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A partnership between mathematicians and thermicians

efficacit
Ecole des Ponts
ParisTech

e Efficacity is a research institute for energy transition —
an original mix of companies and academic researchers

e This presentation sums up a common work between
CERMICS and Efficacity

e This cooperation develops optimization algorithms
for real problems concerning the energy transition
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Usually houses import electricity from the grid

3/43



But more and more houses are equipped with solar panel
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Is it worth to add a local grid to exchange electricity?
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Is it worth to connect different houses together inside a district?

Challenges:

e Handle electrical exchanges between houses

We turn to mathematical optimization to answer the question
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Two commandments to rule them all

HOUSE

Thou shall:
e Satisfy thermal comfort

e Improve energy efficiency
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For each house, we consider the electrical system...

?i????
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... and the thermal enveloppe
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Where do we come from?

We already solve the house’s problem with 4 state variables to:

e Minimize electrical consumption

e Maintain a comfortable temperature inside the house

To achieve these goals, we:

e Stored electricity in battery

e Stored heat in hot water tank

We controlled the stocks every 15mn over one day.

We formulated a multistage stochastic programming problem
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HOUSE

HOUSE

HOUSE

And now: we add two other houses
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A brief recall of the single house problem
Physical modelling

Optimization problem
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We introduce states, controls and noises

e Stock variables X; = (Bt, H., 0!, 9;’")
B, battery level (kWh)

H:, hot water storage (kWh)

0, inner temperature (°C)

E‘\/’ : e 0}, wall's temperature (°C)
(] —=—[3] e Control variables U, = (FZ ,, F5 ., FT.¢, Fr,t)

e Fg ., energy stored in the battery

O F;;t, energy taken from the battery
e Fr:, energy used to heat the hot water tank
e Fp ¢, thermal heating

e Perturbations W, = (Df, DPHY, P2, 0%)
e DE, electrical demand (kW)
o D" domestic hot water demand (kW)
o P, external radiations (kW)

e 0, external temperature (°C)
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Discrete time state equations

So we have the four state equations (all linear):

1 __
Bisy =agBe + AT (pcF, — p—FByt)
d

Hey1 =ayHe + AT [Fr, — DPHY]

AT |6l —6v 65 — oY R; . R,
79\4/ 4+ — t t Jt Ut + F, + ! Pmt + e Pext
41 AR R TRt R T R IR Y T R+ R
AT [0Y —0i 9 —0i 0¢— 0! R.
— _91 + t t + t t + t t + 1— F + Plnt
t+1 o |Ri+ R R, Ry ( Y)Fht R + Re t

which will be denoted:

[ X1 = (X, Ur, Wern) |
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Prices and temperature setpoints vary along time

2o e T =24h, AT = 15mn

§
Zou °

e Teec = 0.09 or 0.15 euros/kWh

L & e Temperature set-point
16°C or 20°C
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The costs we have to pay

e Cost to import electricity from the network

— be max{0, —Fne t+1} + he max{0, Fye 11}

selling buying

where we define the recourse variable (electricity balance):

E —
F/\IE.t l:DtJrl—F;—’t‘FFB’t‘F FH‘t +FT,t+ va,t
—— ~  — ~—~ ~—~ ~—~—
Network Demand Battery Heating Tank Solar panel
e Virtual Cost of thermal discomfort: r( 0, — 0! )
N——

deviation from setpoint

Kth
Piecewise linear cost
Penalize temperature if
below given setpoint
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Instantaneous and final costs for a single house

e The instantaneous convex costs are

Ce(Xe, Up, Wi1) = —bg max{0, —Fng e+1} + he max{0, Fye ¢+1}

buying selling
. i ni
+ Ken(0; — 01)
————
discomfort

e We add a final linear cost
—7THHT,, - 71'387',r

to avoid empty stocks at the final horizon T¢
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That gives the following stochastic optimization problem

Te—1
min  J(X,U)=E ; C(Xe, Ur, We1) + K(X7,)

instantaneous cost final cost

s.t Xey1 = ft(Xt7 Ut7 Wt+1) Dynamic
X" < X < X
U< U < UF
Xo = Xini
U < (J'(W17 R Wt) Non-anticipativity
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Optimization problem for a district
District topology
Assessment of strategies

Resolution Methods
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We have three di

Our (small) district:
e House 1: solar panel + battery
e House 2: solar panel

e House 3: nothing

For the three houses:
e 10 stocks (=4 + 3 + 3)
e 8 controls (=4 + 2 + 2)
e 3 perturbations

(2 perturbations in common)

The total demand to the network
is bounded:

3

k #
D Fheer < Fie
k=1
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We want to compare two configurations

X
P — (Y

/\ ~
& &

B8 BE

No exchange between houses Exchange in a local grid

How much energy can we save
while allowing houses to exchange energy
through a local grid?
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We want to compare two configurations

X
P — (Y

/\ — ~
;
T T

No exchange between houses Exchange in a local grid

How much energy can we save
while allowing houses to exchange energy
through a local grid?

We show that local grid + optimization decreases costs

0 1 |
by 23 % during summer! 223



The grid adds three controls to the problem
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How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

e 96 timesteps
10 stocks

e 8 controls

8 perturbations (43 flows between houses)
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How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

e 96 timesteps
10 stocks

e 8 controls

8 perturbations (43 flows between houses)
The state dimension is high (=10), the problem is not tractable

by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(
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How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

e 96 timesteps
10 stocks

e 8 controls

8 perturbations (43 flows between houses)

The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)
2. Stochastic Dual Dynamic Programming (SDDP)
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How to assess management strategies?

12
ime (h)
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How to assess management strategies?

Time (h)
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How to assess management strategies?

Time (h)
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We compare SDDP and MPC with assessment scenarios

Initialization:
Feed with marginal probability laws of {W;}7 "

Al
Sl _akndk

give current state X; and last uncertainty W

MPC ( SDDP
== . \_ ——

. [ ASSESSOR .
C

ost += C(X;, Uy, Wis1)

kgt

t t+1 Time

26/43



MPC vs SDDP: information structure

The two algorithms use optimization scenarios to model the
perturbations:

MPC SDDP
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MPC vs SDDP: online resolution

At the beginning of time period [7, T + 1], do

e Consider a rolling horizon [, 7 + H|

e Consider a deterministic scenario of
demands (forecast)
(WT+17 sy WT+H)

e Solve the deterministic optimization

problem
TH
min C(Xt, Ur, Wip1) + K(Xpy 1)

XU i=

s.t. X = (Xr, oo Xpi )

U= (Ur, o Upyp—1)

Xep1 = f(Xe, U, Wiyq)

xb < xk < xt

v << ut

e Get optimal solution (Ur,..., Uryy)

over horizon H = 24h

e Use only control U;, and iterate at
time 7 +1

SDDP

e We consider the approximated value
. ST
functions (Vt)o
Vi <V
~~
Piecewise affine functions

e At time T, we solve

Uf =argmin Ey, [CT(XT7 Uz, wr)
ur

+ V‘r+1 <ﬁr(X7-7 ur, WT))]

=> this problem resumes to solve a
LP at each timestep

e Send Uf to assessor

28/43



A brief recall on Dynamic Programming

Dynamic Programming
1y is the probability law of W; and is being used to estimate expectation
and compute offline value functions with the backward equation:

Vi(xe) = r’rbin E,, [C’t(Xt, U, Wip1) + Vi (f(Xt, U, Wt+1)) ]
¢ — ————

current cost

future costs
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A brief recall on Dynamic Programming

Dynamic Programming

1y is the probability law of W; and is being used to estimate expectation
and compute offline value functions with the backward equation:

Vi(xt) = "bin Eu. [Ct(Xt, Ut, Wii1) + Vi (f(Xt, U, Wt+1)) ]
¢ ———

current cost

future costs

Stochastic Dual Dynamic Programming

Convex value functions V; are approximated as

a supremum of a finite set of affine functions

Affine functions (=cuts) are computed during
forward /backward passes, till convergence

e SDDP makes an extensive use of LP solver
Vi(x) = max {Xix+5f} < Vi(x)
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Numerical resolution

Resolution and comparison

Optimal trajectories of storages
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Our stack is deeply rooted in Julia language

e Modeling Language: JuMP

@
e e Open-source SDDP Solver:

Ju‘la StochDynamicProgramming. j1

e LP Solver: CPLEX 12.5

https://github.com/Julialpt/StochDynamicProgramming. j1
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https://github.com/JuliaOpt/StochDynamicProgramming.jl

Comparison of MPC and SDDP

We compare MPC and SDDP during one day in summer

euros/day

over 200 assessment scenarios:
MPC 2.882

. SDDP 2.713
; m - SDDP is in average 6.9 %

15 20 25 30 35 40 as 50 55 better than MPC!
Costs (euros)

TS 32/43
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Operational costs obtained in simulation

We compare different configurations, during summer and winter:

Summer

Local Grid Elec. bill  Self cons.

euros/day %
No 3.53 48.1 %
Yes 271 55.2 %
Winter

Local Grid Elec. bill  Self cons.

euros/day %
No 54.2 1.7 %
Yes id. id.
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INPUT
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We work with real data

We consider one day during summer 2015 (data from Meteo France):

GTI [Whim2]
®
8

o
IS
-3

12 16 20 24
Time [h] 35/43



We have 200 scenarios of demands during this day

House 2 House 3

DHW demand [kW]
>

A
0 4 8 12 16 20 24

0 ik
0 4 8 12 16 20 0

These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven 36/43



OUTPUT
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As we gain solar energy, surplus is traded in local grid

3
2 00
& RS
AR |
g
§ ot
£ -1.0 \ b4
T w
§ § 14
= 212
== = 10

Time [h]
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The battery is used as a global storage inside the local grid...

We observe that:

e the battery is more widely used

e the saturation level is reached more often
(it could pay to have a bigger battery)

No local grid Local grid
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... and we mini e network
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Conclusion
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Conclusion

We extend the results obtained with a single house to a small district

This study can help to perform an economic analysis

It pays to use stochastic optimization: SDDP is better than MPC

We obtain promising results with SDDP, now we want to scale!
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Mix SDDP with spatial decomposition like
Dual Approximate Dynamic Programming (DADP) to control
bigger urban neighbourhood

=

[ COORDINATOR ]
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