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A partnership between mathematicians and thermicians

• Efficacity is a research institute for energy transition —

an original mix of companies and academic researchers

• This presentation sums up a common work between

Cermics and Efficacity

• This cooperation aims to apply optimization algorithms

to real world problems
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In a “classical” energy system, thermal and electrical

energy management are usually treated apart

NETWORK
ELECTRICAL

DEMAND

THERMAL

DEMAND

C4H10

3



As electrical and thermal consumptions are correlated,

we envisage a coupled management
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Is it worth to equip the system with

a combined heat and power generator (CHP)

together with or without a battery?

Challenge: CHP is either ON or OFF, and always produces

the same amount of electricity and heat

We turn to mathematical optimization to answer the question
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Here are settings for the problem

We optimize during Tf = 24h, with decisions taken every ∆T = 15mn
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• πelec = 0.09 or 0.15 euros/kWh

• πgas = 0.06 euros/kWh
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Schematic representation of a house equipped with a CHP
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We sketch a graph
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We lay out an optimization model

• Optimization model captures a simplified dynamic of the physical

system

• Battery and tank dynamics are modelled with simplified dynamic

next state = previous state + balance flow
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We introduce state, control and slack variables

• Time:

discrete periods t ∈ {0, 1, 2, ...,Tf }, corresponding to timestep ∆t

• Stock variables:

• Bt for the battery level

• Ht for the hot water storage

• Control variables:

• the boolean ON/OFF CHP generator control variable Yt ∈ {0, 1},
yielding the electrical and thermal flows

FGH,t = Yt × powerT , FGE ,t = Yt × powerE

• all the energy flows Ft = (FB,t ,FA,t), positive or negative

• all flows are constrained: −F ]
B ≤ FB ≤ F ]

B , 0 ≤ FA ≤ F ]
A

• Slack variables:

we add two slack variables to ensure that the equality

Production=Demand

holds true at all times

F̃t+1 = (F̃NE ,t+1, F̃H,t+1)
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Electrical equations

• Dynamic constraints

Bt+1 = αBBt − βBFB,t

• Capacity constraints

B[ ≤ Bt ≤ B]

• Max charge/discharge constraint

∆B[ ≤ Bt+1 − Bt ≤ ∆B]

⇐⇒
∆B[ + (1− αB )Bt

βB
≤ FB,t ≤

∆B] + (1− αB )Bt

βB

• Offer=Demand

FGE ,t︸ ︷︷ ︸
CHP

+ FB,t︸︷︷︸
Battery

+ F̃NE ,t+1︸ ︷︷ ︸
Network

= DE
t+1︸︷︷︸

Demand
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Thermal and CHP generator equations

• Dynamic constraints

Ht+1 = αHHt − βHFH,t

• Capacity constraints

H[ ≤ Ht ≤ H]

• Flows balance in thermal tank:

FH,t︸︷︷︸
Tank

= FA,t︸︷︷︸
Burner

+FGH,t︸ ︷︷ ︸
CHP

− DT
t+1︸︷︷︸

Demand

+ F̃H,t+1︸ ︷︷ ︸
Comfort

where F̃H,t+1 is a recourse variable added to ensure that the energy

stored in the tank remains bounded whatever the demand.
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Optimization criterion

• Two instantaneous linear costs:

• Using gas for auxiliary burner: θπgasFA,t

• Using the CHP generator: πgasPGYt

• Two instantaneous convex costs:

• selling/buying electricity from/to the network:

− bE max{0,−F̃NE ,t+1}︸ ︷︷ ︸
selling

+ hE max{0, F̃NE ,t+1}︸ ︷︷ ︸
buying

convex because we assume that bE < hE = πelec

• Missing heat demand:

− bT max{0,−F̃H,t+1}︸ ︷︷ ︸
uncomfort

+ hT max{0, F̃H,t+1}︸ ︷︷ ︸
uncomfort

convex because we assume that bT < hT
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Instantaneous and final costs

• The instantaneous convex costs are

C(Yt ,Ft , F̃t+1) = πchpYt︸ ︷︷ ︸
CHP

+ θπgasFA,t︸ ︷︷ ︸
Burner

− bE max{0,−F̃NE ,t+1}+ hE max{0, F̃NE ,t+1}

− bT max{0,−F̃H,t+1}+ hT max{0, F̃H,t+1}

• We add a final linear cost

−πHHTf
− πBBTf

to avoid empty stocks at the final horizon Tf

(in the sequel, we do not penalize empty stocks at midnight by

taking πH = 0 and πB = 0 )
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We are now able to formulate an optimization problem

min
Y·∈{0,1},F·≥0

Tf−1∑
t=0

C(Yt ,Ft , F̃t+1)︸ ︷︷ ︸
instantaneous cost

−πHHTf − πBBTf︸ ︷︷ ︸
final cost

s.t. Y· = (Y0, . . . ,YTf−1) , F· = (F0, . . . ,FTf−1)

B[ ≤ Bt ≤ B]

H[ ≤ Ht ≤ H]

Bt+1 = αBBt − βBFB,t

F̃NE ,t+1 = DE
t+1 − FGE ,t − FB,t

∆B[ ≤ Bt+1 − Bt ≤ ∆B]

Ht+1 = αHHt − βHFH,t

F̃H,t+1 = DT
t+1 − FA,t − FH,t

−F ]
B ≤ FB,t ≤ F ]

B , 0 ≤ FA,t ≤ F ]
A

FGH,t = Yt × powerT , FGE ,t = Yt × powerE

This problem is a MILP (Mixed Integer Linear Programming)
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Where are we now? And where are we heading to?

• We have formulated a deterministic optimization problem, because

the demands scenario DE (·) = (DE
1 , . . . ,D

E
τ ),

DT (·) = (DT
1 , . . . ,D

T
τ )

is part of the data of the above optimization problem,

hence is supposed to be known in advance when the problem is set

• We are now going to provide numerical results

within such deterministic setting

However, this is just a step towards

a stochastic formulation, to come later
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We suppose given an average scenario for the demands
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We are going to compare different strategies

(that may use the average scenario as input)

Without CHP: Import all electricity from network

and supply heat with auxiliary burner

Heuristic (CHP): Echelon based strategy:

when H ≈ H[, activate CHP till H ≈ H],

and, if this is not sufficient, activate auxiliary burner;

the battery is not used

MPC (CHP + Battery): Model Predictive Control with battery

Optimal (CHP + Battery): Optimal control with battery

(MILP solved with CPLEX)
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The optimal solution with battery beats the others

Without CHP Heuristic MPC MILP
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Optimal 7.24
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Additional results with other scenarios of demand

Scenario High demand Average (previous) Low demand
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No CHP 19.98 13.33 7.36

Heuristics 12.30 8.08 5.63

MPC 11.34 7.48 5.02

Optimal 11.02 7.24 4.70
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Algorithm running times

• The MILP is solved in around 10 minutes with CPLEX

• The boolean constraint over Yt is relaxed in MPC, as it takes too

long to solve a MILP at each timestep (sometimes more than 10mn,

with a timestep of 15mn)

• That is why we got different results between the optimal solution

and the MPC

• Without relaxation, the runtime of MPC at each iteration is too long

to be used in production
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Where are we now? And where are we heading to?

• It pays to control the system with CHP

• Compared with heuristic, the optimal strategy achieves

between 5% and 10% cost reduction

• Beware: all these results were obtained supposing that

the demand was known in advance...
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The electrical and thermal demands

are highly variable

Electrical demand Thermal demand
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We model demands as random variables

• We introduce a probabilistic setting,

with (Ω,A,P) a probability space

• Ω is the sample space, or the scenario space

• P is a probability

• E is the mathematical expectation attached to the probability P

• Then, we model demands as random variables

DE
t : Ω→ R

DT
t : Ω→ R

so that (DE
1 ,D

T
1 , . . . ,D

E
Tf
,DT

Tf
) forms a stochastic process

• Here, DE
t+1 and DT

t+1 stand for the demands

during the time interval [t, t + 1[
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And we need to add the nonanticipativity constraints

• Filtration

At = σ(DE
1 ,D

T
1 , . . . ,D

E
t ,D

T
t )

• Control variables measurability

(Yt ,Ft) =(Yt ,FB,t ,FA,t)

is At–measurable

• Recourse variables measurability

F̃t+1 = (F̃NE ,t+1, F̃H,t+1) is At+1–measurable
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Stochasticity is contaminating and

all variables turn into random variables!

min
Y·∈{0,1},F·≥0

E

[
Tf−1∑
t=0

C(Yt ,Ft , F̃t+1)− πHHTf − πBBTf

]
s.t. B[ ≤ Bt ≤ B]

H[ ≤ Ht ≤ H]

Bt+1 = αBBt − βBFB,t

F̃NE ,t+1 = DE
t+1 − FGE ,t − FB,t

∆B[ ≤ Bt+1 − Bt ≤ ∆B]

Ht+1 = αHHt − βHFH,t

F̃H,t+1 = DT
t+1 − FA,t − FH,t

FGH,t = Yt × powerT

FGE ,t = Yt × powerE

0 ≤ FA,t ≤ F ]
A , −F

]
B ≤ FB,t ≤ F ]

B

FA,t � At , FB,t � At

Yt � At

F̃t+1 � At+1
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How to assess management strategies?
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How to assess management strategies?

Optimization
 scenarios
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How to assess management strategies?
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How to assess management strategies?

Online simulation

Use assessment scenarios

• to integrate the dynamics

Bt+1 = fb
(
Bt ,Y

opt
t ,F opt

B,t

)
Ht+1 = fh

(
Ht ,Y

opt
t ,F opt

A,t ,D
th
t+1

)
with the online controls Y opt

t ,F opt
t provided by any strategy

• to evaluate the random costs

and compute the mean costs attached to any strategy
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We are going to compare methods

to obtain strategies (online controls)

(that use the the optimization scenarios as input)

Heuristic: Heuristic with CHP

MPC: Model Predictive Control (with battery)

DP: Stochastic dynamic programming (with battery)

SDDP: Stochastic dual dynamic programming (with battery)
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Model Predictive Control

At the beginning of time period [τ, τ + ∆t], do

• Derive a deterministic scenario (D
E

τ ,D
T

τ , . . . ,D
E

Tf
,D

T

Tf
) of demands

(forecast) from the optimization scenarios

• Solve the deterministic optimization problem

min
Y·∈{0,1},F·≥0

Tf−1∑
t=τ

C(Yt , Ft , F̃t+1)︸ ︷︷ ︸
instantaneous cost

−πH HTf
− πB BTf︸ ︷︷ ︸

final cost

s.t. Y· = (Y0, . . . , YTf−1) , F· = (F0, . . . , FTf−1)

B[ ≤ Bt ≤ B]

H[ ≤ Ht ≤ H]

Bt+1 = αB Bt − βB FB,t

F̃NE,t+1 = DE
t+1 − FGE,t − FB,t

∆B[ ≤ Bt+1 − Bt ≤ ∆B]

Ht+1 = αH Ht − βH FH,t

F̃H,t+1 = DH
t+1 − FA,t − FH,t

Fi,t ≤ F
]
i
, ∀i ∈ {B, A}

FGH,t = Yt × powerT

FGE,t = Yt × powerE

• Apply only the first control Fτ at time τ , and iterate at time τ + ∆t
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Stochastic dynamic programming:

Backward offline computation of value functions

Offline computation

• Use optimization scenarios to derive marginal distributions,

with expectation Ê

• Use these marginal distributions, and Ê,

to compute so-called value functions, given by

Vt(B,H) = min
Yt∈{0,1},Ft∈F ad

t

Ê
[
Ct(Yt ,Ft , F̃t+1) + Vt+1

(
Bt+1,Ht+1

)]
where

(
Bt+1,Ht+1

)
is a shorthand for

Bt+1 = fb
(
B,Yt ,FB,t

)
Ht+1 = fh

(
H,Yt ,FA,t ,D

th
t+1

)
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Stochastic dynamic programming:

Forward online computation of controls

Online computation of controls

Online controls Yt ,Ft are computed thanks to the value functions(
Y opt

t ,F opt
t

)
∈ arg min

Yt∈{0,1},Ft∈F ad
t

̂̂E[Ct(Yt ,Ft , F̃t+1) + Vt+1

(
Bt+1,Ht+1

)]
where

(
Bt+1,Ht+1

)
is a shorthand for

Bt+1 = fb
(
B,Yt ,FB,t

)
Ht+1 = fh

(
H,Yt ,FA,t ,D

th
t+1

)
and where

̂̂E is the expectation with respect to a possibly different

marginal distribution (provided online to capture available new

information)
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Now, we assess the different strategies by their mean costs

over assessment scenarios

Without CHP Heuristic MPC SDDP SDP
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Without CHP 12.644

Heuristic with CHP 8.073

MPC with battery 7.993

SDDP with battery 7.488

DP with battery 7.475
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Behavior of the CHP over assessment scenarios
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Behavior of the battery over assessment scenarios
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Behavior of the thermal tank over assessment scenarios
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Performance of the different algorithms

Which algorithm is the more efficient numerically?

MPC: Solved with CPLEX

DP: The time to interpolate future cost depends upon states

and controls discretization

(Here discretization is small enough to ensure a good

precision)

Offline Online (CPU Time)

MPC 0 2.4ms /timestep

DP 7mn30s 22.8ms /timestep

Hardware: Core i7-5500U @2.4GHz 44
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Conclusion

• Using marginal distributions for the uncertainties

makes it possible to achieve at least 5% cost savings,

with respect to deterministic based algorithms (MPC)

• The variability in demands can be handled,

both in assessment and in optimization

• Implementation costs are low
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Perspectives

Use decomposition/coordination algorithms to control an urban

neighbourhood
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