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Motivation

We consider a peer-to-peer community,
where different buildings exchange energy

Lecture outline

e We will formulate a
(stochastic)
optimization problem

e We will apply
algorithm on it
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Optimization upper and lower
bounds by decomposition



Decompose optimization problem with coupling constraints

Let, for i € [1, N]

e C' be a Hilbert space

e u' € U’ be a decision variable

e J/: U’ — R be a local objective
e O : U — C' be a mapping
SCC'x---xCN be a set

We consider the following problem
N
t_ i
Vi = ) mfuN J'(u")

ul ... -
) ) il

st. (OYut), -, 0NWN)) e s

coupling constraint
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Price and resource value functions provide bounds

We define for i € [1, N]
e The local price value function

AMﬂAﬂ::rqm Ji(Wh)+ (N, ei(d)), YN e (C)

e The local resource value function

Vi[ri] = min Ji(v'), Vrel

ei(ui):ri
Theorem
For any
o A=, My ese={xec | {\,r)<0, Vrec}
° r=(rt,---,rN)es

N N
D VNS VESH VI
i=1

=il
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Application to stochastic optimal control

We now consider the stochastic optimal control problem

N T-1
Vi(xo) = min B[ 0> XL ULW, ) + K(XE)]
’ i=1 t=0
s.t. Xi+1 = g{(Xi, Ui7Wt+1) ) X{) = X(l;

o(U}) C o(W,, -+ ,W,)
(Or(XE UL W, ), O (X U, W, ) €S,

e t=0,---, T are stages

e W= (W, --,W,) a global white noise process
o X = (Xé)7 e ,XiT) a local state process

e U= (U, ---,U}_,) alocal control process

e gl Xi x Ul x Wepq — X1, alocal dynamics
o [ X}, x Ui x W, — R alocal instantaneous cost
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btaining bounds for the global problem

Theorem
For any

o admissible price process A = (A1,.-- ,AN) € S°
e admissible resource process R = (R,--- \RV) € S

N N . ) )
> VM) < Vo(xo) <D VoIR(x)

fi=1l =1\

T-1

YolX06) = min E[ 3

t=0

Le(Xe U W) + (A, 04 (Xe, U, Wy y)) + KY(XT)]

s.t. X;+1 = ng(xiv U;:Wrﬂ) ) X{) = X(;
o(U}) C o(Wo, -+, W,)

T—1
VolR1(x0) = min, E[ 3 Li(X,, Uy, Wey) + K'(X7)]
’ t=0
s.t. Xi+1 = gr/‘(xév Ui‘rwwl) ) X() = Xl;
o(Uy) Co(W, -+, W,)
@;(Xiv U;, Wr+1) = Ri 648



Mixing price/resource and temporal decompositions

>-VAINI06) < Volxo) < 3 VolR ()

Price decomposition

e Fix a deterministic price

A= (>\17“' 7)‘N)
e Obtain VA[N](x§) by Dynamic
Programming

MwO:mWMLMWLMHH

t
<)‘I / Xtvu W)+

Mr+1(gt (Xt7 ut7 Wt+1)]

o Return the value functions {V/}

Resource decomposition

e Fix a deterministic resource

r:(rlv"'7rN)

e Obtain Vé[r"](x(’;) by Dynamic
Programming

Vlt(xé) = min E[LI(X U Wr+1)+
ut

t) Ut

V’t+1(grl(xé7 U, Weys)]
st. O] (Xt1 ”t1Wr+1) = rti

e Return the value functions {V}}

7/26



Deducing two c ol policies

Once value functions M{, and V’t computed, we define

e the global price policy

N
m (s od') € argmin B[ D7 L0 uf Wepn) + Vi (Xaa)

Upyoo Uy i=1
s.t. X’t.'+1 = g{(X{,ui,Wt+1) ’ vie [[17 Nﬂ
(@t(xtla U%thﬂ)v T 7@t(Xth “plthﬂ)) €St

e the global resource policy
N .
Te(xt, - ,xN) € argmin E[Z Li(x], u{,WH_l) + Vlt+1 (X{H—l)]
upsesuy =l
st Xi1 = g{(x¢, up, Wey) , Vi € [1,N]
(ef(xtlv “%7Wt+1)7 e ?et(XtN7 ”1{\17Wt+1)) € St
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Where are we where are we heading to?

e First, we have obtained upper and lower bounds
for global optimization problems with coupling constraints
thanks to two spatial decomposition schemes

— Price decomposition
— Resource decomposition

e Second, with proper coordinating price and resource processes
we have computed the upper and lower bounds
by Dynamic Programming (temporal decomposition)

e With the upper and lower Bellman value functions,
we have deduced two online policies

e Now, we will apply these decomposition schemes to a graph problem
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Nodal decomposition of a
network optimization problem




Modeling flows between nodes

Graph G = (V,€)

At each time t € [0, T — 1],
Kirchhoff current law couples nodal
and edge flows

AQ,+F, =0

o Q¢ flow through edge e,

o Fi flow imported at node i

Let A be the node-edge incidence matrix
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Writing down the nodal problem

We aim at minimizing the nodal costs over the nodes i € V

T—-1
Fp(F) = min E[ 37 Li(XL UL W, ) +K/(X])]
x' v’ =0 ——————————’

instantaneous cost
subject to, for all t € [0, T — 1]
i) The nodal dynamics constraint (for battery and hot water tank)
i iryi i
Xip1 = & (X4, Ut’Wt+1)
II) The non-anticipativity constraint (future remains unknown)

U(Ui) Co(Wg, -, W,)

III) The load balance equation (production + import = demand)
A(X, Uy FuW, ) =0
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Transportation costs are decoupled in time

At each time step t € [0, T — 1] , we define the edges cost as the sum of
the costs of flows Q¢ through the edges e of the grid

JEQ) =E( Y r(@p)

t

—
[uy

Il
<)
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Global optimization problem

The nodal cost J), aggregates the costs at all nodes i

Jv(F) = Z Sy (F)

i€y

and the edge cost Je aggregates the edges costs at all time t

Je(Q) = ZJ;(Qe)

ecé

The global optimization problem writes
Vi = min W(F)+Je(Q)

st. AQ+F=0
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What do we plan to do?

e We have formulated a multistage stochastic optimization problem
on a graph

e We will handle the coupling Kirchhoff constraints by
the two methods presented earlier

— Price decomposition
— Resource decomposition

e We will show the scalability of decomposition algorithms
(We solve problems with up to 48 buildings)
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Numerical results on urban
microgrids




We consider different urban configurations

3-Nodes 6-Nodes 12-Nodes
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Problem settings

e One day horizon at 15mn time step: T = 96
e Weather corresponds to a sunny day in Paris (June 28th, 2015)

e We mix three kind of buildings
1. Battery + Electrical Hot Water Tank
2. Solar Panel + Electrical Hot Water Tank
3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices
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Electrical and thermal demands are uncertain

House 1 House 2 House 3

Elec. demand [kW]

DHW demand [kW]

0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24

These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven 17/26



Algorithms inventory

Nodal decomposition

e Encompass and decompositions

e Resolution by Quasi-Newton (BFGS) gradient descent
AAD = AR 4 (O w kg v (AK)
e BFGS iterates till no descent direction is found

e Each nodal subproblem solved by SDDP (quickly converge)
e Oracle VV/(X) estimated by Monte Carlo (N*" = 1,000)

Global SDDP
We use as a reference the good old SDDP algorithm

e Noises W%, cee ,W,{V are independent node by node
(total support size is |supp(W})|V.) Need to the support!
e Level-one cut selection algorithm (keep 100 most relevant cuts)

e Converged once gap between UB and LB is lower than 1% /
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Each level of hierarchy has its own algorithm

L-BFGS (IPOPT)
Global

Nodal managers SDDP (StochDynamicProgramming)

One-step DP @ (Cuet)

All glue code is implemented in Julia 0.6 with JuMP 0.18

- @
julia or
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Fortunately, everything converge nicely!

[llustrating convergence for 12-Nodes problem

s SDDP LB
& SDDP UB
Confidence (95.0%)

[ 50 100 150 200 250 300
Iterations

Figure 1: SDDP convergence, upper and lower bounds
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Fortunately, everything converge nicely!
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Figure 1: DADP convergence, multipliers for Node-1
20/26



and lower bounds on the global problem

Graph 3-Nodes  6-Nodes 12-Nodes  24-Nodes  48-Nodes
State dim. IX] 4 8 16 32 64
SDDP time 1 3 10’ 79’ 453’
SDDP LB 2.252 4.559 8.897 17.528 33.103
Price time 6’ 14 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Resource time 3’ 7 22’ 49’ 91’
Resource UB 2.539 5.273 10.537 21.054 40.166
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e For the 24-Nodes problem

vi
vi

V,[sddp]
17.528

Vo[resource]
21.054

V,|price]

<
< 17.870

IAIA
IAIA
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e For the biggest instance, Price Decomposition is 3.5x as fast as SDDP
(and parallelization is straightforward!)
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Policy evaluation by Monte Carlo simulation

‘ Graph ‘ 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes ‘
‘ SDDP policy ‘ 2.26 £ 0.006 4.71 +£0.008 9.36 + 0.011  18.59 4 0.016 ~ 35.50 £ 0.023 ‘
Price policy 2.28 £ 0.006 4.64 +0.008 9.23 +0.012 18.39 4 0.016  34.90 £ 0.023

Gap -0.9 % +1.5% +1.4% +1.1% +1.7%
Resource policy | 2.29 4+ 0.006 4.71 4+ 0.008  9.31 £+ 0.011  18.56 £+ 0.016  35.03 + 0.022
Gap -1.3 % 0.0% +0.5% +0.2% +1.2%

Price policy beats numerically SDDP policy and resource policy

Vi < Clprice] < Clresource] <
vi < 1839 < 18.56 < 1859
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Hunting down the d curve

Looking at the average global electricity importation
from the external distribution grid

=== No exchange
== Exchange

Average importation [kW]

0 3 6 9 12 15 18 21 24
Time [h] 23/26



Optimal flows in simulation for 12-Nodes problem

1. We simulate price policy over 1,000 scenarios

2. We look at flows at two moments in the day

12am 9pm
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Optimal prices and flows returned by decomposition

Multipliers (€]

— Battery

9 12 15 18 21
Time [h]

Price

Injection flow [kW]

— Battery

9 12 15 18 21 24
Time [h]
Resource
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Conclusion




Conclusion

e \We have presented two algorithms that decompose,
spatially then temporally, a global optimization problem
under coupling constraints

e On this case study, decomposition beat SDDP
for large instances (> 24 nodes)
— In time (3.5x faster)
— In precision (> 1% better)

e Can we obtain tighter bounds?
If we select properly the resource and price processes R and A,
among Markovian ones we can obtain nodal value functions
(with an extended local state)
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