br|

∫

Br

∣

∣

∣

∣

u− Pr

r2

∣

∣

∣

∣

p) 1
p

≤ C

{

(∫

B1

|u|p
) 1

p

+ σ(1) + 1

}
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with

P2 =

{

P (x) = a+ b · x+
1

2
tx · c · x, (a, b, c) ∈ R × R

n × R
n×n
sym , trace (c) = 0

}

Let us write

Pr(x) = ar + br · x+
1

2
tx · cr · x

Step 1 : estimate on ar/r
2

Let us now remark that
∆u = g in B1

and then by the classical W 2,p elliptic estimates and the Sobolev imbbedings, we get that
there exists a constant C1 > 0 such that for every x, y ∈ B1/2:

|u(x) − u(y)| ≤ C1|x− y|α

{

(

1

|B1|

∫

B1

|u|p
) 1

p

+

(

1

|B1|

∫

B1

|g|p
) 1

p

}

≤ C1|x− y|α

{

(

1

|B1|

∫

B1

|u|p
) 1

p

+

(

1

|B1|

∫

B1

|f(x) − f(0)|p
) 1

p

+ |f(0)|

}

for α = min

(

1, 2 −
n

p

)

. Let us now set for Pr realizing the infimum in the Definition 2.2 of

N(u, r)

wr(x) =
(u− Pr)(rx)

r2

Applying the previous result to wr (and a rescaling in the ball Br), we get that for every
x, y ∈ B1/2, we have

|wr(x) − wr(y)| ≤ C|x− y|α

{

N(u, r) +

(

1

|Br|

∫

Br

|f(x) − f(0)|p
) 1

p

+ |f(0)|

}

We then write (using the fact that u(0) = 0, and then −
ar

r2
= wr(0) = wr(x) − (wr(x) − wr(0)))

for ρ ∈ (0, 1/2)

|ar|

r2
≤

(

1

|Bρ|

∫

Bρ

|wr − wr(0)|p

) 1
p

+

(

1

|Bρ|

∫

Bρ

|wr|
p

) 1
p

≤ Cρα {N(u, r) + σ(r) + 1} + |Bρ|
− 1

pN(u, r)

Using the bound given by Proposition 2.3 on M(u, r) ≥ N(u, r), we deduce that there exists
a constant C0 > 0 such that

(4.38)
|ar|

r2
≤ C0

{

(∫

B1

|u|p
) 1

p

+ σ(1) + 1

}
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Step 2 : estimate on |br|/r + |cr|
We want to prove that there exists a constant C ′

0 > 0 such that

|br|

r
+ |cr| < C ′

0

{

(∫

B1

|u|p
) 1

p

+ σ(1) + 1

}

If it is false, then there exist sequences (rm)m, (Cm)m, (um)m, (fm)m, (σm)m such that

rm −→ 0 and Cm −→ +∞

and

Mm :=
|brm|

rm

+ |crm| ≥ Cm

{

(∫

B1

|um|
p

) 1
p

+ σm(1) + 1

}

Let us define

vm(x) =
um(rmx)

r2
mMm

≥ 0 and Pm(x) =
Prm(rmx)

r2
mMm

Then we have (from (4.37))

(

1

|B1|

∫

B1

|vm − Pm|
p

) 1
p

≤
C

Cm

−→ 0

and
|arm|

r2
mMm

≤
C0

Cm

−→ 0

We deduce, up to extracting a subsequence, that Pm converges to a harmonic polynomial
P∞ which can be written

P∞(x) = b∞ · x+
1

2
tx · c∞ · x with |b∞| + |c∞| = 1

By contruction vm ≥ 0 also converges to P∞ in B1, and then P∞ ≥ 0 in B1. Therefore
P∞ = 0. Contradiction.
Step 3 : Conclusion
Therefore we conclude that there exists a constant C ′′

0 > 0 such that

sup
Br

|Pr|

r2
≤ C ′′

0

{

(∫

B1

|u|p
) 1

p

+ σ(1) + 1

}

and then there exists C3 > 0 such that

∀r ∈ (0, 1),

(

1

|Br|

∫

Br

∣

∣

∣

u

r2

∣

∣

∣

p
) 1

p

≤ C3

{

(∫

B1

|u|p
) 1

p

+ σ(1) + 1

}

Then applying interior W 2,p elliptic estimates and Sobolev imbeddings joined to a scaling
argument, we get that there exists a constant C4 > 0 such that

∀r ∈ (0, 1),
∣

∣

∣

u

r2

∣

∣

∣

L∞(Br/2)
≤ C4

{

(

1

|Br|

∫

Br

∣

∣

∣

u

r2

∣

∣

∣

p
) 1

p

+

(

1

|Br|

∫

Br

|∆u|p
) 1

p

}
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This finally leads to the existence of a constant C5 > 0 such that

∀x ∈ B1/2, |u(x)| ≤ |x|2C5

{

(∫

B1

|u|p
) 1

p

+ σ(1) + 1

}

This ends the proof of the Proposition.

Corollary 4.1 (Bound on U)
Let p ∈ (max(n/2, 1),+∞) with p ≥ 2n/(n + 1). Then there exists constants C > 0 such
that if u is a solution of (1.8) with σp given by (1.9), then U = x · ∇u − 2u satisfies for
1

p
+

1

p′
= 1

∀r ∈ (0, 1/2),

(

1

Br

∫

Br

∣

∣

∣

∣

U

r2

∣

∣

∣

∣

p′
) 1

p′

≤ C

{

(∫

B1

|u|p
) 1

p

+ σp(1) + 1

}

Proof of Corollary 4.1
Let us define

ur(x) =
u(rx)

r2
, fr(x) = f(rx)

We have ∆ur = fr · 1{ur>0}. From classical interior W 2,p elliptic estimates and Sobolev
imbbedings applied to ur, we get for r ∈ (0, 1/2) the existence of a constant C > 0 such that
(because p ≥ 2n/(n+ 1))

(

1

B1

∫

B1

|ur|
p′
) 1

p′

+

(

1

B1

∫

B1

|∇ur|
p′
) 1

p′

≤ C

{

(

1

|B1|

∫

B1

|ur|
p

) 1
p

+ σp(r) + 1

}

Therefore

(

1

B1

∫

B1

|x · ∇ur − 2ur|
p′
) 1

p′

≤ 3C

{

(

1

|B1|

∫

B1

|ur|
p

) 1
p

+ σp(r) + 1

}

≤ C2

{

(

1

|B1|

∫

B1

|u|p
) 1

p

+ σp(1) + 1

}

for some constant C2 > 0 where we have used Proposition 1.5 for the last line. This is
exactly the expected result for U = x · u− 2u, which ends the proof of the Corollary.

4.2 Liouville Theorem and monotonicity formula

The following result, proved by Caffarelli [7] and Weiss [42], classifies the possible blow-up
limits:
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Theorem 4.2 (Liouville theorem)
Let us consider a function u0 which is solution of























∆u0 = 1{u0>0} in R
n

u0 ≥ 0

u0(λx) = λ2u0(x) for any λ > 0

Then either
i) (degenerate case) u0(x) ≡ 0, or
ii) (regular case) there exists ν ∈ Sn−1 such that

u0(x) =
1

2
max (0, x · ν)2

or
iii) (singular case) there exists a symmetric matrix Q ∈ R

n×n
sym with Q ≥ 0, trace(Q) = 1

such that

u0(x) =
1

2
tx ·Q · x

Sketch of the proof of Theorem 1.6
It is possible to compute (see [36]):

(4.39)
dΦ

dr
(r) =

2

rn

∫

∂Br

∣

∣

∣

∣

U(x)

r2

∣

∣

∣

∣

2

−
2

rn+3

∫

Br

U (f(x) − f(0))

where r = |x| in the integral on the boundary ∂Br, and

U = x · ∇u − 2u

It can be easily checked that this computation is justified for p ≥ 2n/(n+1) which garanties
in particular that ∇u ∈ L2(∂Br) and ∇u · ∇U ∈ L1

loc(B1). We have

1

|Br|r3

∫

Br

|U (f(x) − f(0))| ≤

(

1

|Br|

∫

Br

∣

∣

∣

∣

U(x)

r2

∣

∣

∣

∣

p′
) 1

p′

·
σp(r)

r

The bound of Corollary 4.1 implies that there exists a constant C > 0 such that

2

rn+3

∫

Br

|U (f(x) − f(0))| ≤ C
σp(r)

r

and then for r > t > 0

Φ(r) − Φ(t) ≥ −C

∫ r

t

σp(s)

s
ds

This implies that Φ(r) has a limit Φ(0+) at r = 0.
The rest of the proof is similar to what is done in the constant coefficient case (see [42] and
[7]). This ends the proof of the Theorem.
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5 Degenerate points of the free boundary

We first start with the following result

Lemma 5.1 (Nondegeneracy)
Let p ∈ (max(n/2, 1),+∞). Then there exists a constant C0 > 0 such that if u satisfies for
some R > 0:







∆u = f · 1{u>0} in BR

u ≥ 0

and if Bd(x0) ⊂ BR for some d > 0, then for

λ := C0d
2−n

pR
n
p

(

1

|BR|

∫

BR

|f(x) − f(0)|p
) 1

p

we have

(u(x0) > 2λ) =⇒

(

sup
∂Bd(x0)

u ≥
d2

2n
− 2λ

)

Proof of Lemma 5.1
Let us consider the solution v of







∆v = f(x) − f(0) in Bd(x0)

v = 0 on ∂Bd(x0)

From the classical W 2,p elliptic estimates and the Sobolev imbbedings for p > n/2, we deduce
that there exists a constant C0 > 0 such that (rescaling back to the unit ball)

|v|L∞(Bd(x0)) ≤ C0d
2

(

1

|Bd|

∫

Bd(x0)

|f(x) − f(0)|p
) 1

p

≤ λ

We now define

w(x) = u(x) −
|x− x0|

2

2n
− v(x)

which satisfies
∆w = 0 in ω := {u > 0} ∩Bd(x0)

then from the maximum principle, we have

w(x0) ≤ sup
∂ω

w

On the one hand, we have

w(x0) = u(x0) − v(x0) ≥ u(x0) − |v|L∞(Bd(x0)) ≥ u(x0) − λ

and

w(x) = −
|x− x0|

2

2n
− v(x) < λ on (∂ {u > 0}) ∩Bd(x0)
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Therefore, while u(x0) > 2λ, we get that

sup
∂ω

w = sup
{u>0}∩∂Bd(x0)

w ≤ sup
∂Bd(x0)

u−
d2

2n
+ |v|L∞(Bd(x0))

and therefore

sup
∂Bd(x0)

u ≥
d2

2n
− 2|v|L∞(Bd(x0))

which ends the proof of the Lemma.

Proposition 5.2 (Growth at a degenerate point)
Let p ∈ (max(n/2, 1),+∞) with p ≥ 2n/(n+ 1). There exists a constant C > 0 such that if
0 is a degenerate point for u, then there exists r0 (here depending on u) such that

∀x ∈ Br0 , 0 ≤ u(x) ≤ C|x|2σp(2|x|)

Proof of Proposition 5.2
Assume that the Proposition is false. Then there exists sequences (Cm)m, (xm)m such that

Cm −→ +∞ and xm −→ 0

and
u(xm) ≥ Cm|xm|

2σp(2|xm|)

Apply Lemma 5.1 with |xm| = dm = Rm/2. Then we get that there exists a constant C1 > 0
such that

sup
∂Bdm(xm)

u ≥
d2

m

2n
− C1d

2
mσp(2dm)

and then

sup
∂BRm

u ≥
R2

m

8n
−
C1

4
R2

mσp(Rm)

Then we see that up to extraction of a subsequence, we have

um(x) =
u(Rmx)

R2
m

−→ u∞(x) 6≡ 0

On the other hand, if we note Φu(r) the expression (1.10) associated to the function u, we
get

Φu(rRm) −→ Φ(0+) = 0

and
Φu(rRm) = Φum(r) −→ Φu∞

(r)

which implies that u∞ ≡ 0. Contradiction. This ends the proof of the Proposotion.

Example of a degenerate point
For p > (max(n/2, 1),+∞), we build here a function f ∈ Lp(B1) with σp Dini such that u
solves in B1

∆u = f · 1{u>0} and u ≥ 0
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and the origin 0 is a degenerate point for u (see Figure 1).
Let ζ ∈ C∞

c (Rn) such that supp ζ ⊂ B1/4, ζ ≥ 0 and ζ 6≡ 0. We set γ = 1 + |∆ζ|L∞(Rn) and
for λ > 0

ζλ(x) = λ2ζ
(x

λ

)

We also set x = (x1, x
′) with x′ = (x2, ..., xn). Given a non-increasing sequence (λk)k with

0 < λk ≤ 1, we set

u(x) =
∑

k≥1

4
n
p ζλk2−k

(

x1 − 2−k, x′
)

and define for xk = (2−k, 0, ..., 0)

Ω =
⋃

k≥1

Bλk2−k

(

xk
)

Let us define with f(0) = 1

f =







∆u in B1 ∩ Ω

1 in B1\Ω

the union of disjoint balls. Then we compute for K ≥ 1

1

|B2−K |

∫

B
2−K

|f(x) − f(0)|p

≤
1

|B2−K |

∑

k≥K

4nγp
(

λk2
−k
)n

|B1/4|

≤ γpλn
K2nK

∑

k≥K

2−nk

≤ µpλn
K with µp = γp(1 − 2−n)−1

Therefore
(

1

|B2−K |

∫

B
2−K

|f(x) − f(0)|p

) 1
p

≤ µλ
n
p

K

Hence σp is Dini, if we choose the sequence (λk)k such that
∑

K≥1

λ
n
p

K < +∞

(for instance for a geometric sequence (λK)K).

6 Regular points of the free boundary and proof of

Theorem 1.8

6.1 Proof of Theorem 1.8

Here we adapt the proof of Theorem 2.1, and replace the set P2 by

Preg =

{

P, ∃ν ∈ Sn−1, P =
1

2
max (0, x · ν)2

}
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Figure 1: Construction of a function f such that the origin is a degenerate point

keeping the same notation for M(u, ρ) and N(u, r) (see Definition 2.2). Here the set Preg

contains the possible limit behaviours of the solution at the origin when the origin is a reg-
ular point.

We claim the following

Proposition 6.1 (Finiteness of M)
Let us assume that p ∈ (max(n/2, 1),+∞). Then there exists a constant C > 0 such that

∀r ∈ (0, 1), M(u, r) ≤ C

{

(∫

B1

|u|p
) 1

p

+ σp(1) + 1

}

Proof of Proposition 6.1
This is a straightforward consequence of Proposition 1.5.

Then we have the following cornerstone result which will be proved in subsection 6.3.

Proposition 6.2 (Decay estimate in a smaller ball)
Given p ∈ (n/2,+∞), there exist constants M0, C0 > 0, r0, λ, µ ∈ (0, 1) (depending only on
p and dimension n) such that for every functions u and f satisfying (1.8) with a modulus of
continuity σp given by (1.9), then we have the following property
(6.40)

∀r ∈ (0, r0), (M(u, r) ≤M0) =⇒ (M(u, λr) < µM(u, r) or M(u, r) < C0σp(r))

Remark 6.3 Proposition 6.2 is similar to Proposition 2.5 for Laplace equation. One impor-
tant difference is that we have to introduce a threshold M0 for the obstacle problem, because
it is a nonlinear problem. Indeed, M(u, r) has to be smaller than the threshold M0, in or-
der to be able to claim that it satisfies the decay estimate. As an illustration, the reader
can simply think to functions that are blow-up limits u0 at singular points, like for instance

u0(x) =
x2

2n
. Then M(u0, r) is a positive constant independent of r, which implies in partic-

ular that M(u0, r) > M0.

Proof of Theorem 1.8
The proof of Theorem 1.8 follows exactly the lines of the proof of Theorem 2.1, where
Proposition 2.7 is replaced by Proposition 3.2. This ends the proof of the Theorem.
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6.2 Preliminary results

To prove Proposition 6.2, we will need the following Caccioppoli estimate for the obstacle
problem.

Lemma 6.4 (Caccioppoli type estimate)
Lemma 2.8 is still valid for solutions u of (1.8) for P satisfying

(6.41) −∆P + 1{P>0} = 0 and P ≥ 0

Proof of Lemma 6.4
On the ball B1, we have

−∆u+ f(x) · 1{u>0} = 0

and let us consider any P satisfying

−∆P + 1{P>0} = 0

Taking the difference of these two equations, and multiplying by ζ2w|w|p−2 for w = u − P ,
we get

∫

Rn

−ζ2w|w|p−2∆w + ζ2w|w|p−2
(

1{u>0} − 1{P>0}

)

=

∫

BR

−ζ2w|w|p−2(f(x) − f(0))1{u>0}

The rest of the proof is identical to the one of Lemma 2.8, simply taking into account the
fact that w

(

1{u>0} − 1{P>0}

)

≥ 0. This ends the proof of the Lemma.

We will also use the following result

Lemma 6.5 (Weak nondegeneracy)
Let us fix R > 0 and p ∈ (max(n/2, 1),+∞). Let us consider sequences of functions (um)m,
(fm)m such that



























∆um = fm(x) · 1{um>0}

um ≥ 0

∣

∣

∣

∣

∣

∣

in BR

fm(0) = 1, and

(

1

|BR|

∫

BR

|fm(x) − fm(0)|p
) 1

p

=: τm −→ 0 as m −→ +∞

Let us assume that um converges to u∞ in L∞
loc(BR). Let us consider a compact K contained

in the interior of the coincidence set {u∞ = 0}. Then there exists a constant C > 0 (which
depends in particular on K and R, but is independent of τm) such that

um ≤ Cτm in K

Proof of Lemma 6.5
Let us assume that the Lemma is false. Then we can find a sequence of points (xm)m a
sequence (Cm)m such that (up to extraction)

Cm −→ +∞

32



um(xm) > Cmτm, xm ∈ K

Let us choose d such that 0 < d < dist(K, {u∞ > 0}). Then we can apply Lemma 5.1 which
states that

(um(xm) > 2λm) =⇒

(

sup
∂Bd(xm)

um ≥
d2

2n
− 2λm

)

with

λm = C0d
2−n

pR
n
p

(

1

|BR|

∫

BR

|fm(x) − fm(0)|p
) 1

p

≤ C1τm with C1 = C0d
2−n

pR
n
p

Passing to the limit as m→ +∞, we get (up to extraction of a subsequence) that

xm −→ x∞ ∈ K

and

sup
∂Bd(x∞)

u∞ ≥
d2

2n

Contradiction because u∞ = 0 in a neighbourhood of K. This ends the proof of the Lemma.

6.3 Proof of the decay estimate Proposition 6.2

Proof of Proposition 6.2
We perform the proof by contradiction in three Steps. For simplicity, we fix the exponent p,
and set

σ(r) = σp(r)

By the way, we will have to consider sequences of modulus of continuity σ that we denote
by (σm)m indexed by m, with no possible confusion.

Step 1: A priori estimates on a sequence vm

If the Proposition is false, then there exist sequences (Mm)m, (rm)m, (Cm)m, (λm)m, (µm)m,
(fm)m, (um)m, (σm)m such that







Mm, rm, λm −→ 0
Cm −→ +∞
µm −→ 1

and

(6.42) Mm ≥M(um, rm) ≥ Cmσm(rm) and M(um, λmrm) ≥ µmM(um, rm)

Let us recall that by assumption M(um, rm) is bounded by Mm which goes to zero. Therefore
there exists ρm ∈ (0, λmrm], such that N(um, ρm) is arbitrarily close to M(um, λmrm) and
satisfies for instance

M(um, λmrm)

1 + 1/m
≤ N(um, ρm) =: εm ≤M(um, rm) ≤Mm −→ 0
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with

εm := N(um, ρm) =

(

1

ρn+2p
m

∫

Bρm

|um − Pm|
p

) 1
p

for some Pm ∈ Preg

Now for every s ∈ (0, sm) with sm = rm/ρm ≥ 1/λm −→ +∞, we have

inf
P∈P

(

1

(sρm)n+2p

∫

Bsρm

|um − Pm|
p

) 1
p

≤
εm(1 + 1/m)

µm

Let us set
uρm

m (x) = um(ρm · x)/ρ2
m

We now define the renormalized function

vm(y) :=
1

εmρ2
m

(um − Pm) (ρmy)

which satisfies

(6.43)







∆vm = gm in {uρm
m > 0} ∩ {Pm > 0}

vm = 0 in {uρm
m = 0}0 ∩ {Pm = 0}0

where for a set A, we denote by A0 its interior, and with

gm(y) =
fm(ρmy) − fm(0)

εm

which satisfies for fixed R ∈ (0, sm) (as in (2.22))

(6.44)

(

1

|BR|

∫

BR

|gm|
p

) 1
p

=
σm (ρmR)

εm

≤
1 + 1/m

µmCm

−→ 0 as m −→ +∞

Moreover as in Step 1 of the proof of Propositon 2.5, we get

(6.45) inf
P∈P

(∫

B1

∣

∣

∣

∣

vm −

(

P − Pm

εm

)∣

∣

∣

∣

p) 1
p

= 1,

and for s ∈ (0, sm):

(6.46) inf
P∈P

(

1

sn+2p

∫

Bs

∣

∣

∣

∣

vm −

(

P − Pm

εm

)∣

∣

∣

∣

p) 1
p

≤
1 + 1/m

µm

−→ 1

and for s ∈ (1, sm/2)

(6.47)

(

1

sn+2p

∫

Bs

|vm|
p

) 1
p

≤
C1(1 + 1/m)

µm

ln(2s) −→ C1 ln(2s)

where the limits are taken as m goes to infinity.
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We now apply the Caccioppoli type estimate (6.4) to vm, and we get for supp ζ ⊂ BR

and Wm = vm|vm|
p
2
−1

(6.48)
∫

Rn

4(p− 1)

p2
ζ2|∇Wm|

2 ≤

∫

Rn

4

p− 1
W 2

m|∇ζ|
2 + 2|BR|

σm(ρmR)

εm

(

1

|BR|

∫

BR

ζ2p′ |Wm|
2

) 1
p′

Step 2: Convergence of the sequence vm

From (6.44)-(6.45)-(6.46)-(6.47)-(6.48), we get as in Step 2 of the proof of Propositon 2.5
that up to extracting a subsequence, we have

{

Wm −→ W∞ = v∞|v∞|
p
2
−1 in L2

loc(R
n) and a.e. in R

n

Wm −→ W∞ weakly in H1
loc(R

n)

where v∞ has to be seen as the limit of vm.
Up to tilting the coordinates, we can assume that the function Pm is fixed with

Pm = P∞ =
1

2
(max(0, x1))

2 , ∀m

For any β = (β1, ..., βn) ∈ R
n and x = (x1, ..., xn), let us define

qβ(x) = (β · x) · max(0, x1).

Then we introduce the following set

TP∞
P = {q, ∃β ∈ R

n, such that q = qβ with β1 = 0}

which can be interpretated as the tangent space to the set P at the point P∞, which justifies
the notation.

Now for every qβ ∈ TP∞
P , we set νm =

e1 + εmβ

|e1 + εmβ|
and define

P̃m :=
1

2
(max (0, νm · x))2

for which we have
P̃m − P∞

εm

−→ qβ

Then (6.45) implies

(6.49) inf
q∈TP∞

P

(∫

B1

|v∞ − q|p
) 1

p

= 1

Moreover (6.46) implies

(6.50) inf
q∈TP∞

P

(

1

sn+2p

∫

Bs

|v∞ − q|p
) 1

p

≤ 1 for every s > 0

And (6.47) implies

(6.51)

(

1

sn+2p

∫

Bs

|v∞|p
) 1

p

≤ C1 ln(2s) for every s ≥ 1
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and (6.48) implies

(6.52)

∫

Rn

4(p− 1)

p2
ζ2|∇W∞|2 ≤

∫

Rn

4

p− 1
W 2

∞|∇ζ|2

We have uρm
m − Pm = εmvm, and ∆uρm

m = fm(ρm·) · 1{uρm
m >0} where the right hand side is

bounded in Lp
loc(R

n). Then by classical elliptic estimates, uρm
m is bounded in W 2,p

loc (Rn), and
then by Sobolev imbeddings, uρm

m converges (up to extraction of some subsequence) to its
limit P∞ in L∞

loc(R
n) because p > n/2. We deduce from (6.43) that v∞ satisfies the first line

of the following equalities

(6.53)







∆v∞ = 0 in {P∞ > 0} = {y1 > 0}

v∞ = 0 in {P∞ = 0}0 = {y1 < 0}

To state the second line, we simply apply Lemma 6.5 to the sequence of functions uρm
m with

τm = σm(ρmR) and deduce that for any compact K of {P∞ = 0}0 ∩ BR, there exists a
constant C > 0 such that

vm ≤ C
σm(ρmR)

εm

−→ 0.

Step 3: Identification of the limit v∞ and contradiction

From (6.53) and the fact that v∞|v∞|
p
2
−1 belongs to H1

loc(R
n) we deduce that

(6.54) v∞ = 0 on {y1 = 0} .

Because v∞ is harmonic in the half space {y1 > 0}, we deduce from the regularity theory
that v∞ is analytic on {y1 ≥ 0}. Therefore we easily check that the function

ṽ∞(y) =







v∞(y) if y1 ≥ 0

− v∞(−y1, y2, ..., yn) if y1 < 0

satisfies
∆ṽ∞ = 0 in R

n

From (6.51), we see that ṽ∞ ∈ S ′ (the dual of the Schwarz space) and then ṽ∞ is a polynomial
whose degree is less or equal to 2, still from (6.51). Moreover from (6.50) we deduce that
ṽ∞ is homogeneous of degree 2.
From (6.54), we deduce with y′ = (y2, ..., yn) that

ṽ∞(y1, y
′) = ṽ∞(0, y′) + y1

∂ṽ∞
∂y1

(0, y′) +
1

2
y2

1

∂ṽ∞
∂y2

1

(0, y′)

with ṽ∞(0, y′) = 0,
∂ṽ∞
∂y1

(0, y′) = β · y for some β ∈ R
n with β1 = 0,

∂ṽ∞
∂y2

1

(0, y′) = constant

= ∆ṽ∞ = 0, i.e.
ṽ∞(y1, y

′) = y1 · (β · y)

and
v∞ = pβ

This gives a contradiction with (6.49).
This ends the proof of the Proposition.
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7 Singular points of the free boundary and proof of

Theorem 1.11

7.1 Monotonicity formula for singular points and proof of Theo-
rem 1.10

Proposition 7.1 (Monotonicity formula for singular points)
Let p ∈ (max(n/2, 1),+∞) with p ≥ 2n/(n + 1). There exists a constant C > 0. For any

matrix Q ∈ R
n×n
sym with trace Q = 1 and Q ≥ 0, we set v(x) =

1

2
tx ·Q · x. Then, for any

solution u of (1.8), we have

(7.55)
d

dr

(

1

rn+3

∫

∂Br

(u− v)2

)

= g(r) +
4

r

∫

Br

1

|x|n

∣

∣

∣

∣

U(x)

|x|2

∣

∣

∣

∣

2

for U = x · ∇u− 2u and

−g(r) ≤ C
Σp(r)

r
Fp′(r) with Σp(r) = σp(r) +

∫ r

0

σp(s)

s
ds

and for
1

p
+

1

p′
= 1

Fp′(r) =

(

1

|Br|

∫

Br

∣

∣

∣

∣

u− v

r2

∣

∣

∣

∣

p′
) 1

p′

+ sup
ρ∈(0,r]

(

1

|Bρ|

∫

Bρ

∣

∣

∣

∣

U

ρ2

∣

∣

∣

∣

p′
) 1

p′

Moreover there exists a constant C0 > 0 such that

∀r ∈ (0, 1/2), Fp′(r) ≤ C0

{

(∫

B1

|u|p
) 1

p

+ σp(1) + 1

}

Proof of Proposition 7.1
From the appendix of [36], we have

d

dr

(

1

rn+3

∫

∂Br

(u− v)2

)

=
2

r

(

Φ(r) − Φ(0+)
)

+
2

rn+3

∫

Br∩{u>0}

(u−v)(f−f(0))+
2

rn+3

∫

Br∩{u=0}

v

From (4.39), we deduce (7.55) with
(7.56)

g(r) = −
4

r

∫ r

0

ds

sn+3

∫

Bs

U (f(x) − f(0)) +
2

rn+3

∫

Br∩{u>0}

(u− v)(f − f(0)) +
2

rn+3

∫

Br∩{u=0}

v

for U = x · ∇u − 2u. The result follows from Proposition 1.5 and Corollary 4.1 (noticing
moreover that the last term in g is non-negative because v ≥ 0). This ends the proof of the
Proposition.

Corollary 7.2 (Uniqueness of the blow-up limits)
Under the assumptions of Proposition 7.1, let us consider

uε(x) =
u(εx)

ε2

If we assume that σp is double Dini, then uε converges (uniformly on compact sets) to a
unique limit u0 = v as ε goes to zero, for some v as in Proposition 7.1.
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Proof of Corollary 7.2
Let us set

Ψv
u(r) =

1

rn+3

∫

∂Br

(u− v)2

Let us call u0 one of the blow-up limits of uε. Then, using the 2-homogeneity of u0, we get

(7.57) Ψu0

u (εr) = Ψu0

uε(r) −→ Ψu0

u0(r) = 0

where the convergence happens for a suitable subsequence. On the other hand, from Propo-
sition 7.1, we deduce that for double Dini σp, the following limit exists

lim
ρ→0

Ψu0

u (ρ) = Ψu0

u (0+)

We conclude that
Ψu0

u (0+) = 0

and then the convergence in (7.57) happens for the whole sequence as ε goes to zero. The
convergence on compact sets of R

n follows. This ends the proof of the Corollary.

When we assume moreover that p ≥ 2, we get a better estimate than in Proposition 7.1,
namely

Proposition 7.3 (Monotonicity formula for singular points for p ≥ 2)
Let p ∈ (max(n/2, 1),+∞) with p ≥ 2. There exists a constant C > 0. For any matrix

Q ∈ R
n×n
sym with trace Q = 1 and Q ≥ 0, we set v(x) =

1

2
tx ·Q · x. Then, for any solution u

of (1.8), we have

(7.58)
d

dr

(

1

rn+3

∫

∂Br

(u− v)2

)

= h(r) +
2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U(x)

|x|2

∣

∣

∣

∣

2

for U = x · ∇u− 2u and

−h(r) ≤ C







1

r

∫ r

0

σ2
p(s)

s
ds+

σp(r)

r

(

1

|Br|

∫

Br

∣

∣

∣

∣

u− v

r2

∣

∣

∣

∣

p′
) 1

p′







and for
1

p
+

1

p′
= 1. Moreover there exists a constant C0 > 0 such that

∀r ∈ (0, 1/2),

(

1

|Br|

∫

Br

∣

∣

∣

∣

u− v

r2

∣

∣

∣

∣

p′
) 1

p′

≤ C0

{

(∫

B1

|u|p
) 1

p

+ σp(1) + 1

}

Proof of Proposition 7.3
We start with

(7.59) h(r) = g(r) +
2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U(x)

|x|2

∣

∣

∣

∣

2
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where g is given in (7.56). We really have to work on the following term (first term in g
given in (7.56), using the fact that p′ ≤ 2:

4

r

∫ r

0

ds

sn+3

∫

Bs

U (f(x) − f(0)) ≤
4|B1|

r

∫ r

0

ds

s
σp(s)

(

1

|Bs|

∫

Bs

∣

∣

∣

∣

U

s2

∣

∣

∣

∣

p′
) 1

p′

≤
4|B1|

r

∫ r

0

ds

s
σp(s)

(

1

|Bs|

∫

Bs

∣

∣

∣

∣

U

s2

∣

∣

∣

∣

2
) 1

2

≤
2|B1|

r

{

1

ε

∫ r

0

ds

s
σ2

p(s) + ε

∫ r

0

ds

s

(

1

|Bs|

∫

Bs

∣

∣

∣

∣

U

s2

∣

∣

∣

∣

2
)}

for any ε > 0 that we will choose later small enough.
We now claim that

(7.60)

∫ r

0

ds

s

(

1

|Bs|

∫

Bs

∣

∣

∣

∣

U

s2

∣

∣

∣

∣

2
)

≤
1

(n+ 4)|B1|

∫

Br

1

|x|n

∣

∣

∣

∣

U(x)

|x|2

∣

∣

∣

∣

2

Choosing now ε small enough, we see that the term
2|B1|ε

r

∫ r

0

ds

s

(

1

|Bs|

∫

Bs

∣

∣

∣

∣

U

s2

∣

∣

∣

∣

2
)

is con-

troled by the term
2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U(x)

|x|2

∣

∣

∣

∣

2

introduced in the definition (7.59) of h. The expected

bound on −h then follows easily.
We only need to prove (7.60). We compute (with obvious notation)

∫ r

0

ds

s

(

1

|Bs|

∫

Bs

∣

∣

∣

∣

U

s2

∣

∣

∣

∣

2
)

=
1

|B1|

∫

Sn−1

dθ

∫ r

0

ds

sn+5

∫ s

0

dρ ρn−1|U(ρ, θ)|2

=
1

|B1|

∫

Sn−1

dθ

∫ r

0

dρ ρn−1|U(ρ, θ)|2
∫ r

ρ

ds

sn+5

≤
1

(n+ 4)|B1|

∫

Sn−1

dθ

∫ r

0

dρ

ρ5
|U(ρ, θ)|2

=
1

(n+ 4)|B1|

∫

Br

1

|x|n

∣

∣

∣

∣

U(x)

|x|2

∣

∣

∣

∣

2

This ends the proof of the Proposition.

As a corollary, we see that Corollary 7.2 holds if we assume moreover p ≥ 2, but relax
the condition on σp to be only Dini. This is the following proof.

Proof of Theorem 1.10
This is a consequence of Proposition 7.3, noting in particular that

∫ 1

0

dr

r

(∫ r

0

σ2
p(s)

s
ds

)

≤

(∫ 1

0

σp(s)

s
ds

)2

< +∞
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This ends the proof of the Theorem.

7.2 Proof of Theorem 1.11

Here we adapt the proof of Theorem 1.8, and replace the set Preg by the set

Psing =

{

P, ∃Q ∈ R
n×n
sym , P =

1

2
tx ·Q · x, trace (Q) = 1, Q ≥ 0

}

keeping the same notation for M(u, ρ) and N(u, r) (see Definition 2.2). Here the set Psing

contains the possible limit behaviours of the solution at the origin when the origin is a sin-
gular point. Again M is finite for p ∈ (max(n/2, 1),+∞) by Proposition 1.5.

Then we have the following cornerstone result which will be proved in subsection 7.4.

Proposition 7.4 (Decay estimate in a smaller ball)
Given p ∈ (max(n/2, 1),+∞) with p ≥ 2, there exist constants M0, C0 > 0, r0, λ, µ ∈ (0, 1)
(depending only on p and dimension n) such that for every functions u and f satisfying (1.8)
with a modulus of continuity σp given by (1.9), then we have the following property
(7.61)

∀r ∈ (0, r0), (M(u, r) ≤M0) =⇒
(

M(u, λr) < µM(u, r) or M(u, r) < C0Σ̃p(r)
)

where

Σ̃p(r) = σp(r) +

(∫ r

0

ds
σ2

p(s)

s

)

1
2

Remark 7.5 Proposition 7.4 is similar to Proposition 6.2 for regular points. The quantity
M(u, r) has to be smaller than the threshold M0, in order to be able to claim that it satisfies
the decay estimate. As an illustration, the reader can simply think to functions that are

blow-up limits u0 at regular points, like for instance u0(x) =
1

2
(max (0, x1))

2. Then M(u0, r)

is a positive constant independent of r, which implies in particular that M(u0, r) > M0.

Proof of Theorem 1.11
The proof of Theorem 1.11 follows exactly the lines of the proof of Theorem 1.8. This ends
the proof of the Theorem.

7.3 Preliminary results

To prove Proposition 7.4, we will need the following results

Lemma 7.6 (Liouville result (I))
Let v∞ ∈ H1

loc(R
n) satisfying ∆v∞ ≤ 0 in R

n and harmonic in R
n\ {x1 = 0}. If v∞ is

homogeneous of degree 2, then ∆v∞ = 0.

Proof of Lemma 7.6
By assumption, we know that ∆v∞ is a non-positive measure µ supported in {x1 = 0} (which
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is moreover invariant by dilations). Now let P be a C2 and 2-homogeneous function, and
ψ ∈ C∞

c ([0,+∞)) with ψ ≥ 0 and Ψ(x) = ψ(|x|). Then we compute

− < µ,ΨP > = < −∆v∞,ΨP >

=
∫

Rn ∇v∞ · ∇ (ΨP )

=
∫

Rn Ψ∇v∞ · ∇P + P∇v∞ · ∇Ψ

=
∫

Rn −Ψv∞∆P − v∞∇Ψ · ∇P + P∇v∞ · ∇Ψ

=
∫

Rn −Ψv∞∆P

where in the last line we have used the homogeneity which implies that x · ∇P (x) = 2P (x)
and the same property for v∞. Let us choose P (x) = −(n − 1)x2

1 + x2
2 + ... + x2

n. Then
∆P = 0 and we get

− < µ,ΨP >= 0

This implies that supp µ ⊂ {0}, and then

µ = −cδ0 for some c ≥ 0

Finally the invariance of µ by dilations implies that c = 0 and µ = 0, i.e. ∆v∞ = 0. This
ends the proof of the Lemma.

Lemma 7.7 (Liouville result (II))
Let v∞ be a harmonic polynomial in R

n, homogeneous of degree 2, and satisfying the following
conditions for some k∞ ∈ {1, ..., n}

(7.62)



























































v∞ ≥ 0 on
{

xi = 0, i = 1, ..., k∞
}

∫

B1

v∞

(

n
∑

i=1

γix
2
i

)

≤ 0 for every



















γ = (γ1, ..., γn) ∈ R
k∞ × [0,+∞)n−k∞

with
n
∑

i=1

γi = 0

∫

B1

v∞xixj = 0 for i = 1, ..., k∞, j = 1, ..., n, j 6= i

Then v∞ = 0.

We first prove the following result

Lemma 7.8 (Scalar product)
Let Vn the space of symmetric n × n matrices Q such that trace Q = 0. Then there exists
β > 0 such that

∀Q ∈ Vn,
1

|B1|

∫

B1

(

tx ·Q · x
)2

= β · trace
(

tQ ·Q
)
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Proof of Lemma 7.8
Given a matrix Q ∈ Vn, we set

(Q,Q) =
1

|B1|

∫

B1

(

1

2
tx ·Q · x

)2

We then diagonalize the matrix Q in an orthonormal basis with coordinates (x1, ..., xn), and
with eigenvalues (λ1, ..., λn). Therefore we can compute

(Q,Q) =
1

|B1|

∫

B1

(

n
∑

i=1

λix
2
i

)2

=
n
∑

i,j=1

aijλiλj

where

aij = b+ (a− b)δij with b =
1

|B1|

∫

B1

x2
1x

2
2, a =

1

|B1|

∫

B1

x4
1

We deduce that

(Q,Q) = b

(

n
∑

i=1

λi

)2

+ (a− b)
n
∑

i=1

λ2
i

and then using the fact that
∑n

i=1 λi = 0, and β = a− b

(Q,Q) = β trace
(

tQ ·Q
)

Finally β > 0 because (Q,Q) is trivially non-zero for non-zero Q. This ends the proof of the
Lemma.

Proof of Lemma 7.7
We first remark that we can write v∞(x) = 1

2
tx ·C · x with C ∈ Vn (using the notation Vn as

in Lemma 7.8 to denote the symmetric n× n matrices with trace equal to 0). From (7.62),
and the fact that the matrices 1

2
(ei ⊗ ej + ej ⊗ ei) for i 6= j are orthogonal for the scalar

product studied in Lemma 7.8, we see that we can write

C =

(

A 0
0 B

)

with A a diagonal matrix k∞ × k∞ and B a non-negative matrix (n− k∞) × (n− k∞). Let

choose γ = (γ′, γ′′) ∈ (−∞, 0)k∞×(0,+∞)n−k∞ in (7.62) with identical constant coordinates
γ′ = (−γA, ...,−γA) and γ′′ = (γB, ..., γB), satisfying γA > 0, γB > 0, and −k∞γA + (n −
k∞)γB = 0. Then we get from (7.62)

−γA (trace A) + γB (trace B) ≤ 0

Because trace C = 0 and trace B ≥ 0, we deduce that trace A ≤ 0, and then trace A =
0 = trace B. Therefore B = 0. Choosing now any γ = (γ′, γ′′) in (7.62) with γ′′ = 0 and
∑k∞

i=1 γ
′
i = 0, we deduce that

∀A ∈ Vk∞
, trace tAA = 0

which implies that A = 0, because A itself satisfies trace A = 0 belongs to Vk∞
. This ends

the proof of the Lemma.
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7.4 Proof of the decay estimate Proposition 7.4

Proof of Proposition 7.4
We perform the proof by contradiction in five Steps. For simplicity, we set

σ(r) = σp(r)

and

(7.63) Σ̃(r) = σ(r) +

(∫ r

0

ds
σ2(s)

s

)
1
2

By the way, we will have to consider sequences of modulus of continuity σ that we denote
by (σm)m indexed by m, with no possible confusion.
Similarly, we will associate their (Σ̃m)m, using formula (7.63).

Step 1: A priori estimates on a sequence vm

If the Proposition is false, then there exist sequences (Mm)m, (rm)m, (Cm)m, (λm)m, (µm)m,
(fm)m, (um)m, (σm)m such that







Mm, rm, λm −→ 0
Cm −→ +∞
µm −→ 1

and

(7.64) Mm ≥M(um, rm) ≥ CmΣ̃m(rm) and M(um, λmrm) ≥ µmM(um, rm)

Let us recall that by assumption M(um, rm) is bounded by Mm which goes to zero. Therefore
there exists ρm ∈ (0, λmrm], such that N(um, ρm) is arbitrarily close to M(um, λmrm) and
satisfies for instance

M(um, λmrm)

1 + 1/m
≤ N(um, ρm) =: εm ≤M(um, rm) ≤Mm −→ 0

with

εm := N(um, ρm) =

(

1

ρn+4
m

∫

Bρm

|um − Pm|
2

) 1
2

for some Pm ∈ Psing

Now for every s ∈ (0, sm) with sm = rm/ρm ≥ 1/λm −→ +∞, we have

inf
P∈Psing

(

1

(sρm)n+4

∫

Bsρm

|um − Pm|
2

) 1
2

≤
εm(1 + 1/m)

µm

Let us set
uρm

m (x) = um(ρm · x)/ρ2
m

We now define the renormalized function

vm(y) :=
1

εmρ2
m

(um − Pm) (ρmy)
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which satisfies

(7.65) ∆vm = gm in {uρm
m > 0}

and

(7.66) ∆vm ≤ gm · 1{uρm
m >0} in R

n

with

gm(y) =
fm(ρmy) − fm(0)

εm

which satisfies for fixed R ∈ (0, sm) (as in (2.22))

(7.67)

(

1

|BR|

∫

BR

|gm|
p

) 1
p

=
σm (ρmR)

εm

≤
1 + 1/m

µmCm

−→ 0 as m −→ +∞

Moreover as in Step 1 of the proof of Propositon 2.5, we get

(7.68) inf
P∈Psing

(

∫

B1

∣

∣

∣

∣

vm −

(

P − Pm

εm

)∣

∣

∣

∣

2
) 1

2

= 1,

and for s ∈ (0, sm):

(7.69) inf
P∈Psing

(

1

sn+2p

∫

Bs

∣

∣

∣

∣

vm −

(

P − Pm

εm

)∣

∣

∣

∣

2
) 1

2

≤
1 + 1/m

µm

−→ 1

and for s ∈ (1, sm/2)

(7.70)

(

1

sn+2p

∫

Bs

|vm|
2

) 1
2

≤
C1(1 + 1/m)

µm

ln(2s) −→ C1 ln(2s)

where the limits are taken as m goes to infinity.

We now apply the Caccioppoli type estimate (6.4) to vm with p = 2, and get for supp ζ ⊂
BR

(7.71)

∫

Rn

ζ2|∇vm|
2 ≤

∫

Rn

4v2
m|∇ζ|

2 + 2|BR|
σm(ρmR)

εm

(

1

|BR|

∫

BR

ζ4|vm|
2

) 1
2

Step 2: Convergence of the sequence vm

From (7.67)-(7.68)-(7.69)-(7.70)-(7.71), we get as in Step 2 of the proof of Propositon 2.5
that up to extracting a subsequence, we have

{

vm −→ v∞ in L2
loc(R

n) and a.e. in R
n

vm −→ v∞ weakly in H1
loc(R

n)

Then, because equality is achieved in (7.68) for P = Pm, this implies

(7.72)

(∫

B1

|v∞|2
) 1

2

= 1,
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and (7.70) implies

(7.73)

(

1

sn+4

∫

Bs

|v∞|2
) 1

2

≤ C1 ln(2s) for every s ≥ 1

and (7.71) implies

(7.74)

∫

Rn

ζ2|∇v∞|2 ≤

∫

Rn

4v2
∞|∇ζ|2

Up to extracting a subsequence we can assume that Pm converges to some P∞.
We have uρm

m − Pm = εmvm, and ∆uρm
m = fm(ρm·) · 1{uρm

m >0} where the right hand side is

bounded in Lp
loc(R

n), then by classical elliptic estimates, uρm
m is bounded in W 2,p

loc (Rn), and
then by Sobolev imbeddings, uρm

m converges (up to extraction of some subsequence) to its
limit P∞ in L∞

loc(R
n) because p > n/2. Then we deduce from (7.65) that v∞ satisfies

(7.75) ∆v∞ = 0 in {P∞ > 0}

Moreover we also deduce from (7.66) that

(7.76) ∆v∞ ≤ 0 in R
n

Step 3: The limit differential
We define the following limit differential (up to a subsequence):

∂P∞
Psing =

{

q =
1

2
tx ·Q · x, ∃Q ∈ R

n×n
sym , trace (Q) = 0, ∃Pm ∈ Psing with

Pm − Pm

εm

−→ q

}

By construction ∂P∞
Psing contains the origin and is convex, because Psing is convex. More-

over it is easy to check that ∂P∞
Psing is closed.

Then (7.68) implies

(7.77) inf
q∈∂P∞

Psing

(∫

B1

|v∞ − q|p
) 1

p

= 1

and (7.69) implies

(7.78) inf
q∈∂P∞

Psing

(

1

sn+2p

∫

Bs

|v∞ − q|p
) 1

p

≤ 1 for every s > 0

Step 4: 2-homogeneity of v∞ and consequences
To deduce the 2-homogeneity of v∞, we will make strong use of the monotonicity formula
(Proposition 7.3) for singular points in the case p ≥ 2.
Comming back at the level of the functions vm, we remark that Proposition 7.3 implies

(7.79)
d

dr

(

1

rn+3

∫

∂Br

v2
m

)

= hm(r) +
2

r

∫

Br

1

|x|n

∣

∣

∣

∣

Um(x)

|x|2

∣

∣

∣

∣

2
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for Um = x · ∇vm − 2vm and (because p′ ≤ 2 ≤ p)

−hm(r) ≤ C

{

1

r

∫ r

0

σ2
m(ρms)

ε2
ms

ds+
σm(ρmr)

εmr

(

1

|Br|

∫

Br

∣

∣

∣

vm

r2

∣

∣

∣

p
) 1

p

}

In particular, we have with sm −→ +∞

Σ̃m

εm

=
σm(ρmsm)

εm

+

(∫ sm

0

σ2
m(ρms)

ε2
ms

ds

)
1
2

≤
(1 + 1/m)

µmCm

−→ 0

Therefore using the notation a+ = max(a, 0), we get as m −→ +∞

(−hm)+ −→ 0 uniformly on compact sets of (0,+∞)

Let now ϕ ∈ C∞
c (0,+∞) such that ϕ ≥ 0. Multiplying (7.79) by ϕ and integrating by parts,

we get
(7.80)

−

∫ +∞

0

dr ϕ′(r)

(

1

rn+3

∫

∂Br

v2
m

)

≥

∫ +∞

0

dr ϕ(r)

{

2

r

∫

Br

1

|x|n

∣

∣

∣

∣

Um(x)

|x|2

∣

∣

∣

∣

2

− (−hm(r))+

}

Passing to the limit in (7.80), we get

(7.81) −

∫ +∞

0

dr ϕ′(r)

(

1

rn+3

∫

∂Br

v2
∞

)

≥

∫ +∞

0

dr ϕ(r)

{

2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U∞(x)

|x|2

∣

∣

∣

∣

2
}

where U∞ = x · ∇v∞ − 2v∞. This implies in particular that

d

dr

(

1

rn+3

∫

∂Br

v2
∞

)

≥
2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U∞(x)

|x|2

∣

∣

∣

∣

2

in D′(0,+∞)

and for every λ > 1 and s > 0

(7.82)

(

1

(λs)n+3

∫

∂Bλs

v2
∞

)

≥

(

1

sn+3

∫

∂Bs

v2
∞

)

+

∫ λs

s

dr

{

2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U∞(x)

|x|2

∣

∣

∣

∣

2
}

Similarly, for any q ∈ ∂P∞
Psing, we can do the same reasoning with vm replaced by vm − qm

with qm =
Pm − Pm

εm

−→ q for some Pm ∈ Psing which gives (7.82) with v∞ replaced by

v∞ − q, namely
(7.83)
(

1

(λs)n+3

∫

∂Bλs

(v∞ − q)2

)

≥

(

1

sn+3

∫

∂Bs

(v∞ − q)2

)

+

∫ λs

s

dr

{

2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U∞(x)

|x|2

∣

∣

∣

∣

2
}

We now remark that for wq = v∞ − q, we have

Γq(ρ) :=
1

ρn+4

∫

Bρ

w2
q =

1

ρn+4

∫ ρ

0

ds sn+3γq(s) with γq(s) :=

(

1

sn+3

∫

∂Bs

w2
q

)
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Then by integration of (7.83) for s ∈ (0, ρ), we get

Γq(λρ) ≥ Γq(ρ) +
1

ρn+4

∫ ρ

0

ds sn+3

(

∫ λs

s

dr

{

2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U∞(x)

|x|2

∣

∣

∣

∣

2
})

Taking the infimum for q ∈ ∂P∞
Psing for ρ = 1, we get

inf
q∈∂P∞

Psing

(

1

λn+2p

∫

Bλ

|v∞ − q|2
)

≥ inf
q∈∂P∞

Psing

(∫

B1

|v∞ − q|2
)

+

∫ 1

0

ds sn+3

(

∫ λs

s

dr

{

2

r

∫

Br

1

|x|n

∣

∣

∣

∣

U∞(x)

|x|2

∣

∣

∣

∣

2
})

Using (7.77) and (7.78), we conclude that the second term of the last line is zero for any
λ > 1, and then U∞ = 0, i.e. v∞ is homogeneous of degree 2.
Therefore, by Lemma 7.6, and the fact that v∞ is superharmonic (see (7.76)), we deduce
that v∞ is harmonic on the whole space.

Step 5: Properties of the minimizer Pm and consequences

We write P∞(x) = 1
2

tx ·Q∞ ·x with a diagonal matrix Q∞ (up to rotations and symmetry
of the coordinates)

Q∞ =









a1
∞ 0 0 ... 0

0 a2
∞ 0 ... 0

... ... ... ... ...
0 0 0 ... an

∞









with a1
∞ ≥ a2

∞ ≥ ... ≥ an
∞ ≥ 0. We also recall that trace Q∞ = 1. Similarly (still up

to rotations and symmetry of the coordinates), we can assume that we can write Pm(x) =
1
2

tx ·Qm · x with a diagonal matrix Qm (up to rotations)

Qm =









a1
m 0 0 ... 0

0 a2
m 0 ... 0

... ... ... ... ...
0 0 0 ... an

m









with a1
m ≥ a2

m ≥ ... ≥ an
m ≥ 0, trace Qm = 1 and

ai
m −→ ai

∞ for i = 1, ..., n

Let us call k∞ the rank of the matrix Q∞, and km the rank of the matrix Qm which then
satisfies km ≥ k∞ (for m large enough).

The fact that ai
m = 0 for i = km + 1, ..., n, joint to the non-negativity of um, then implies

that
vm ≥ 0 on {xi = 0, i = 1, ..., km}

By hypothesis the energy for q ∈ ε−1
m (Psing − Pm)

E(q) :=

∫

B1

(vm − q)2
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is minimal for q = 0.
Because we have ai

m > 0 for i = 1, ..., km, we see that the first variation of this energy
with respect to variations of the whole coefficients (constraint to stay non-negative with
a1

m + ...+ an
m = 1), implies that

∫

B1

vm

(

n
∑

i=1

γix
2
i

)

≤ 0 for every











γ = (γ1, ..., γn) ∈ R
km × [0,+∞)n−km

with
n
∑

i=1

γi = 0

Let us also remark that defining for i < j

Rθ(x) = (x1, ..., xi−1, xi cos θ + xj sin θ, xi+1, ..., xj−1, xj cos θ − xi sin θ, xj+1, ..., xn)

and
qθ(x) = Pm(Rθ(x)) − Pm(x)

and derivating the energy E(qθ) with respect to θ in θ = 0, we get

(7.84)

∫

B1

vm

(

ai
m − aj

m

)

xixj = 0 for i, j = 1, ..., n

Because ai
m > 0 for i = 1, ..., km, we see that qη(x) = ηxixj for i, j ∈ {1, ..., km} with i 6= j,

satisfies qη ∈ ε−1
m (Psing − Pm) for η small enough. The first variation of the energy with

respect to η in η = 0 gives

(7.85)

∫

B1

vmxixj = 0 for i, j = 1, ..., km, i 6= j

From equations (7.84)-(7.85), we deduce in particular that

(7.86)

∫

B1

vmxixj = 0 for i = 1, ..., km, j = 1, ..., n, j 6= i

Let us call k∞ the limit of the km (which satisfies k∞ ≥ k∞). Passing to the limit, we get
that v∞ satisfies the assumptions of Lemma 7.7. We deduce that v∞ = 0. Contradiction
with (7.72).
This ends the proof of the Proposition.

8 Applications

We now consider obstacle problems for more general elliptic operators. Given an open set
Ω ∈ R

n, we consider solutions u ∈ H2(Ω) to the following obstacle problem

(8.87)



















n
∑

i,j=1

aij(x)uij +
n
∑

i

bi(x)ui + c(x)u = f(x) · 1{u>0}

u ≥ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

in Ω
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where uij and ui stand respectively for
∂2u

∂xi∂xj

and
∂u

∂xi

. We assume that the coefficients

aij, bi, c, f are continuous and satisfy the following ellipticity/nondegeneracy condition

(8.88) ∃δ1 > 0, ∀x ∈ Ω, ∀ξ ∈ R
n,

n
∑

i,j=1

aij(x)ξiξj ≥ δ1|ξ|
2 and f(x) ≥ δ1

8.1 Reduction of the problem

Let us fix a point x0 ∈ Ω ∩ ∂ {u > 0}. Then, assuming that the coefficients aij, bi, c, f are
Dini, we can rewrite the first line of (8.87) as

n
∑

i,j=1

aij(x0)uij = f̃x0(x) · 1{u>0}

where the function f̃x0 is defined by

f̃x0(x) = f(x) −
n
∑

i,j=1

(aij(x) − aij(x0))uij −

n
∑

i

(bi(x) − bi(x0))ui − (c(x) − c(x0))u .

Thus, up to diagonalizing the matrix (aij(x0))ij and changing the coordinates, we see that
there exists a matrix Ax0 such that if we define ux0(x) = u(x0 + Ax0 · x), fx0(x) = f̃x0(x0 +
Ax0 · x), then we have

(8.89)































































∆ux0 = fx0(x) · 1{ux0>0}

ux0 ≥ 0

1

δ0
≥ fx0 ≥ δ0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

in B1

fx0(0) = 1

0 ∈ ∂ {ux0 > 0}

Then we define

σx0(ρ) = sup
r∈(0,ρ]

(

1

|Br|

∫

Br

|fx0(x) − fx0(0)|p
) 1

p

In particular we get that σx0 is Dini.

Indeed, it is possible to apply the approach of Alt, Phillips [2], which shows that the
second derivatives of u are bounded. Their method is based on the interior Schauder estimate,
which has to be replaced by a similar estimate for Dini coefficients. This last estimate is
for instance a consequence of the estimate of Theorem 2.1, using the classical perturbation
method.

Remark 8.1 It would be interesting to provide a pointwise proof that σx0 is Dini, avoiding
the argument of Alt, Phillips.
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8.2 Regularity of the free boundary

We also introduce the following

Definition 8.2 (Dini continuity)
We say that a function f is Dini continuous, if its modulus of continuity given by (1.2) is
Dini in the sense of Definition 1.1.

Then we have the following result

Theorem 8.3 (Regularity of the free boundary)
Under assumption (8.88), let us consider a solution u of (8.87) with Dini continuous
coefficients aij, bi, c, f . Then we can write the free boundary as follows

(∂ {u > 0}) ∩ Ω = R∪ S

i) where R is locally a C1 hypersurface,
ii) and the singular set S of the free boundary can be written

S =
n−1
⋃

j=0

Sj

where each Sj is locally contained in a C1 j-dimensional manifold.

Remark 8.4 Here the sets R (resp. S) stands for the set of regular points defined via
Proposition 1.6 applied to the reduced problem (8.89).

The first claim of this Theorem on the regular part of the free boundary was already
proved (with a different proof for the Laplace operator) in Blank [5].
The second claim of the Theorem on the singular part of the free boundary was proved by
Caffarelli [8] for Lipschitz coefficients, and by Monneau [36] for Hölder coefficients, including
extensions for double Dini coeffifients).

Sketch of the proof of Theorem 8.3
We already know the uniqueness of the blow-up limit at every regular and singular points.
Moreover these limits enjoy a stability property for neighbouring points (using respectively
(2.14) and (7.58)). Consequently the map which associate its blow-up limit to each regular
point is continuous. This is also the case for singular points. A further inspection of the
structure of the blow-up limits u0(x) = 1

2
tx · Q · x shows that we can consider the singular

points Sk associated to a matrix Q of rank k ≤ n− 1.
Finally, the rest of the proof is classical, see for instance Caffarelli [7], [9], Monneau [36] (see
also Caffarelli, Shahgholian [16], Caffarelli, Petrosyan, Shahgholian [15], for similar obstacle
problem without sign condition on the solution).
This ends the sketch of the proof of the Theorem.
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9 Appendix : an application to fully nonlinear elliptic

equations

Let us mention that C2,α estimates are known for solutions of concave (or convex) fully
nonlinear uniformly elliptic equations (see chapter 6 of Caffarelli, Cabre [11] or its gener-
alizations in chapter 8, see also the original paper of Caffarelli [10]). For results with Dini
conditions, see Kovats [32, 33], Zou, Chen [44], and Bao [3], and for the connection between
the C2,α regularity of C1,1 solutions with the Liouville property, see Huang [27]. Here we
show, without assuming concavity or convexity of the equation, a pointwise C2,α estimate
(in the Lp norm) assuming a pointwise C2-Dini regularity (in the L∞ norm).

Proposition 9.1 (C2-Dini implies C2,α for fully nonlinear equations)
Let us consider a function u ∈ C2(B1) solution of

F (D2u) = 0 in B1

with F ∈ C2 and uniformly elliptic.
Let us define for p ∈ (1,+∞) (and for P0 a polynomial of degree less or equal to 2)

ω̂p(r) = sup
ρ∈(0,r]

(

1

|Bρ|

∫

Bρ

∣

∣D2u−D2P0

∣

∣

p

) 1
p

and
ω̂∞(r) = sup

ρ∈(0,r]

sup
Bρ

∣

∣D2u−D2P0

∣

∣

If

∫ 1

0

ω̂∞(r)

r
dr < +∞, then there exist constants C > 0 and α, r1 ∈ (0, 1] such that

∀r ∈ (0, r1), ω̂p(r) ≤ Crα

Proof of Proposition 9.1
up to redefining u, we can assume that D2u(0) = 0 and perform a Taylor expansion of

F (D2u) = 0

as
0 = F (0) + F ′(0)D2u+O

(

|D2u|2
)

i.e.
F ′(0)D2u = O

(

|D2u|2
)

We deduce from Theorem 2.1, that for r < r0 (and a suitable polynomial P0 with D2P0 = 0)

(

1

|Br|

∫

Br

∣

∣

∣

∣

u(x) − P0(x)

r2

∣

∣

∣

∣

p) 1
p

≤ C

(

Mrα +

∫ r

0

ω̂p(s)ω̂∞(s)

s
ds+ rα

∫ 1

r

ω̂p(s)ω̂∞(s)

s1+α
ds

)

≤ C (Mrα + ω̂p(r)ε(r))

with

ε(r) =

∫ r

0

ω̂∞(s)

s
ds+ rα

∫ 1

r

ω̂∞(s)

s1+α
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Now recall that from classical interior W 2,p elliptic estimate joined to a scaling argument,
we have for λ ∈ (0, 1) and any r ∈ (0, 1)

(

1

|Bλr|

∫

Bλr

|D2u−D2P0|
p

) 1
p

≤ C1

{

(

1

|Br|

∫

Br

∣

∣

∣

∣

u(x) − P0(x)

r2

∣

∣

∣

∣

p) 1
p

+

(

1

|Br|

∫

Br

|F ′(0)D2u|p
) 1

p

}

where the constant C1 > 0 depends on λ. Therefore, using the previous estimate and the
equation to estimate the term F ′(0)D2u, we get for some constant C2 > 0

ω̂p(λr) ≤ C2 (Mrα + ω̂p(r)ε̂(r)) with ε̂(r) = ε(r) + ω̂∞(r)

We now fix µ ∈ (0, 1) and r′0 ∈ (0, 1] such that C2ε̂(r
′
0) ≤ µ/2. Then we get

∀r ∈ (0, r′0), ω̂p(λr) ≤ µω̂p(r) or ω̂p(r) ≤ C3r
α

with C3 = 2C2M/µ. Applying Lemma 3.3 with M(u, r) replaced by ω̂p(r), we get the result
with r1 = λr′0. This ends the proof of the Proposition.

Aknowledgements
I would like to thank Luis Caffarelli and Henrik Shahgholian for indications about the ref-
erences and stimulating discussions. I also would like to thank two unknown referees who
corrected several misprints in the manuscript and also helped me by their remarks to im-
prove the presentation of this work. This work was supported by the ACI “EDP et finance”
(2003-2007), and by the ANR MICA (2006-2009).

References

[1] H.W. Alt, L.A. Caffarelli, A. Friedman, Variational Problems with two
phases and their free boundaries, Trans. Amer. Math. Soc. 282 (2), (1984), 431-461.

[2] H.W. Alt, D. Phillips, A free boundary problem for semilinear elliptic equations,
J. Reine Angew. Math. 368 (1986), 63-107.

[3] J. Bao, Fully Nonlinear Elliptic Equations on General Domains, Canad. J. Math.
54 (6), 1121-1141, (2002).

[4] C. Burch, The Dini Condition and Regularity of Weak Solutions of Elliptic Equa-
tions, J. Diff. Eq. 30 (1978), 308-323.

[5] I. Blank, Sharp Results for the Regularity and Stability of the Free Boundary in the
Obstacle Problem, Indiana Univ. Math. J., 50(3), 1077-1112, (2002).

[6] L.A. Caffarelli, Free boundary problem in highter dimensions, Acta Math. 139,
(1977), 155-184.

[7] L.A. Caffarelli, Compactness Methods in Free Boundary Problems, Comm. Par-
tial Differential Equations 5 (4), (1980), 427-448.

[8] L.A. Caffarelli, The Obstacle Problem revisited, J. Fourier Anal. Appl. 4, (1998),
383-402.

52



[9] L.A. Caffarelli, The Obstacle Problem, Lezioni Fermiane. Accademia Nazionale
dei Lincei, Rome; Scuola Normale Superiore, Pisa, (1998).

[10] L.A. Caffarelli, Interior a priori Estimates for Solutions of Fully Nonlinear Equa-
tions, Annals of Mathematics 130 (1989), 189-213.

[11] L.A. Caffarelli, X. Cabre, Fully Nonlinear Elliptic Equations, Amer. Math.
Soc., Providence, R.I., 1995.

[12] L.A. Caffarelli, Q. Huang, Estimates in the generalized Campanato-John-
Nirenberg spaces for fully nonlinear elliptic equations, Duke Math. J. 118 (1) (2003),
1-17.

[13] L.A. Caffarelli, L. Karp, H. Shahgholian, Regularity of a free boundary with
application to the Pompeiu problem, Ann. Math. (2) 151 (2000), pp. 269-292.

[14] L.A. Caffarelli, D. Kinderlehrer, Potential methods in variational inequali-
ties, J. Analyse Math. 37 (1980), 285-295.

[15] L.A. Caffarelli, A. Petrosyan, H. Shahgholian, Regularity of a free bound-
ary in parabolic potential theory, J. Amer. Math. Soc. 17 (4), 827-869, (2004).

[16] L.A. Caffarelli, H. Shahgholian, The structure of the singular set of the free
boundary in potential theory, J. Contemp. Math. Anal. 39 (2), 2-30, (2005).

[17] A.P. Calderon, A. Zygmund, Local properties of solutions of elliptic partial dif-
ferential equations, Studia Math. 20 (1961), 171-225.

[18] S. Campanato, Proprieta di una Famiglia di Spazi Functionali, Ann. Scuola Norm.
Sup. Pisa (3) 18 (1964), 137-160.

[19] G. Dal Maso, U. Mosco, M.A. Vivaldi, A pointwise regularity theory for the
two-obstacle problem, Acta Math. 163 (1989), 57-107.

[20] J. Diederich, Removable Sets for Pointwise Solutions of Elliptic partial Differential
Equations, Trans. Amer. Math. Soc. 165 (1972), 333-352.

[21] F. Duzaar, A. Gastel Nonlinear elliptic systems with Dini continuous coefficients,
Arch. Math. 78 (2002), 58-73.

[22] F. Duzaar, A. Gastel, G. Mingione, Elliptic systems, singular sets and Dini
continuity, Comm. Partial Differential Equations 29 (2004), No 7-8, 1215-1240.

[23] L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch.
Rational Mech. Anal. 95 (1986), 227-252.

[24] L.C. Evans, R.F. Gariepy, Compactness and Partial Regularity in the Calculus
of Variations, Indiana Univ. Math. J. 36 (2) (1987), 361-371.

[25] H. Federer, Geometric Measure Theory, Springer-Verlag, (1969).

[26] D.N. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second
Order, Springer-Verlag, 3nd edition, (1997).

53



[27] Q. Huang, On the regularity of solutions to fully nonlinear elliptic equations via the
Liouville property, Proc. Amer. Math. Soc. 130 (2002), 1955-1959.

[28] P. Hartman, A. Wintner, On Uniform Dini Conditions in the Theory of Linear
Partial Differential Equations of Elliptic Type, Amer. J. Math. 77 (1954), 329-354.

[29] S. Jaffar, Pointwise regularity criteria, C.R. Acad. Sci. Paris, Ser. I 339 (2004),
757-762.

[30] S. Jaffar, Y. Meyer, On the Pointwise regularity of Functions in Critical Besov
Spaces, J. of Functional Analysis 175 (2000), 415-434.
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