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Résumé

Nous étudions les frontières libres asociées à des solutions d’une classe de problèmes

de l’obstacle non linéaires. Cette classe de problèmes contient un modèle particulier

dérivé des équations de Ginzburg-Landau de la supraconductivité. Nous considérons des

solutions dans un ouvert borné Ω à bord Lipschitz, et nous prouvons que la frontière libre

est régulière lorsque celle-ci est suffisamment proche du bord fixe ∂Ω. Nous prouvons

aussi un résultat de stabilité de la frontière libre et donnons une borne a priori sur la

mesure de Hausdorff de cette frontière libre.

Abstract

We study the free boundary of solutions to a class of nonlinear obstacle problems.

This class of problems contains a particular model derived from the Ginzburg-Landau

equation of superconductivity. We consider solutions in a Lipschitz bounded open set

Ω and prove the regularity of the free boundary when it is close enough to the fixed

boundary ∂Ω. We also give a result of stability of the free boundary and give a bound

on the Hausdorff measure of the free boundary.

∗CERMICS, Ecole Nationale des Ponts et Chaussées, CERMICS, 6 et 8 avenue Blaise Pas-
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1 Introduction

In this article we are interested in solutions to a nonlinear obstacle problem. This prob-

lem is motivated by a work of Chapman, Rubinstein, Schatzman [13] where a model is

formally derived from the Ginzburg-Landau theory for a superconductor with a density

of vortices in an interior region whose boundary is a free boundary. A rigorous derivation

of this model has been done by Sandier, Serfaty [23]. Se also [4, 12, 25, 24] for some

related works on the mathematical analysis of superconductivity. Here we will prove

rigorous results on the regularity of the free boundary contained in a Lipschitz domain.

The core of the technical part of this article is an adaptation in the framework of the

nonlinear obstacle problem on non-smooth domains of Caffarelli-type techniques [8, 9]

originally developed for linear obstacle problems on smooth domains.

The model that we consider in this paper is a nonlinear obstacle problem in a Lipschitz

bounded open set Ω ⊂ Rn. We are interested in the minimization of the energy

E(u) =

∫

Ω

F (|∇u|2) + u2

on the convex set

Kλ =
{

u ∈ H1(Ω), u ≥ λ on Ω, u = λ0 on ∂Ω
}

where 0 ≤ λ ≤ λ0 are two constants. We make the following assumption (which implies

that the energy E is strictly convex)

(A0) F is a C∞ convex function satisfying F ′(0) = 1 and lim
q→+∞

F ′(q) < +∞.
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It is classical that for each λ there exists a unique minimizer uλ of the energy E on

Kλ. For such a minimizer the coincidence set is

{u = λ}

and the free boundary is

∂{u = λ}

When the free boundary ∂ {u = λ} is smooth, the solution u satisfies the following Euler-

Lagrange equation



















































div
(

F ′(|∇u|2)∇u
)

= u on Ω\ {u = λ}

u = λ0 on ∂Ω

u = λ

∂u
∂n

= 0

∣

∣

∣

∣

∣

∣

∣

on ∂ {u = λ}

Although there are two boundary conditions on the free boundary, the problem is not

overdeterminated. These two boundary conditions allow to characterize the free bound-

ary ∂ {u = λ} which is an unknown in this problem.

We refer the reader to the monographs [17, 14, 22] for a presentation of the classical

results on the free boundary of the obstacle problem.

1.1 Main results

Our main result (for a smooth open set and in the linear case) is the following :

Theorem 1.1 (Regularity transfer from the fixed boundary to the free bound-

ary)

Let us assume that the open set Ω is smooth, and that F (q) = q, then the energy E has a

unique minimizer uλ on Kλ for all λ ∈ [0, λ0]. Moreover there exists δ > 0 such that for

all λ ∈ (λ0 − δ, λ0), the free boundary ∂ {uλ = λ} is a C∞ (n− 1)-dimensional manifold

homeomorphic to ∂Ω.
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Although this result seems very natural, it was an open problem (even in this linear

case), that we solve here applying the approach of blow-ups developed by Caffarelli [8]

for the regularity of the free boundary of the obstacle problem. Under the assumption

that ∂Ω ∈ C∞, a nonlinear variant of theorem 1.1 was proved in [5] by A. Bonnet and

the author, using the Nash-Moser inverse function theorem in dimension 2. This Nash-

Moser approach could work in fact in any dimensions, but it can not be applied to a

fixed boundary ∂Ω less regular than C∞. On the contrary the approach of Caffarelli [8]

allows to deal with non-smooth fixed boundaries ∂Ω.

We extend theorem 1.1 to Lipschitz open set Ω and for general convex functions F

satisfying assumption (A0). More precisely we make the following two assumptions on

the regularity of Ω:

(A1) Exterior sphere condition:

There exists r0 > 0 such that for every point X0 of the boundary ∂Ω, there exists a point

X1 ∈ Rn, such that the ball Br0(X1) is included in Rn\Ω and is tangent to ∂Ω at X0.

(A2) Interior cone condition:

There exist r0 > 0 and an angle α0 ∈ (0, π
2 ) such that for every point X0 of the boundary

∂Ω, there exists a unit vector ν ∈ Sn−1, such that Ω contains the cone

{

X ∈ Br0(X0), <
X − X0

|X − X0|
, ν > ≥ cosα0

}

where < ·, · > is the usual scalar product. Theorem 1.1 is a corollary of the following

more general result:

Theorem 1.2 (Regularity transfer from a Lipschitz fixed boundary)

Under assumptions (A0)-(A1)-(A2), the energy E has a unique minimizer uλ on Kλ for

all λ ∈ [0, λ0]. Moreover there exists δ > 0 such that for all λ ∈ (λ0 − δ, λ0), the free

boundary ∂ {uλ = λ} is a C∞ (n − 1)-dimensional manifold homeomorphic to ∂Ω.
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In the application that we have in mind, namely a nonlinear free boundary problem

arising in the description of superconductors in dimension two (see Bonnet, Monneau [5],

Berestycki, Bonnet, Chapman [2]), the function F0 is analytic convex but only defined

on [0, 4
27 ) by F ′

0(0) = 1 and

h = (1 − v2)v ⇐⇒ v = F ′
0(h

2)h

Using a L∞ control on the gradient of the solution we deduce the following result in this

particular case:

Corollary 1.3 (Application to a superconducting model)

Under assumption (A1)-(A2), with F = F0, there exists δ > 0 such that ∀λ ∈ (λ0−δ, λ0),

there exists a unique solution uλ minimizer of E on Kλ satisfying supΩ |∇uλ|
2

< 4
27 ;

moreover the free boundary ∂ {uλ = λ} is a C∞ (n − 1)-dimensional manifold homeo-

morphic to ∂Ω.

Let us mention that part of the methods of [20] could be adapted to this model of

superconductivity to get informations on the singularities of the free boundary when

λ < λ0 − δ.

We also prove a result on the perturbation (locally in space) of the free boundary.

Theorem 1.4 (Local stability of the free boundary)

We assume (A0)-(A1)-(A2). Let λ∗ ∈ (0, λ0) be such that there exists a minimizer uλ∗

of the energy E on Kλ∗ with a free boundary ∂ {uλ∗ = λ∗} which is C∞ in a compact set

K∗ of Ω. Then for every smaller compact set K ⊂⊂ K∗ there exists ε > 0 such that for

every λ satisfying |λ − λ∗| < ε, the unique solution uλ has a free boundary ∂ {uλ = λ}

which is C∞ in K.

The proof of this result is based on a geometric criterion for the regularity of the free

boundary given by Caffarelli in [8] and on the continuity of the map λ 7→ uλ. We also

refer to the book of Rodrigues [22] for classical results on the global stability of the free
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boundary.

Finally we give a bound on the Hausdorff measure of the free boundary, generalizing

to non-smooth fixed boundaries ∂Ω, a result of Brezis, Kinderlehrer [6] based on fine

estimates for variational inequalities. Here the proof is an adaptation of the work of

Caffarelli [9], developed for linear equations.

Theorem 1.5 (Bound on the Hausdorff measure of the free boundary)

Under assumptions (A0)-(A1)-(A2), there exists a constant C > 0 only depending on

Ω, λ0, F such that for any minimizer uλ of E on Kλ with λ ∈ [0, λ0], we have

Hn−1 (∂ {uλ = λ}) ≤ C

2 Some known results on blow-up limits

2.1 The simple blow-up limit

To prove regularity results on the free boundary, the main tool (first introduced for the

obstacle problem by Caffarelli in [10]) is the notion of blow-up.

Let us consider a solution u to










∆u = f ≥ 1 on {u > 0} ∩ Ω

u ≥ 0 on Ω and |D2u|L∞(Ω) ≤ M

(2.1)

with f ∈ C0,α(Ω) and f(0) = 1. We assume that X0 is a point of the free boundary

∂{u = 0}. Let us consider the following blow-up sequence of functions

uε(X) =
u(X0 + εX)

ε2

By assumptions, uε(0) = ∇uε(0) = 0 and the second derivatives |D2uε| are bounded

by a constant independent on ε > 0. By Ascoli-Arzela theorem, up to extraction of a

convergent subsequence (ε′), we get

uε′

−→ u0 uniformly on compact sets of Rn
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This function u0 is called a blow-up limit of the function u at the point X0.

In any dimensions, the main result for blow-up limits is the following

Theorem 2.1 (Caffarelli [10, 8, 11], Weiss [26]; Characterization of a Simple

Blow-up Limit)

The blow-up limit u0 is unique and only depends on the point X0 on the free boundary.

Moreover either X0 is a singular point and then u0 is a quadratic form, i.e.

u0(X) =
1

2
tX · QX0 · X ≥ 0

where QX0 is a symmetric matrix n × n such that tr QX0 = 1.

Or X0 is a regular point and then there exists a unit vector νX0 ∈ Sn−1 such that

u0(X) =
1

2
(max (< X, νX0 >, 0))2

and the free boundary is a C1 (n − 1)-dimensional manifold in a neighbourhood of X0.

The regularity C1 can then be improved by Kinderlehrer, Nirenberg results [16],

and gives C∞ regularity for an obstacle problem where the elliptic operator has C∞

coefficients. It is also possible to get similar results with analyticity of the solutions

when the coefficients are analytic.

2.2 More general blow-up limits

We now recall a result which characterizes the limits of some more general blow-up

sequences where the origin moves with the scaling.

Lemma 2.2 (General Blow-up Limits, [8])

Let

uε(X) =
uε(Xε + εX)

ε2

where uε is a sequence of solutions to










∆uε = fε ≥ 1 on {uε > 0} ∩ Ωε

uε ≥ 0 on Ωε and |D2uε|L∞(Ωε) ≤ M
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with |fε|C0,α(Ωε) ≤ M . We assume that uε(Xε) = 0 and that
1

ε
d(Xε, ∂Ωε) ≥ r > 0 as

ε → 0. Then up to extraction of a convergent subsequence (ε′), we get

uε′

−→ u0 uniformly on compact sets of Ω0

for some open set Ω0 and where u0 is convex and satisfies











∆u0 = f0(0) ≥ 1 on
{

u0 > 0
}

∩ Ω0

u0 ≥ 0 on Ω0 and |D2u0|L∞(Ω0) ≤ M

Moreover either

i) the interior of the coincidence set of the blow-up limit is empty:

{u0 = 0}0 = ∅

Or

ii) the interior of the coincidence set of the blow-up limit satisfies

{u0 = 0}0 6= ∅

and 0 is a regular point for u0 and also for all uε′

with ε′ small enough.

Another useful result is the following nondegeneracy property of the solution:

Lemma 2.3 (Nondegeneracy, [8])

Let u be a solution to problem (2.1) and 0 ∈ {u > 0}. If Br(0) ⊂ Ω, then

sup
Br(0)

(u(X) − u(0)) ≥
r2

2n

Proof of lemma 2.3. Apply the maximum principle to w(X) = u(X)− u(0)− 1
2n

|X |2

in Br(0) ∩ {u > 0}.
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3 A bound on the second derivatives

In this section we will prove the following result

Proposition 3.1 (Control near the fixed boundary ∂Ω)

Under the assumptions of theorem 1.2, let us define ε =
√

2
(

λ0−λ
λ

)

. Then there exist

constants C, c > 0 such that for all λ ∈ [0, λ0] we have

uλ(X) − λ ≥ cε2 on {X ∈ Ω, dist (X, ∂Ω) ≤ cε} (3.1)

|∇uλ(X)| ≤ Cε on Ω (3.2)

and for all δ ∈ (0, 1]

∣

∣D2uλ(X)
∣

∣ ≤ C/δ2 on {X ∈ Ω, dist (X, ∂Ω) ≥ cεδ} (3.3)

Moreover we have

div
(

F ′(|∇uλ|
2)∇uλ

)

= uλ 1{uλ>λ} on Ω

where for the function uλ ≥ λ we define

1{uλ>λ}(X) =

{

1 if uλ(X) > λ

0 if uλ(X) = λ

Remark 3.2 For a smooth Ω, some L∞ bounds on the second derivatives are given in

[6] for fixed λ. Here we need to precise the dependence of the constants as λ goes to λ0.

The exterior sphere condition gives a control (3.1) from below on uλ, and with the help of

Harnack inequality we get the L∞ bounds (3.3) on the second derivatives up to the case

λ = λ0. Because the fixed boundary ∂Ω is not smooth here, the bound (3.3) on the second

derivatives goes to infinity when the point reaches the fixed boundary ∂Ω (case δ = 0).

We consider the minimizer uλ of the convex energy

E(u) =

∫

Ω

F (|∇u|2) + u2

9



on the convex set

Kλ =
{

u ∈ H1(Ω), u ≥ λ on Ω, u = λ0 on ∂Ω
}

We first prove that the minimizer uλ satisfies the following Euler-Lagrange equation

Lemma 3.3 (Euler-Lagrange equation)

div
(

F ′(|∇uλ|
2)∇uλ

)

= uλ 1{uλ>λ} on Ω

Although this result seems natural, we do not know any references where it is proved

(except in the linear case). We give a complete proof below.

Proof of lemma 3.3

Let

(s)+ =











s if s > 0

0 if s ≤ 0

Then the minimization of E on Kλ is equivalent to the minimization of the convex energy

Eλ(u) =

∫

Ω

F (|∇u|2) +
(

(u − λ)
+

+ λ
)2

on the convex set

K =
{

u ∈ H1(Ω), u = λ0 on ∂Ω
}

Because uλ is the minimizer of Eλ on K, we have for every ϕ ∈ C∞
0 (Ω) and t ∈ [0, 1]:

Eλ(uλ + tϕ) ≥ Eλ(uλ)

Then Lebesgue’s dominated convergence theorem gives

0 ≤ lim
t→0

(

Eλ(uλ + tϕ) − Eλ(uλ)

t

)

=

∫

Ω

2F ′
(

|∇uλ|
2
)

∇uλ∇ϕ + 2 uλ

(

ϕ sgn+(uλ − λ) + ϕ+
(

1 − sgn+(uλ − λ)
))

where

sgn+(s) =











1 if s > 0

0 if s ≤ 0
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Considering ϕ and −ϕ we get that div
(

F ′(|∇uλ|2)∇uλ

)

∈ L∞(Ω). Using the regular-

ity theory for elliptic equations (see [21]) we deduce that u ∈ C1,α
loc (Ω). Consequently

{uλ > λ} is an open set and the Euler-Lagrange equation is satisfied on this open set.

Furthermore a classical argument using the nondegeneracy lemma 2.3 proves that the

Lebesgue measure of the free boundary ∂ {uλ = λ} is zero. This implies the full Euler-

Lagrange equation. This ends the proof of lemma 3.3.

Let us recall that when Ω is smooth, there exists a constant C0 > 0 such that for

each λ ∈ [0, λ0] we have the following properties (see Brézis, Kinderlehrer [6]):

(H1)

|∇uλ(X)| ≤ C0 on Ω

(H2)

u ∈ C1,1
loc (Ω)

In a first case we will prove proposition 3.1 assuming (H1)-(H2), and in a second case

we will justify these assumptions.

Case A: we assume (H1)-(H2) and that ∂Ω is smooth.

Step 1: proof of (3.1)

We will build a subsolution u0 such that (for some point Xε which will be precised below)

uλ(X) − λ

λ
≥ ε2u0

(

|X − Xε|

ε

)

for
|X − Xε|

ε
∈ [r0, r0 + τ0] (3.4)

with ε =
√

2
(

λ0−λ
λ

)

.
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Ω

X1

Xε

X0

Figure 1: Construction of a subsolution outside the ball B|X0−Xε|(Xε)

For some τ0 > 0, we consider a solution u0 of






























∆u0 = µ > 1 on Br0+τ0(0)\Br0(0)

u0 = 1
2 on ∂Br0(0)

u0 = 0 on ∂Br0+τ0(0)

By symmetry we have u0(X) = u0(|X |). Let us recall that for each point X0 ∈ ∂Ω, there

exists X1 ∈ Rn, such that Br0(X1) is included in Rn\Ω and is tangent to ∂Ω at X0.

Now considering the function uλ at a scale close to the fixed boundary ∂Ω we introduce

the point Xε = X0 + ε (X1 − X0) and the following function (see figure 1)

wε(X) =
uλ(Xε + εX)− λ

λε2

which satisfies on Ω−Xε

ε
:











Aε(w
ε) ≤ 1

0 ≤ wε ≤ 1
2

where the quasilinear elliptic partial differential operator Aε is defined in (4.1).

Moreover for a good choice of µ > 1, τ0 > 0, we have on Br0+τ0(0)\Br0(0):










Aε(u0) ≥ 1

0 ≤ u0 ≤ 1
2

12



Then by the Maximum Principle (see Berestycki, Nirenberg [3]), we can slide u0 below

wε and we get

wε ≥ u0 on Br0+τ0(0)\Br0(0)

This is equivalent to (3.4) whose we deduce (3.1). This ends the proof of step 1.

Step 2: proof of (3.2): estimate on the gradient : |∇uλ| ≤ λε|u′
0(r0)|

We first remark that a straightforward consequence of step 1 is that

lim sup
X→∂Ω

(

λ0 − uλ

dist (X, ∂Ω)

)

≤ λε|u′
0(r0)|

From the fact that u = constant = λ0 on ∂Ω, we deduce that |∇u| ≤ λε|u′
0(r0)| on ∂Ω.

Now the estimate on the gradient comes from the fact that the gradient is maximal on

the boundary ∂Ω. For the convenience of the reader we recall this classical argument.

For u = uλ, we have

aij (∇u)uij = u on Ω\ {u = λ}

where aij(p) = F ′(|p|2)δij + 2F ′′(|p|2)pipj . Let us take v = ∂ξu where ξ ∈ Sn−1. Then

aijvij + bkvk = v on Ω\ {u = λ}

where bk = (aij)
′
pk

· uij . The Maximum Principle implies that v = ∂ξu is maximal on

∂Ω ∪ ∂ {u = λ}. Taking all directions ξ ∈ Sn−1 we deduce that |∇u| is maximal on ∂Ω,

because ∇u = 0 on ∂ {u = λ}.

This ends the proof of step 2.

Step 3: proof of (3.3)

Let

w(X) =
uλ(εX) − λ

λε2

Then










Aε(w) = 1 on {w > 0}

0 ≤ w ≤ 1
2
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where the operator Aε is defined in (4.1). Let Y0 ∈ Ω
ε

such that dist
(

Y0,
∂Ω
ε

)

≥ c. We

will prove a bound on |D2w(Y0)|. To this end we will apply the method of Alt and

Phillips [1], using the following Harnack inequality of Krylov, Safonov for non-divergence

operator (a similar Harnack inequality for divergence operator is also applicable, see

Gilbarg, Trudinger [15]):

Theorem 3.4 (Harnack inequality for non-divergence operators; [7])

If










aijvij = f on B1 ⊂ Rn

v ≥ 0 on B1

and for the matrix a = (aij)

0 < c0 ≤ a ≤ C0

then there exists a constant C = C(n, C0, c0) > 0 such that

sup
B 1

2

v ≤ C

(

inf
B 1

2

v + |f |Ln(B1)

)

We will also use the following interior estimate:

Theorem 3.5 (Interior estimate,[15])

Let us assume that

aijvij + cv = f on Br ⊂ Rn

and for the matrix a = (aij)

0 < c0 ≤ a

If for some α ∈ (0, 1) there exists a constant C0 > 0 such that

|aij |L∞(Br) + rα[aij ]α;Br
+ r2|c|L∞(Br) + r2+α[c]α;Br

≤ C0

where [·]α;Br
is defined by

[g]α;Br
= sup

x,y∈Br,x6=y

(

|g(x) − g(y)|

|x − y|α

)
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Then

r2|D2v|L∞(B r
2
) ≤ C

(

|v|L∞(Br) + r2|f |L∞(Br) + r2+α[f ]α;Br

)

for some constant C = C(n, α, C0, c0) > 0.

Let wr(X) = w(Y0 + rX). Applying Harnack inequality theorem 3.4 to wr we get

sup
B r

2
(Y0)

w ≤ C

(

inf
B r

2
(Y0)

w + r2

)

(3.5)

Let

ρ =

√

w(Y0)

2C

i) Case ρ < cδ.

Then Y0 is close to {w = 0} and ρ can be arbitrarily small. We apply Harnack inequality

(3.5) with r = ρ and we get

0 < w(Y0) ≤ sup
B ρ

2
(Y0)

w ≤ 2C inf
B ρ

2
(Y0)

w

Let us remark that we have (see theorem 6.1, p. 281 of Ladyshenskaya, Ural’tseva [18])

[w]α;B1 ≤ C

where the constant C has the following dependence C = C(n, α, |w|L∞(B2), F, λ0, r0) > 0.

Then applying theorem 3.5, we deduce that

r2|D2w|
L∞

�
B r

2
(Y0) � ≤ C

(

|w|L∞(Br(Y0)) + r2
)

With the choice r = ρ, this implies

|D2w(Y0)| ≤ C

ii) case ρ ≥ cδ.

We apply the previous interior estimate with r = cδ. Using the fact that |w| ≤ 1
2 , we

find

|D2w(Y0)| ≤ C/δ2
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iii) Conclusion :

|D2uλ| ≤ C/δ2 on {X ∈ Ω, dist (X, ∂Ω) ≥ cεδ)}

i.e. (3.3) is proved.

Case B: justification of (H1)-(H2).

Here we consider a general Lipschitz bounded open set Ω satisfying assumptions (A1),

(A2) of theorem 1.2. We can mollify this open set Ω such that it gives a bigger and

smooth open set Ωη where η is the mollification parameter such that Ωη = Ω for η = 0.

This smooth open set Ωη still satisfies assumptions (A1), (A2) uniformly in η small

enough. We can in particular consider the minimizer uη
λ of the energy

Eη(u) =

∫

Ωη

F
(

|∇u|2) + u2
)

on the convex set

Kη
λ =

{

u ∈ H1(Ωη), u ≥ λ on Ωη , u = λ0 on ∂Ωη
}

This minimizer uη
λ satisfies (H1)-(H2), and then (3.1),(3.2),(3.3).

Taking the limit η → 0, we can extract (by Ascoli-Arzela theorem) a convergent subse-

quence uη
λ → u such that u still satisfies (3.1),(3.2),(3.3).

We have the

Lemma 3.6 The limit u is the minimizer uλ of the energy E on Kλ.

This ends the proof of proposition 3.1.

Proof of lemma 3.6

Let us recall that by (3.2), uη
λ is bounded in W 1,∞ uniformly in η small enough. Let

ũλ =











λ0 on Ωη\Ω

uλ on Ω
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By construction, we have

Eη(ũλ) ≥ Eη(uη
λ)

At the limit η = 0, we get

E(uλ) ≥ E(u)

The uniqueness of the minimizer uλ proves that u = uλ. This ends the proof of the

lemma 3.6.

4 Regularity of the free boundary near ∂Ω: proof of

theorem 1.2

We will prove theorem 1.2, thanks to Caffarelli result (lemma 2.2) applied to a particular

blow-up sequence.

Case F (q) = q

If theorem 1.2 is false, then there exist a sequence of reals εn =
√

2
(

λ0−λn

λn

)

→ 0 and

a sequence of singular points Xλn ∈ ∂ {uλn = λn}. Because of proposition 3.1, we have

dist(Xλn , ∂Ω) > cεn. Then we define

wεn(X) =
uλn(Xλn + εnX) − λn

λnε2
n

We have










∆wεn = 1 + ε2
nwεn on {wεn > 0}

0 ≤ wεn ≤ 1
2

Now from proposition 3.1 we have the following L∞ bound on the second derivatives:

∣

∣D2wεn(X)
∣

∣ ≤ C for dist(Xλn + εnX, ∂Ω) ≥ cεn

Consequently from lemma 2.2, there exists a subsequence which converges to a convex

function w0 defined on Ω0, where Ω0 is the limit of the sets 1
εn

(Ω − Xλn) (for an extracted

17



subsequence). Moreover w0 satisfies











∆w0 = 1 on
{

w0 > 0
}

0 ≤ w0 ≤ 1
2 and

∣

∣D2w0(X)
∣

∣ ≤ C for dist(X, ∂Ω0) ≥ c

Because Ω satisfies an interior cone condition (A2), Ω0 inherits the same property.

Moreover because we have made a blow-up close to the fixed boundary ∂Ω, we deduce

that Ω0 contains an infinite cone C0 with a non-empty interior. Now we have two cases

(see lemma 2.2):

i) the interior of the coincidence set of the blow-up limit is empty, and then the closure

{w0 > 0} contains the cone C0. It is then sufficient to take a ball Br ⊂ C0 with r large

enough such that (by the nondegeneracy lemma 2.3)

sup
Br

w0 ≥
r2

2n

which is in contradiction with 0 ≤ w0 ≤ 1
2 .

ii) the interior of the coincidence set of the blow-up limit is not empty, and then 0 is a

regular point for w0, and also a regular point for wε′

n for ε′n small enough. This means

that Xλn are regular points for uλn . Contradiction.

Case F general

In this case we introduce the operator (for ε =
√

2
(

λ0−λ
λ

)

)

Aε(w) = a

((

λ0

1 + ε2

2

)

ε∇w

)

D2w − ε2w (4.1)

where a(p) = F ′(p2)Id + 2F ′′(p2)p ⊗ p. Then we have











Aεn
(wεn) = 1 on {wεn > 0}

0 ≤ wεn ≤ 1
2

A generalization of previous Caffarelli results to more general linear elliptic operators

L = αij∂ij + βi∂i + γ

18



is available in [8]. This allows to get similar results in the same way for our general case.

This ends the proof of theorem 1.2.

5 Stability: proof of theorem 1.4

In this section we will prove theorem 1.4 on stability. A similar result is already known in

the linear case (see for instance the book of Rodrigues [22] for general results of stability).

In our case we use the approach of Caffarelli [8].

Proof of theorem 1.4

Let us assume that the theorem is false. Then for a compact set K ⊂⊂ K∗ we can find a

sequence (λn)n such that λn → λ∗ and a sequence of singular points (Xλn)n of the free

boundaries ∂ {uλn = λn} ∩ K. Up to extract a subsequence we can assume

Xλn′ −→ Xλ∗ ∈ {uλ∗ = λ∗} ∩ K

where we have used the continuity of the map

λ 7−→ uλ

The continuity of this map is a consequence of the L∞ bound on the gradient of uλ

uniformly in λ (see (3.2)). This continuity easily follows by a classical argument from

Ascoli-Arzela theorem, and the uniqueness of the solutions uλ for each λ.

Let us recall that for ε =
√

2
(

λ0−λ
λ

)

we have (the operator Aε is defined in (4.1))

Aε(wλ) = 1 on {wλ > 0}

where for some point Xλ ∈ Ω:

wλ(X) =
uλ(Xλ + εX) − λ

λε2

Using the adaptation of the nondegeneracy lemma 2.3 (see Caffarelli [8]) for general linear

elliptic operators, we get the existence of a constant c0 > 0 such that

sup
Br(Xλn )

(uλn(X) − λn) ≥ c0r
2
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Then at the limit we get

sup
Br(Xλ∗ )

(uλ∗(X) − λ∗) ≥ c0r
2

which proves that Xλ∗ ∈ ∂ {uλ∗ = λ∗}. In particular because Xλ∗ is a regular point for

uλ∗ , i.e. 0 is a regular point for wλ∗ , we get that the blow-up sequence

wδ
λ∗(X) =

wλ∗(δX)

δ2

converges (up to extraction of a subsequence) to a blow-up limit of regular type (see

theorem 2.1; for an extension to general linear elliptic operators, see Caffarelli [8]):

w0
λ∗(X) =

1

2
(max (< X, νXλ∗

>, 0))
2

We realize that the origin 0 is obviously a regular point of w0
λ∗ . Finally we can consider

the other blow-up sequence:

wδn

λn(X) =
wλn(δnX)

(δn)2

Because for δn = δ fixed and λn → λ∗, this sequence of functions converges to wδ
λ∗ , we

see that we can choose a sequence (δn)n slowly decreasing to zero such that

wδn

λn −→ w0
λ∗

Then applying an adaptation of lemma 2.2 (see Caffarelli [8]) still true for general linear

elliptic operators, we deduce from the fact that 0 is a regular point for the blow-up limit

of wδn

λn , that 0 is also a regular point for wδn

λn for n large enough. This means that Xλn

is a regular point for uλn . Contradiction. This ends the proof of theorem 1.4.

6 Hausdorff measure of the free boundary: proof of

theorem 1.5

In this section we give the proof of theorem 1.5, which is an adaptation of a method of

Caffarelli presented in the linear case in [9, 19]. We perform the proof in two steps.

20



Step 1

For the function u = uλ, let

Oη = {X ∈ Ω, |∇u(X)| < η and u(X) > λ}

For a function u ≥ λ, we note

1{u>λ}(X) =

{

1 if u(X) > λ

0 if u(X) = λ

Lemma 6.1 (Estimate in a neighbourhood of the free boundary)

If






























∇ · (F ′(|∇u|2)∇u) = u 1{u>λ} on Ω

u ≥ λ > 0 on ∂Ω

|D2u(X)| ≤ M on {X ∈ Ω, dist(X, ∂Ω) ≥ cε}

then for all compact K ⊂ {X ∈ Ω, dist(X, ∂Ω) ≥ cε} such that ∂K is C1, there is a

constant C = C(M), such that

|Oη ∩ K| ≤ ηCλ−2(|K| + Hn−1(∂K))

where |K| is the volume of K and Hn−1(∂K) is the (n−1) dimensional Hausdorff measure

of its perimeter.

Remark 6.2 (The Hausdorff measure)

Let us recall the definition of the Hausdorff measure. If U is a set, let

diam (U) = sup
X,X′∈U

|X ′ − X |

Then for s ≥ 0 and a set A let

Hs
δ(A) = cs inf

{{Ui}i, A⊂∪iUi,diam Ui≤δ}

∑

i

(diam U i)s

which is a nondecreasing function of δ. Then the s-dimensional Hausdorff measure is

Hs(A) = lim
δ→0

Hs
δ(A)
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The constant cs must be chosen such that the Hausdorff measure coincides with the

Lebesgue measure of Rs if s ∈ N.

Proof of lemma 6.1

Because F ′ ∈ C1,1, we have hi ∈ C0,1 where

hi =































−η if F ′∇iu ≤ −η

F ′ · ∇iu if |F ′∇iu| ≤ η

η if F ′∇iu ≥ η

(6.1)

We note Xi the vector field defined by Xi = ∇i(F
′∇u) ∈ L∞. Then the Stokes formula

gives :
∫

K

∇hi · Xi =

∫

∂K

hi(Xi · n) −

∫

K

hi(∇ · Xi) (6.2)

But ∇ · Xi = ∇i(∇ · (F ′∇u)) = ∇iu on {u > λ}, and hi = 0 on {u = λ}. Then
∫

Oη∩K

∇(F ′∇iu) · ∇i(F
′∇u) ≤ ηC(M)(|K| + Hn−1(∂K)) (6.3)

But

∇(F ′∇iu) · ∇i(F
′∇u) = [∇i(F

′∇iu)]2 +
∑

k 6=i

[F ′D2
iku]2 + O(|∇u|2)

and
∣

∣

∣

∣

∫

Oη∩K

O(|∇u|2)

∣

∣

∣

∣

≤ ηC(M)|K|

Making the sum
∑

i, we get
∫

Oη∩K

∑

i

(∇i(F
′∇iu)))

2
≤ ηC(M)(|K| + Hn−1(∂K)) (6.4)

But
∑

i

(∇i(F
′∇iu)))

2
≥

(

∇ · (F ′∇u)

2

)2

≥
u2

4
≥

λ2

4

and then we get the expected result.

Step 2

The Hausdorff measure is bounded from above by:

Hn−1(Γ) ≤ lim
η→0

inf
{Bη(Yi)}

1

η

∑

i

|Bη(Yi)| (6.5)
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where Γ = ∂ {u = λ} is the free boundary, and where {Bη(Yi)}i
is a recovering of Γ by

balls of center Yi on Γ and of radius η.

From proposition 3.1, we know that

u(X)− λ ≥ cε2 while dist(X, ∂Ω) < cε where ε =

√

2

(

λ0 − λ

λ

)

which in particular implies

dist ({u = λ} , ∂Ω) ≥ cε

Now starting from a point Yi on ∂ {u = λ} we have from (3.3)

u(X) − λ ≤
1

2
C |X − Yi|

2
while dist(X, ∂Ω) ≥ cε

Therefore we get

dist(Bη(Yi), ∂Ω) ≥ cε while
1

2
Cη2 < cε2

i.e. for η small enough.

Then for such η we have

Bη(Yi) ∩ {u > λ} ⊂ Bη(Yi) ∩ {u > λ, |∇u| ≤ Cη} ⊂ Bη(Yi) ∩ OCη

From the nondegeneracy lemma 2.3, we deduce the existence of a real γ ∈ (0, 1) such

that

|Bη(Yi) ∩ {u > λ}| ≥ γ |Bη(Yi)|

As a consequence we get

|Bη(Yi)| ≤ γ−1
∣

∣Bη(Yi) ∩ OCη
∣

∣

Thus
η−1

∑

i |Bη(Yi)| ≤ η−1γ−1
∑

i |Bη(Yi) ∩ OCη |

≤ η−1γ−1
∫

Ω

∑

i 1Bη(Yi)1OCη

≤ η−1γ−1 sup(
∑

i 1Bη(Yi))
∫

Ω 1OCη

≤ η−1γ−1 sup(
∑

i 1Bη(Yi))
∣

∣OCη
∣

∣

≤ γ−1CnC ′λ−2
(

|Kε| + Hn−1(∂Kε)
)
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where we have used the fact that we can always use locally finite recovering {Bη(Yi)}i

such that
∑

i 1Bη(Yi) ≤ Cn where the constant only depends on the dimension n. On the

other hand we have applied lemma 6.1 introducing a smooth compact set Kε such that

Kε ⊂ {X ∈ Ω, 2cε ≥ dist(X, ∂Ω) ≥ cε}

In fact Kε can be seen as a smooth approximation of ∂Ω. Consequently we get

Hn−1(Γ) ≤ C

where the constant C only depends on Ω, λ0 and F , and is uniform with respect to

λ ∈ [0, λ0]. This proves theorem 1.5.
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