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A paradigm shift in energy transition

The ambition of Efficacity is to improve

efficacity urban energy efficiency.

Une loi encourage I'autoconsommation
délectricité

Simple et compact

Self-consumption -

Domestic storage

Energy management system

Our team focus on the control of energy management system. .



What do we do

How to control storage inside urban microgrid ?

We follow a common procedure in operation research:

1. We consider a real world problem
How to control a bunch of stocks ?

2. We model it as an optimization problem
As demands are not predictable, we formulate
a stochastic optimization problem

3. We develop algorithms to solve this particular
optimization problem
Dynamic Programming based methods,
Model Predictive Control, ...
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Analyzing the real world problem

We consider a system where different units (houses)
are connected together via a local network
(microgrid).

The houses have different stocks available:

e batteries,

e electrical hot water tank

and are equipped with solar panels.

! @ We control the stocks every 15mn and we want to
e minimize electric bill

e maintain a comfortable temperature

inside the house
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Physical modeling



Physical modeling

Modeling a house
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For each house, we consider the following devices

R
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We introduce states, controls and noises

e Stock variables X, = (B,,H,,6:,6")
e B,, battery level (kWh)

B e H,, hot water storage (kWh)
e 0. inner temperature (°C)
'_“.— e 0Y, wall's temperature (°C)
n‘ . 'ee_z e Control variables U, = (Fg ,,F, ,,Fy )

e Fg ., energy exchange with the battery (kW)
e Fr ., energy used to heat the hot water tank (kW)
e Fy ., thermal heating (kW)
e Uncertainties W, = (D£, DPHW)
o DE, electrical demand (kW)
e DP"W  domestic hot water demand (kW)
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We work with real data

We consider one day during summer 2015 (data from Meteo France):
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We generate scenarios of demands during this day

House 1 House 2 House 3

Elec. demand [kW]

DHW demand [kW]

0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24

These scenarios are generated with StRoBE, open-sourced by KU-Leuven 10/40



Discrete time state equations for each house

We have the four state equations (all linear), describing the stocks’
evolution over time:

1 __
Bi11 =aBB; + AT(chg,t - ijB,t>

Hi 1 =onH, + AT[FT,t - D?HW]

AT |0 —06Y 05— 6w R; ) Re
ew :GW + t t t t + F + U Pmt + Pext
e T R+ R RmtRe Pt R AR Y T Rt Ry "
i ; ; AT |6Y — 0! 0 — 9! 0¢ — 0! Rs .
1 :el + t t + t t + t t + 1 _ F + Plnt
LT g | R+ Rs R, Rf (= Fuet g g P

which will be denoted:

Xt+1 = ft(xt’ U, Wt+1)

11/40



Physical modeling

Modeling the network
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Viewing the network as a graph

We consider three different configurations
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Modeling exchange through the graph

We denote by Q the flows through the arcs, and A the balance at the
nodes.

The flows must satisfy the Kirchhoff's law:
AQ=A

where A is the node-incidence matrix.

We suppose furthermore that losses occur through the arcs (n = 0.96).
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Physical modeling

Building the optimization problem
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Two commandments to rule them all

HOUSE

Thou shall:
e Satisfy thermal comfort

e Optimize operational costs
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Prices and temperature setpoints vary along time

: § e Ty =24h, AT = 15mn
.
7E = 0.09 or 0.15 euros/kWh

» e Temperature set-point
—_— Oi =16°C or 20°C
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The costs we have to pay

e Cost to import electricity from the network

E E
— by max{0, —Fng 41} + 7 max{0, Fue i1}

selling buying
where we define the recourse variable (electricity balance):
E
F/\/E.r+l = Dt+1 + FB,t + FH,t +FT,t_ va,t + At
~——

~—~ ~—~ ~ =~ —~— ~—~
Network Demand  Battery  Heating Tank Solar panel ~ Exchange

e Virtual Cost of thermal discomfort: s ( 0, — 6! )

deviation from setpoint

Kth
Piecewise linear cost
which penalizes
temperature if below

given setpoint
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Instantaneous and final costs for a single house

e The instantaneous convex costs are for the house h

LM(X,,U,, A, W, )= —bE max{0, —F e 41 + 7E max{0, Foe )

buying selling
i pi
+ ken(0; — 6})
N———
discomfort

e We add a final linear cost
K(Xs)=-n"H; —7°B,

to avoid empty stocks at the final horizon T¢
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Writing the stochastic optimization problem

We aim to minimize the costs for all houses

2 h Xh. h
M >op (XU
s.t AQ =A

where for each house h:
Up=1l
SX" UM AN =B | LIXE, UL AL W) + K(XE)
t=0

ST X?+1 = f}(x:’7 U?7Wt+1) Dynamic
X' < X< Xt
U <uh<uf
X(? - Xilr-;i

O’(U?) C o(Wy,...,W,) Non-anticipativity
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Resolution methods




Resolution methods

Describing MPC and SDDP
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How to solve this stochastic optimal control problem?

We have 96 timesteps (4 x 24) and for each problem

3 houses 6 houses 12 houses

Stocks 10 20 40
Controls 14 30 68
Uncertainties 8 8 8
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How to solve this stochastic optimal control problem?

We have 96 timesteps (4 x 24) and for each problem

3 houses 6 houses 12 houses

Stocks 10 20 40
Controls 14 30 68
Uncertainties 8 8 8

The state dimension is high (> 10), the problem is not tractable
by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(
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How to solve this stochastic optimal control problem?

We have 96 timesteps (4 x 24) and for each problem

3 houses 6 houses 12 houses

Stocks 10 20 40
Controls 14 30 68
Uncertainties 8 8 8

The state dimension is high (> 10), the problem is not tractable
by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)
2. Stochastic Dual Dynamic Programming (SDDP)
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MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:

MPC

SDDP

Load [kw]

i,

- 1
Ju

Figure 1: MPC considers the average ATHE 28 o] SDDIP et frns
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MPC vs SDDP: online resolution

At the beginning of time period [r, T + 1], do

MPC

e Consider a rolling horizon [7, 7 + HJ

e Consider a deterministic scenario of

demands (forecast) (Wﬂ_l, AU WT+H)

e Solve the deterministic optimization
problem

T+H
min Z Le(Xe, Ur, Wein) + K(Xr i)
sit. X1 = (X, Ut7Wt+1)
X" < X < X*
U< U < U

e Get optimal solution (Uf, ey Uf+H)
over horizon H = 24h

e Send first control U7 to assessor

SDDP

o We consider the approximated value
functions (Vt)OTf

12

IA

Vi

Piecewise affine functions

e Solve the stochastic optimization problem
min Ew, .y [Lr (X, ur, W)
+ Vit (fT(Xﬂ'y Ur, WT+1))]

= nJin Zm [LT(XT, ur, W)

T (5 )]

e Get optimal solution U¥

e Send U to assessor
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A brief recall on Dynamic Programming

Dynamic Programming
Compute offline value functions with the backward equation:

VT (x) = K(x)
Vi(xe) = ﬁ(‘ljin ]E[Lt(xt: U, Weg1) + Vi (f(Xh Ut, Wt+l)) }
¢ ——

current cost

future costs

Stochastic Dual Dynamic Programming

e Convex value functions V; are approximated as
a supremum of a finite set of affine functions

e Affine functions (=cuts) are computed during
forward /backward passes, till convergence

Vi(x) = 1g1ka<xK{)\’t‘x + Bf} < Vi(x)

e SDDP makes an extensive use of LP solver
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Resolution methods

Assessing strategies
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Out-of-sample comparison

Assessmen
scenarios

Time (h)
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Numerical resolution




Numerical resolution

Settings

28/40



Our stack is deeply rooted in Julia language

@ e Modeling Language: JuMP

ulia

e Open-source SDDP Solver:
StochDynamicProgramming. j1

‘ e LP Solver: Gurobi 7.0

https://github.com/JulialOpt/StochDynamicProgramming. j1
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https://github.com/JuliaOpt/StochDynamicProgramming.jl

Numerical resolution

Results
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Comparison of MPC and SDDP

We compare MPC and SDDP over 1000 assessment scenarios

3 houses

- Costs 152 142  -6.6%
. i L t, 08 28 315

3 SoDP. 6 houses

MPC  SDDP Diff

Costs 3.04 2.85 -6.3 %

10 te 1.7 4.6 x2.7
5 . 12 houses
B - Costs 608 574 -56%
N te 35 8.6 x2.5
e t.: average time to compute the control online (in ms)
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MPC and SDDP use differently the battery

MPC SDDP

Battery Level [kWh]

Trajectories of battery for the ‘3 houses' problem.
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Discussing the convergence of SDDP w.r.t. the dimension

We compute the upper-bound afterward, with a great number of
scenarios (10000) We define the gap as : gap = (ub — Ib)/ub.

We compare the time (in seconds)
taken to achieve a particular gap:

Gap against numb:r of iterations gap 3 houses 6 houses 12 houses
005 2% 7.0 21.0 137.8
‘ 1% 8.0 28.8
0.5 % 8.0 47.2
R 01% 651
0|
X 33/40

Gap against time



Conclusion




Conclusion

e SDDP beats MPC, however the difference narrows along the number
of dimensions (because of the convergence of SDDP)

e Both MPC and SDDP are penalized if dimension becomes too high
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Mix SDDP with spatial decomposition like
Dual Approximate Dynamic Programming (DADP) to control
bigger urban neighbourhood (from 10 to 100 houses)

[ COORDINATOR ]
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Modeling exchanges between houses

The grid is represented by a directed graph G = (N, A). At each time
t €0, T — 1] we have:

e a flow Q7 through each arc a,
inducing a cost ¢7(Q7?),
modeling the exchange between

Al two houses

e a grid flow A! at each node i,
resulting from the balance
Q7 equation

=2 Q- >

acinput(i) beoutput(i)
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A transport cost decoupled in time

At each time step t € [0, T — 1] , we define the transport cost as the
sum of the cost of the flows QZ through the arcs a of the grid:

sl =E(Y (@),

acA

where the ¢?'s are easy to compute functions (say quadratic).

Kirchhof’s law

The balance equation stating the conservation between Q, and A,
rewrites in the following matrix form:

AQ,+A4,=0,

where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost Jp aggregates the costs at all nodes /:

Al =Y Al

ieEN

and the transport cost J1 aggregates the costs at all time t:

Q1= Y Q]

t=0

The compact production-transport problem formulation writes:

min Jp[A] + J7[Q]

st. AQ+A =0.
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Introducing decomposition methods

The decomposition/coordination methods we want to deal with are
iterative algorithms involving the following ingredients.

e Decompose the global problem in several subproblems
of smaller size by processing the constraint AQ + A = 0,

e Coordinate at each iteration the subproblems using either
a price or an allocation.

AQ+ A =0 ~ A
—~ —

allocation price

e Solve the subproblems using Dynamic Programming (when
a state is available in the subproblem), taking into account
the price or the allocation transmitted by the coordination.
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Wandering inside the zoology of decomposition algorithm

Once the problem formulated, it remains to solve it!

e Primal and dual decomposition (via L-BFGS update),
e Operator splitting schemes (ADMM, proximal decomposition, ...),

e Stochastic (accelerated?) gradient descent.

Still a work in progress! ;-)
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