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Abstract

The contribution of this paper is two-folds: first, an extensive litera-
ture review of the applications of Operations Research to air transporta-
tion schedule problems is proposed. Then, the complexity of Aircraft
Routing Problem is studied. Aircraft Routing Problem is proved to be
NP-complete in the general case. A polynomial algorithm is given to solve
the Aircraft Routing Problem when fleet size is fixed. Finally, a compact
linear program to solve aircraft routing is introduced. The special pur-
pose notions of equigraph and network-state graph are introduced to give
a simple proof of these two results and to justify the validity of the linear
integer program.

Keywords Aircraft Routing Problem – NP-completeness – Pebbling
game.
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Introduction

Operations research has been for sixty years a source of improvements in Air
Transport Industry. Three main areas can be identified: the various stages of air-
craft and crew schedule planning, revenue management, including over-booking
and leg-based and network-based inventory management, and the planning and
operations of aviation infrastructure (airports and air traffic management). For
the first area, this paper provides a literature review and a brief summary of
the state of the art in Section 1. One of the main stages of aircraft and crew
schedule planning is known as the aircraft routing problem, which consists in
assigning routes to airplanes to operate the flight schedule that respects main-
tenance conditions. The NP-completeness of aircraft routing feasibility problem
and its polynomiality when the number of airplanes is fixed is proved in Sections
3.2 and 4. Finally a compact linear integer program to solve the aircraft routing
problem is given in section 3.3.

1 Literature revue on applications of Operations
Research to Air Transportation

An extensive review of applications of Operations Research to Air Transport
Industry has been written by Cynthia Barnhart in 2003 [4]. In this section,
we focus on aircraft and crew schedule planning. Schedule planning includes
the design of the network of flights (which Origin-Destinations pairs flights will
be covered and when), differing aircraft types, gate, airport slot and air traffic
control restrictions, design of airplane routes and crew schedules etc. Several
rules must be taken into account such as air traffic control restrictions, mainte-
nance check for airplanes, work rules, use of gates and noise curfews etc. Due
to this huge complexity, no single optimization model has been solved or even
formulated for the whole problem. This resulted in the decomposition of the
whole process in four steps operated by different divisions in companies. A set
of corresponding subproblems often defined as follows have been identified in
Operations Research.

1. Schedule design: Define which markets to serve and with what frequency,
and how to schedule flights to meet these frequencies.

2. Fleet assignment: Specify what type of airplane to assign each flight leg.

3. Aircraft routing: Determining how to route airplanes to cover each flight
leg with one and only airplane and to ensure maintenance requirements
for airplanes.

4. Crew scheduling: Select which crews will cover each flight leg in order to
minimize global crew costs.

The approach commonly used today is a sequential resolution of the subprob-
lems, which gives a suboptimal but yet feasible solution. Each subproblem taken
separately is already very rich, and a large literature has been developed in the
last sixty years to solve these problems. New approaches combining two or
three of the subproblems have raised recently, but the algorithms are still not
mature enough to be used operationally. The section is organized as follows:
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a brief description of solution methods used for separate subproblems is given,
followed by a study of the new combined models. Finally, an overview of actual
challenges is given.

1.1 Schedule design

Specifying the flight legs to be flown and the departure to be flown, the flight
schedule largely defines the competitive position of a company. Designing a
profit maximizing schedule is however extremely complex. Indeed, it is af-
fected by other companies offers and time dependent Origin Destination de-
mand, which is extremely difficult to capture. Thus, the typical practice today
is to build flight schedules manually, with limited optimization. Nonetheless, re-
cent research have been made by designing a simplified design problem involving
only incremental changes to existing flight schedules [8, 28, 29]. Model integrat-
ing fleet assignment and incremental schedule optimization have recently been
proposed [28].

1.2 Fleet assignment

Once the flight schedule is determined, the fleet assignment problem consists in
finding the cost minimizing assignment of airplane types to flight legs. Fleeting
costs are operating costs, specified for each (flight leg, airplane type) couple and
representing the cost of operating one leg with one airplane, and spill costs,
which measure the revenue lost when passenger demand for a flight leg ex-
ceeds the assigned airplane’s seating capacity. Fleeting problems truly faced by
airlines can today be solved efficiently thanks to a multicommodity flow formu-
lation [1, 20]. Vertices represent time and location of flight leg departure and
arrival. Arcs correspond to flights or ground arcs (representing airplanes on the
ground between flights). There is one commodity for each airplane type. Fleet
capacity and cover (each flight leg has to be covered exactly once in a feasible
solution) are added. The next generation of models has introduced itinerary or
Origin-Destinations based fleet assignment approaches, that capture the specific
origin destination demand (for passengers with connections) [6, 22, 32].

1.3 Aircraft routing

Schedule design produces the flight network. Fleet assignment decisions de-
compose the network into subnetworks, each one associated with airplanes of a
single type. The next step is aircraft routing. The goal is to determine routing
or rotations for each airplane in a fleet. A routing is a sequence of flight covered
by a single airplane. A rotation is a routing that starts and ends at the same
location. Each airplane has to visit a maintenance station at regular intervals.
Maintenance are performed in several airports called base at night. Each air-
plane has to spend a night in a maintenance base every D days. An individual
airplane is assigned to each flight in a subnetwork. Traditional approach split
the problem into two subproblems. First problem produces routing for one day,
and second problem combines these one day origin destination routing solutions
into a week long (or month long) routing which respects the maintenance re-
quirement. A polynomial algorithm for the second subproblem exists for D = 3

4



[19], but for D ≥ 4 problem is NP-complete [35]. Heuristics [16] and Lagrangian
relaxation [10] have been proposed to solve the global problem.

As the cost of operating a flight with an airplane of a specific fleet is inde-
pendent from the individual airplane, airplane routing has long been considered
as a feasibility problem – and no optimization is today realized in most compa-
nies. Nonetheless, it has recently been linked to optimization for two different
kinds of reasons. The first kind of reasons is its integration with the fleet as-
signment problem or the crew scheduling problem. In low frequency point to
point networks, aircraft routing in often unfeasible given the fleet assignment
solution. Researchers have therefore integrated fleet assignment and aircraft
routing models [5, 14]. Integration of aircraft routing and crew scheduling is
further discussed in Section 1.6. The second kind of reasons is delay. Indeed,
delays on flights is a huge source of costs for airline companies. Statistical
treatment shows that delay is more likely to arise on some specific flights. Thus
aircraft routing can be optimized in order to minimize the expected value of
total delay [25] – or any other probabilistic measure of delay.

Complexity of aircraft routing feasibility problem is further studied in Sec-
tion 2.

1.4 Crew scheduling

Crew scheduling problems with numerous and complex work rules is a field
where optimization is essential: the huge number of possible decisions make
it extremely difficult to find feasible – let alone optimal – solutions manually.
Moreover, crews represent airlines’ second highest operating cost after fuel, thus
even slight improvements in their utilization can translate into significant sav-
ings. Crew scheduling problem has thus been intensively studied ([18] for a
state of the art). Even today, the crew scheduling problem is broken into two
sequentially solved subproblems, the crew pairing problem and the crew assign-
ment problem. The crew pairing problem generates minimum-cost, multiple-day
work schedules called pairings. Regulatory agencies and collective bargaining
agreements specify the many work rules that define how the flights legs can
be combined to create feasible pairings. The cost structure of pairings address
further complexity, and is typically represented as a nonlinear function of flying
time, total elapsed work time, rest time, and total time away from the base.
The crew assignment problem combines these pairings into equitable and ef-
ficient month-long crew schedules, called bidlines or rosters and assign them
to individual crew members, taking into account their particular needs and re-
quests. Later in this section, we focus on crew pairing.

Because of the complexity of the costs, obtaining an integer linear program-
ming formulation of the problem is already difficult. Resource models give a
flexible framework to take into account changing regulation [13]. Real life in-
stances of the crew pairing problem have a huge size. Thus, heuristics have long
been used to generate feasible solutions [2, 21]. To generate crew solutions with
known optimal bound, researchers have turned to branch-and-price and column
generation techniques [2, 3, 7, 9, 13, 21, 23, 24], [26, 27, 36]. Branch-and-follows-
on branching strategies based on flight legs pairs, with one flight immediately
following the other, are adopted. Even with this branching strategy, the number
of branching decisions to prove optimality is typically excessive and branching
heuristics are used.
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1.5 Ongoing and future challenges

Notwithstanding the substantial progress made in solving aircraft and crew
scheduling problems in recent decades, significant works remain. Beyond the
progress to be made in the four problems taken separately, areas of research
comprise: integrating the four problems, expand schedule planning models to
include pricing and revenue management decisions, assessing the system-wide
cost and service impact of paradigm shifts in airline scheduling, such as de-
peaking flight schedules by spreading out airplane arrival and departure banks,
and develop stochastic tools to be able to take into account the robustness of
operations with respect to delay. A developing and linked field of research is
operations recovery: optimized solutions are rarely executed as planned, which
tackles with unplanned disruptive events and attempts to minimize realized and
non planned costs [10, 33, 34].

1.6 Integrating aircraft routing and crew scheduling

In this section, a brief overview of the growing literature on integrated aircraft
routing and crew pairing problems is given. Researchers had the idea to reverse
the order in which the last two problems are solved [24]. Indeed, as only feasi-
bility is searched in aircraft routing problem whereas optimization is searched
in crew pairing problem, solving crew pairing problem first enables to minimize
the cost on a larger set of feasible pairings and thus achieve solutions of better
quality. But this procedure often leads to infeasiblity in aircraft maintenance
routing problem. Indeed, when the time between the arrival and the departure
of a crew form an airport is too short, the two flights must be flown by the same
airplane. Thus, if the crew pairing problem is solved first, all flights linked by
a short connect have to be flown by the same airplane in the aircraft routing
problem, which can lead to infeasibility. Thus came the idea of integrating crew
pairing and aircraft routing problem. The integrated models takes the fleet
specific schedule as input and finds the optimal solution on the set of feasible
aircraft routing and crew paring couples.

Two lines of models have been developed for the integrated models. In the
first line, aircraft routing solutions are generated first and included in an ex-
tended crew pairing problem [11]. Authors showed that only solutions including
unique and maximal short connection sets needed to be generated to obtain op-
timal solutions. Matheuristics relying on branch and price are then used to solve
the problem. The other line of models develops a three phase mathheuristics
relying on Benders Decomposition [12]. The model is then generalized to inte-
grate fleet assignment and restricted connect concept [30]. Finally, the efficiency
of the algorithm is improved by a factor 10 by exchanging the master problem
and the subproblem in the Benders decomposition [31]. Benders decomposition
approach is more flexible, as extended crew pairing problem cannot integrate
flight assignment and restricted connects. On medium scale instance, extended
crew pairing method is faster than Benders decomposition method. Nonethe-
less, the time consuming phase of this algorithms is the generation of unique and
maximal connection sets, and the time necessary to its resolutions grows fast.
Thus, on large instances, Benders decomposition method gives better results
[30].

The state of the art techniques still rely on matheuristics and do not solve
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the integrated models to optimality. Moreover, algorithms are still not efficient
enough to be used operationally. Nonetheless, they prove that significant savings
can be made by integrating aircraft routing, crew pairing and fleet assignment
models.

2 Paths partitions and aircraft routing problem

Aircraft routing problem is often referred to be NP-complete, but the mathe-
matical formulation of the aircraft routing problem is not fixed, and we are not
aware of a paper stating a precise definition of the problem completed by the
proof of NP-completeness. In the remainder of this paper, we give a rigorous
formulation of aircraft routing problem, we prove its NP-completeness in the
general case and its polynomiality if fleet size k is fixed, and we give a integer
linear program for aircraft routing.

2.1 Aircraft routing problem

The goal of the aircraft routing problem is to route airplanes while ensuring
maintenance constraints. In the sequence of aircraft and crew schedule planning
problems in air transport, aircraft routing comes after schedule design and fleet
assignment. Thus, the set of flight legs operated by the company and the type
of airplane which will cover each individual flight is already chosen. Thus, an
aircraft routing problem is solved for each sub-fleet corresponding to the different
types of airplane in the company. The aircraft routing problem is solved on a
given horizon T , which is typically one week or one month long. Initial position
of airplanes is given by the solution of the aircraft routing problem on the
previous horizon. Each airplane’s routing, i.e. the sequence of flight legs it
covers during the horizon, must be determined. Regulation agencies impose
regular maintenance stops for airplanes. If the long term maintenance checks
(whose frequency is typically once a year) are not taken into account in the
aircraft routing problem, the short term ones must be performed every 4 days,
which is shorter than the aircraft routing horizon. These maintenance checks
have thus to be taken into account in the routing problem. Their duration
being quite long (typically 5 hours), these maintenance checks are performed at
night. As the equipment and labor needed to perform these maintenance checks
are expensive, only a few airports called maintenance bases are equipped. In
the aircraft routing problem, each individual aircraft must stay one night in a
maintenance base at least every D days (D is typically equal to 4).

Aircraft routing is solved on a period of time: horizon H is the number of
days this period lasts. Time is discretized in τ steps per day. The network
is composed of a set of airports α ∈ A, some of these being in the set of
maintenance bases B ⊆ A. Each flight f ∈ F ⊆ (A× [τ ]× [H])2 is identified by

two airport time day triples, one corresponding to its departure (αdepf , tdepf , ddepf )
and one corresponding to its arrival (αarrf , tarrf , darrf ). The scheduled arrival
time tarrf is equal to the scheduled landing time plus the minimum turn time
between two flights – this way the airplane operating f can be chained to any
flight leaving αarrf after tarrf . To each day d ∈ [H − 1] corresponds a night set

Λd ⊆ F ∪ F 2. A flight f belongs to night set Λd if ddepf1
≤ d and darrf2

> d.
A couple of flights (f1, f2) belongs to night set Λd if the departure airport of
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a.

Paris

12:00 00:00 12:00 00:00 12:00 00:00

Day 1 Day 2 Day 3

12:00 00:00

Day 4

NY - Base

Flight

b.

Paris

12:00 00:00 12:00 00:00 12:00 00:00

Day 1 Day 2 Day 3

12:00 00:00

Day 4

NY - Base

Feasible string Unfeasible string D = 4

c.

Paris

12:00 00:00 12:00 00:00 12:00 00:00

Day 1 Day 2

12:00 00:00

Day 4

NY - Base

Day 3

String 1 String 2 String 3 D = 4

Figure 1: a. An aircraft routing instance – b. Flight strings – c. A feasible
routing

8



f2 is equal to the arrival airport of f1 and darrf1
≤ d and ddepf2

> d. A couple
of flights is a maintenance couple (f1, f2) ∈ Πd ⊆ Λd if it is a night couple
(f1, f2) ∈ Λd in a base αarrf1

∈ B such that the time interval between the two

flights is sufficient to perform a maintenance check (tdepf2
+τ)− tarrf1

≥ τM , where
τM is the time needed to perform a maintenance check. An example of aircraft
routing instance is on Figure 2.1.

A flights string σ is a list of flights σ = (f1, f2, · · · , fp) such that αarrfi
= αdepfi+1

and tarrfi
≤ tdepfi+1

for i = 1, . . . , p− 1. A string operates a maintenance on night

d if there exist two successive flights fi, fi+1 of σ such that (fi, fi+1) ∈ Πd

is a maintenance couple for night d. A flight string is feasible if it visits a
maintenance night (fi, fi+1) ∈ πd at least once in each sequence of D successive
nights. A flight f is covered by a flight string σ if it is one of the flights of σ.
Considering a flight f , the number of days of operations of = ddepf −d of f with
respect to σ is equal to the number of days between the departure of the flight
ddepf and the last maintenance night set Πd covered by σ. Example of flight
strings are given on Figure 2.1.

The goal of the aircraft routing problem is to cover all flights with feasible
flight strings. But considering one specific flight string σ, the last flight f of σ
does not necessarily arrive in a maintenance base, and thus its number of days of
operations of must be taken into account as an initial condition in the aircraft
routing problem for the next period. Thus, in the aircraft routing problem, the
initial positions of airplanes are given: for each day of operation d ∈ [D] and
airport α, there are initially κdα airplanes that must visit a maintenance base
after at most D−d+1 days. For each airport α and day of operation d, the final
conditions are given by the γoα: there are at least

∑d
o=1 γ

o
α airplanes that have

had a maintenance in the last d nights. The fleet size is k =
∑
α∈A

∑
d∈[D] κ

d
α.

A routing S is a collection of flight strings σ ∈ S. A routing is feasible if
each flights string σ ∈ S is feasible, each flight f ∈ F is covered by one unique
flight string σ ∈ S, at least

∑D
o=d κ

o
α flight strings starting in airport a visit a

maintenance night after at most D − d + 1 days for all d ∈ [D], and at least∑d
o=1 γ

o
α flights string ending in airport a have visited a maintenance night in

the last d days for all d ∈ [D]. A feasible routing is on Figure 2.1.

Problem Aircraft routing feasibility problem
Instance: An horizon H, a time discretization T , a set of airports a ∈ A, a set
of bases B ⊆ A, a set of flights F ⊆ (A× T ×D)2, a maximum number of days
between two maintenance nights D, and for each airport a ∈ A and day o ∈ [D]
the initial and final number of airplanes κoα and γoα.
Question: Does a feasible routing S exist?

In this section, the aircraft routing feasibility problem is proved to be NP-
complete in the general case, but polynomial when the number of airplanes k
in the fleet is fixed, and an algorithm in O(|F | · Dk) is given. The remainder
of the section is organized as follows: aircraft routing problem equivalence with
a graph problem is proved in Section 2.2, the polynomial algorithm when k is
fixed is given in Section 3.2, and the NP-completeness in the general case is
proved in Section 4.
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2.2 Equivalence with a graph problem

In order to solve the aircraft routing problem, we will prove the equivalence
between the aircraft routing problem and a graph problem. This graph problem
is formulated on graphs satisfying several specific properties. Therefore, the
special-purpose notions of equigraph and path partitions are introduced.

Let G = (V,A) be an acyclic directed graph. Let δ−(v) (resp. δ+(v)) be
the set of incoming (resp. outgoing) arcs from v. Let d−(v) = |δ−(v)| (resp.
d+(v) = |δ+(v)|) be the incoming (resp. outgoing) degree of v. A vertex v ∈ V
is a source if δ−(v) = ∅, and it is a sink if δ+(v) = ∅. We denote by S the set
of sources, and by T the set of sinks. Let I = V \(S ∪ T ) be the set of internal
vertices. A path P ∈ G is a source to sink path, or S − T path if it starts in a
source and ends in a sink. An arc a ∈ A is covered by a path P if a ∈ P . A
collection of path P is a path partition of G if for each arc a ∈ A, there exists
one and only one path P ∈ P such that a ∈ P . An acyclic directed graph G is
an equigraph if each internal vertex v ∈ I satisfies d−(v) = d+(v).

The definition of the equigraph problem and its equivalence to the aircraft
problem is done in Section 2.2.1. Arcs in the equigraph corresponds to flights or
ground connections between two flights. Day separation by nights is modeled
thanks to directed cut in equigraphs. General properties of equigraphs that
gives polynomial time algorithms on simple instances are studied in Section
2.2.2.

2.2.1 Equivalence of the two problems

In a directed graph, a directed cut is an arc set C such that C = δ−(U) for a
vertex set U satisfying δ+(U) = ∅. Given an equigraph G = (V,A), a collection
of directed cuts Nd = δ−(Ud) for d ∈ [H] is a collection of nights if Ud+1 ⊆ Ud
for all d ∈ [H−1] and UH = T is the set of sinks. Such a collection is illustrated
on Figure 2. The horizon is the number of nights H. The day of a vertex day(v)
is the index of the first night after v: d = day(v) if v ∈ Ud−1\Ud. Besides, the
maintenance checks operated in bases during nights are modeled thanks to a
given collection Md of maintenance arc sets: subset Md of Nd identifies the
maintenance night arcs among the night arcs of Nd. A path P intersects a set
N if P ∩N 6= ∅.

Let D be an integer called the maintenance requirement. A path P from
sources S to sinks T necessarily intersects all nights Nd. It is a feasible path if it
intersects a maintenance night arc at least every D nights: P∩

(
∪d+D−1
o=d Mo

)
6= ∅

for d ∈ [H −D + 1]. A path P covers an arc a if a ∈ P . For an arc a covered
by a path P , the number of days of operations oP (a) is equal to the number of
days between a and the last maintenance night Md intersected. Thus, a path
is feasible if the number of days of operations of all its arcs is smaller than the
maintenance constraint: oP (a) ≤ D for all a ∈ P .

Initial and final constraints are given on the number of days of operations
at the beginning (source) and at the end (sink) of each feasible path. For each
source (resp. sink) s and integer o ∈ [D], let κos (γos ) be these constraints. A
collection of feasible paths P is a feasible routing if the following conditions
are satisfied: first, each flight is covered exactly once. Second, there are at
least

∑D
o=d κ

o
s paths starting in source s that visits one of the first D − d + 1

maintenance night arc sets
⋃D−d+1
o=1 Mo for all d ∈ [D]. Finally there are at least
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U1
U2

U3

N1 N2 N3

Figure 2: A set of nights on an equigraph

Maintenance nights

Non-maintenance nights

Figure 3: A feasible routing

∑d
o=1 γ

o
t paths ending in sink t that visits one of the last d maintenance night

arc sets
⋃H
o=H−d+1Mo for all d ∈ [D]. Integer κos are the initial requirements,

and γot are the final requirements. A feasible routing is plotted on Figure 3.
The equigraph routing problem can be stated as follows:

Problem Equigraph routing problem
Instance: An equigraph G = (V,A), a collection of nights Nd and maintenance
nights Md ⊆ Nd, a maintenance requirement D, initial requirements κos and final
requirements γos .
Question: Does a feasible routing exist?

Theorem 1. Aircraft routing problem and equigraph routing problem are equiv-
alent: each problem can be reduced to the other one in linear time.

Thanks to this theorem, algorithm and complexity for the equigraph routing
problem and the aircraft routing problem are equivalent. The remaining of this
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Step 1

Step 2

Step 3

Cover

Figure 4: Greedy algorithm to find a path partition on an equigraph

paper focus on equigraph routing problem. In the following long proof, only the
methods used to build the equivalent instance are practically interesting.

Proof. The proof of Theorem 1 is straightforward. A detailed version is given
in appendix. When reducing aircraft routing to equigraph routing, the natural
idea is to use airport-time couples as vertices and flights as arcs. The only
technical issue is on the number of ground arcs relying vertices representing
the same airport at different time. It must be chosen in order to obtain an
equigraph. Counting the number of arrivals minus the number of departures
at an airport across gives a solution to this point. Conversely, when reducing
equigraph routing to aircraft routing, a single airport is added for each vertex.
The only technical point is to build a relevant time index, which can be done
thanks to a depth first exploration of the equigraph.

2.2.2 S − T paths partitions of graphs

In this section, properties on equigraphs and simple path partition algorithms
on equigraph are given.

Proposition 2. An acyclic directed graph G admits a S − T path partition if
and only if it is an equigraph.

Lemma 3. If P is a source to sink path in an equigraph G, then G\P , the
graph obtained by removing the arcs of P and the newly isolated vertices is an
equigraph.

Proof. No incoming (resp. outgoing) arcs are added to sources (resp. sinks),
and if v is an internal vertex on P , both its incoming and outgoing degree are
decreased by the same quantity.

This lemma can be seen as a linear time greedy algorithm to find a path
partition on an equigraph. Indeed, as for each internal vertex, |δ−(v)| = |δ+(v)|,
a path from sources to sinks is always found by picking each nodes successor.
Thus, a path partition is found by picking a path from sources to sink and
remove it from the equigraph, as shown in Figure 4. At each step, the graph
obtained by removing a path is still an equigraph whose number of sources or
sinks has been decreased by one. Because it is acyclic, an equigraph without
sources and sinks is empty, and the algorithm finally gives a path partition of
the equigraph.

Proof of Proposition 2. First prove that the existence of a path partition of G
implies that G is an equigraph. Let P be a path partition of G, let v be an
internal vertex of G, and d be the number of paths in P that cover v. Then, as
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each path covering v enters in v by an arc in δ−(v) and exits by an arc in δ+(v),
and paths in P are arc disjoint, we necessarily have d = |δ−(v)| = |δ+(v)|.

Conversly, the greedy algorithm deduce from Lemma 3 gives the existence
of a path partition for any equigraph G.

Summing d+(v) = d−(v) for all internal vertices v ∈ I gives the equality of
incoming and outgoing degrees for the internal vertices d−(I) = d+(I). Thus,
we obviously have d+(S) = d−(T ) and this number is equal to the number of
path in a path partition of G. Let d+(S) be the flow of equigraph G.

Remark 1. Let P be a collection of d+(S) = d−(T ) disjoint paths in an equi-
graph. Then these paths cover all the arcs of the graph. Indeed, removing all
these paths from the graph gives an equigraph without sources and sinks, which
is thus necessarily empty.

Finally, the following result is a characterization of equigraphs thanks to
directed cuts. A directed cut δ−(U) is terminal if T ⊆ U .

Proposition 4. An acyclic graph G is an equigraph if and only if all terminal
directed cuts C = δ−(U) have the same cardinality |C| = d+(S) = d−(T ).

Proof. Let G be an equigraph, C be a terminal directed cut, and P be a path
partition of G, then each path P ∈ P intersects C exactly once: there is a one
to one mapping from P to C, which gives the ”only if” direction.

Conversely, let G be a graph that is not an equigraph. There exist a vertex
v such that d+(v), d−(v) > 0 and d+(v) 6= d−(v). Suppose first that |δ−(v)| <
|δ+(v)|. Let U be the union of the set of vertices u such that there is a path from
v to u with the set of terminals. Then δ−(U) and δ−(U ∪{v}) are two terminal
directed cuts, and |δ−(U ∪ {v})| 6= |δ−(U)|. The case with |δ−(v)| > |δ+(v)| is
analogous.

3 Network state graphs and integer linear pro-
gram for aircraft routing

Equigraph routing problem is a path partition problem on an equigraph with
additional constraints. In this section, we introduce the notion of state graph
which enables to enforce constraints on paths in a path partition, and apply it
to aircraft routing. This notion of state graphs enables us to prove that aircraft
routing is polynomial at number of airplanes fixed, and to introduce a new
integer linear formulation for aircraft routing.

3.1 Network-state graph formalism and aircraft routing

In the equigraph routing problem, the constraint enforced on paths to obtain
a feasible path partition is to visit a maintenance night set every D days. A
control must be kept at all time on the number of days since the last visit of
each aircraft in a maintenance base. The idea behind network state formalism
is to define this number of days since the last visit in a maintenance station
as the state of the flight, and to identify the state of each flight instead of the
aircraft that will cover it.
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Figure 5: A network graph and its state graph

Let G = (V,A) be an acyclic directed graph called the network graph. Vertex
set V is equal to S ∪ I ∪ T where S is the set of sources, I is the set of internal
vertices, and T is the set of sinks. An acyclic directed graph G = (V,A) is a state
graph on G if it can be described as follows. To each vertex v ∈ V corresponds
a state set Vv. Vertex v is the network vertex of each state vertex in Vv. The set
of vertices of state graph G is the union of the state sets V =

⋃
v∈V Vv. These

vertices are called state vertices.
We describe now the arcs of a state graph. Given two state vertices ϑ1 and ϑ2

and there respective network vertices v1 and v2, there can be an arc α = (ϑ1, ϑ2)
only if a = (v1, v2) is an arc of the network graph. Arc a is the network arc
of α, and α is a state arc of a. Let Aa be the set of state arcs of a. Let v be
a network vertex and a ∈ δ+(v) be a network arc. There is at most one arc α
in Aa outgoing from each state vertex ϑ ∈ Vv. The set of arcs A of the state
graph is the union of the set of states arcs A =

⋃
a∈AAa. The set of sources

S, internal vertices I and sinks S of state graph G are defined as the union of
the states sets of the sources, internal vertices, and sinks in the network graph:
S =

⋃
s∈S Vs, I =

⋃
v∈I Vi, and T =

⋃
t∈T Vt. Each arc α or vertex ϑ ∈ I such

that there is not both a path from sources to it and a path from it to the sinks
is removed from the state graph. Thus, the definition of sources , sinks, and
internal vertices are consistent. An example of network graph and and state
graph is on Figure 5.

Given an instance (G,Nd,Md, D, κ
o
s, γ

o
s ) of the equigraph routing problem,

its corresponding routing state graph is the state graph on G = (V,A) built as
follows: for each vertex v ∈ V , build a set Vs = {ϑ1

v, . . . , ϑ
D
v } of D state vertices.

We define the state arcs in order to ensure that for each source to sink path π in
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G covering ϑov, the number of days since the last visit of P (π) in a maintenance
arc is equal to o. Therefore, for each arc a = (v1, v2) ∈ A\ (∪dNd) and o ∈ [D],
add to Aa the state arc (ϑov1 , ϑ

o
v2). State does not change on a non-night arc.

For each arc a = (v1, v2) ∈ ∪dMd and o ∈ [D], add the arc (ϑov1 , ϑ
1
v2) to Aa.

After a maintenance arc, the number of day since the last maintenance night is
equal to 1. Finally, for each arc a = (v1, v2) ∈ (∪dNd\ ∪dMd) and o ∈ [D − 1],
add the arc (ϑov1 , ϑ

o+1
v2 ) to Aa. After a non-maintenance night, the number of

days since the last maintenance night has increased by one. If D days have
elapsed since the last visit of an airplane in v1 to a maintenance night arc, then
it cannot take a non-maintenance night arc.

For each source to sink path π ∈ G, there is a unique source to sink path
P (π) ∈ G. We have the the following lemma.

Lemma 5. Let G be a routing state graph on an instance G,Nd,Md, κ
o
s, γ

o
s of

equigraph routing problem. For each S−T path P ∈ G, there exist a S−T path
in π ∈ G if and only if P is a feasible source to sink path in G.

Proof. Let a = (v1, v2) be an arc in P (π) and oP (a) the number of days since
the last visit of P in a maintenance night arc, then the unique state arc α in

Aa ∩ π starts in ϑ
oP (a)
v , and thus oP (a) ≤ D.

Finally, initial and final conditions can be enforced on a state graph as
follows: for each state source ϑ, define κϑ as the number of paths starting in
ϑ, and for each state sink ϑ, define κϑ as the number of paths ending in ϑ. A
network path partition is a collection Π of source to sink paths π in G such that
one and exactly one state arc α in each state arc set Aa is covered by a path
π ∈ Π, exactly κϑ paths start in source ϑ, and κϑ paths end in sink ϑ. By
taking the network arc a of each state arc α in a path π, path π induces a path
partition Pπ in G, and thus Π induces a path partition PΠ =

⋃
π∈Π Pπ in G.

In a routing state graph, for each source s and state source ϑos, we define
κϑo

s
= κos, and for each sink s and state sink ϑos, we define κϑo

s
= κos.

Lemma 6. Let G be a routing state graph on an instance (G,Nd,Md, κ
o
s, γ

o
s ) of

equigraph routing problem. A feasible routing corresponds to a unique network
path partition in G.

Proof. Let Π be a network path partition. Due to Lemma 5, each path in P(Π)
is a feasible equigraph routing path. The uniqueness of Π comes from the fact
that the number of arcs in a state arc set Aa outgoing from a state vertex ϑ is
at most one.

Thus, equigraph routing problem can linearly be reduced to the following
problem.

Problem Network path partition
Instance: A network graph G, and its state graph G.
Question: Does a network path partition exist?

A state equigraph is a partial graph of G which is an equigraph and such
that for each arc a ∈ A, |GΠ ∩ Aa| = 1. If Π is a network path partition in G,
then GΠ = ∪π∈Ππ is state equigraph. The following Lemma is the root of the
solution methods to find a network path partition.
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Lemma 7. A state graph admits a network path partition if and only if it admits
a state equigraph. Besides, a network path partition can be obtained from a state
equigraph in linear time.

Proof. Let Π be a network path partition in G, then GΠ = ∪π∈Ππ is a state
equigraph. Reciprocally, let H be a state equigraph, then by Lemma 3, it can
be partitioned in linear time in source to sink paths in linear time.

In Section 3.2, an algorithm for network path partition problem is given:
it is polynomial for fixed value of the flow of the network graph. It induces a
polynomial algorithm at number of airplanes fixed for the aircraft routing prob-
lem. Finally, in Section 3.3, a compact linear program to solve the network path
partition problem and consequently the aircraft routing problem is introduced.

3.2 Polynomial algorithm for network paths partition prob-
lem

This section is devoted to the proof of Theorem 8.

Theorem 8. The aircraft routing problem is polynomial for fixed number of
airplanes k. It can be solved in time bounded from above by B0 = 2nDk, where
k is the number of airplanes and n the number of flights.

Proof of theorem 8 consists in a polynomial algorithm inspired of the peb-
bling game algorithm to solve the integer multicommodity flow problem [17]. In
the remaining of the section, three lemmas are introduced to be able to prove
Theorem 8 at the end of the section.

A complete ordering v1, v2, . . . , vn on the vertices of an acyclic directed graph
is a topological ordering if (vi, vj) ∈ A implies i < j. A breadth first search gives
such an ordering. Given a topological ordering v1, v2, . . . , vn of the vertices of
an acyclic directed graph, define Ui as the set of vertices strictly after vi in the
ordering, Ui = {vj ∈ V |j > i}, and U0 = V . As v1, v2, . . . , vn is a topological
ordering, Ci = δ−(Ui) is a terminal directed cut. This way, to each topological
ordering v1, v2, . . . , vn corresponds a collection of directed cuts C0, C1, . . . , Cn
with Ci = δ−(Ui) and V = U0 ( U1 ( · · · ⊆ Un = ∅. A topological ordering
and its directed cuts collection are illustrated on Figure 6. Besides, we have:

Ui−1 = {vi} ∪ Ui
Ci−1\Ci = δ−(vi)

Ci\Ci−1 = δ+(vi)

Finally, define the partial graph Gi as the union
⋃i
j=0 Ci of the directed cuts

Cj whose index j is smaller than i. As all the terminal directed cuts of Gi are
terminal directed cuts of G, they have all the same cardinality and proposition
4 ensures that Gi is an equigraph. Let Gi be the partial graph of G whose arcs
are in Ai = ∪a∈Gi

Aa. Let Ti be the set of sinks of Gi, and Ti be the set of sinks
of Gi.

A distribution of pebble on Ti is an application Xi : Ti → Z+; it is reachable
if there exist a network path partition Πi on Gi such that there are Xi(ϑ) paths
π in Π ending in ϑ for each state vertex ϑ ∈ Ti. Partition Πi is ending in Xi. Let
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Figure 6: A topological ordering and its ordering cuts collection

χi be the set of reachable distributions on Ti. Let Xi be a reachable distribution
in χi, and Πi a corresponding path partition of Gi. A distribution Xi+1 on Ti+1

can be reached from Xi if any network path partition Πi of Gi ending in Xi can
be completed in a network path partition Πi+1 on Gi+1 ending in Xi+1. The
idea of the algorithm is to deduce χi+1 from χi as the union of the distributions
Xi+1 that can be reached from a distribution xi ∈ χi thanks to a legal move of
pebbles.

Lemma 9. Pebble distribution Xi+1 on Ti+1 is reachable from distribution Xi

on Ti if and only if the following conditions are satisfied:

1. Pebbles that are not in Vvi are unmoved.

2. A pebble initially on vertex ϑ1 can be moved to vertex ϑ2 if and only if
(ϑ1, ϑ2) is an arc in G.

3. Only one pebble goes through each arc set Aa with a ∈ δ+(v).

A pebble move satisfying these conditions is called a legal move. Let m(ϑ) be
the number of pebbles moved to ϑ, then Xi+1(ϑ) = Xi(ϑ)+m(ϑ) if ϑ ∈ Ti∩Ti+1

and Xi+1(ϑ) = m(ϑ) otherwise.

Proof. Suppose that a legal move lead from Xi to Xi+1. Let Πi be a network
path partition ending in Xi, affect each pebble moved from ϑ ∈ Ti\Ti+1 to a
path π ∈ Πi ending in ϑ, and complete π by the arc α crossed by its pebble.
The completed paths form a network path partition on Gi+1 ending in Ti+1.

Conversely, if Xi+1 is reached from Xi in the network path partition Πi+1,
then move one pebble along each arc of Πi+1 ∩ (∪a∈Ci

Aa) to obtain a legal
move.

Define φi : χi → ℘(χi+1) as the operator that associates to a reachable
distribution Xi the set of distributions Xi+1 reachable from Xi. Lemma 9
ensures that χi+1 = ∪Xi∈χiφi(χi). Define χ = ∪iχi as the set of reachable
distributions, define sources distributions X ∈ I ⊆ χ as distributions of pebbles
on the sources, and sinks distributions X ∈ J ⊆ χ are distributions on the
sinks. The acyclic directed distribution graph associated to the network state
graph is defined as follows: one vertex for each reachable pebble distribution
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X ∈ χ, and for each pebble distribution X in χ, one arc between X and each
distribution X ′ in Φ(X).

Lemma 10. There exist a network path partition of G if and only if there exist a
path from a source distribution to a sink distribution in the distributions graph.

Proof. A path from a source distribution to a sink distribution is obtained from
a network path partition by a applying recursively Lemma 9.

Conversely, given a path D from a source distribution to a sink distribution,
let G′ be the partial graph of G obtained by taking the arcs crossed by a pebble
during one of the legal move of D. This graph is a state equigraph, and thus
a path partition can be deduced from it in linear time by applying recursively
Lemma 3.

Finally, a last lemma on the cardinality of the arc set of the distribution
graph is needed to be able to prove Theorem 8.

Lemma 11. The number of arcs in the distribution graph of a state graph G is
bounded from above by B0 = |V |(maxv∈V |Vv|)k, where k is the flow of equigraph
G.

A tighter bound B1 ≤ B0 is

B1 =
∑
v∈S∪I

 ∏
u∈Sv∩Sv+1

(
pv(u) + |Vu| − 1
|Vu| − 1

) · |Vv|d(v) (1)

where pv(u) = |Cv ∩ δ−(u)| is the number of pebbles on u when v is played.

Proof. As arcs in the distribution graphs are between χi and χi+1, it suffices
to bound the number of legal move between χi and χi+1. As each network
arc a ∈ A is crossed exactly once, the number of pebbles on vertices in Vu is
identical for each distribution in χv. Define pv(u) as the number of pebbles on
state vertices in Vu in distribution of χv. Thus, the number of legal moves is
equal to the number of distributions of pebbles on Sv∩Sv+1, which corresponds
to the pebbles which do not move, multiplied by the number of legal moves of
the moving pebbles.

For each vertex u in Sv∩Sv+1, the number of way to distribute pv(u) pebbles

on |Su| states is equal to

(
pv(u) + |Vu| − 1
|Vu| − 1

)
.

Let ϑ1, ϑ2, . . . , ϑ` be the state vertices in Vv and xi be the number of pebbles
on ϑi in distribution Xi. Then x1 + x2 + · · ·+ x` = d(v). As, first, in the path
partition, each arc of G is covered exactly once and, second, for each network
arc, there is at most one state arc outgoing from each state vertex of Vv, the
number of legal moves is bounded from above by the number of partition of the
d(v) arcs in δ+(v) in sets of cardinal x1, x2, . . . , xi (which corresponds to the

origin of the state arcs):

(
d(v)

x1, x2, . . . , xm

)
. Thus, the total number of legal

move is bounded from above by(∏
u∈Sv∩Sv+1

(
pv(u) + |Vu| − 1
|Vu| − 1

))
·∑x1+x2+...+xl=d(v)

(
d(v)

x1, x2, . . . , x`

)
=

(∏
u∈Sv∩Sv+1

(
pv(u) + |Vu| − 1
|Vu| − 1

))
· ld(v)

(2)
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Summing the upper bound |Φ(χi)| gives the upper bound B1 on |Φ(χ)|. B1 ≤ B0

is obtained from

(
pv(u) + |Vu| − 1
|Vu| − 1

)
≤ |Vu|pv(u) and

∑
u∈Sv

pv(u) = k.

Proof of Theorem 8. Proof of Theorem 1 ensures that an aircraft routing prob-
lem instance (H,T,A,B, F,D, κ0

α, κ
0
β) can be reduced to an equigraph routing

problem instance (G,Nd,Md, κ
o
s, κ

o
t ) whose number of arcs is bounded form

above by 2n where n us the number of flights. Lemma 6 ensures that this equi-
graph routing problem can be reduced to a network path partition problem on
a state graph G on G such that for each vertex v of G, state vertices set Vv has
a cardinality no greater than D. Due to Lemma 7, the existence of a network
state path partition is equivalent to the existence of a state equigraph. Finally,
Lemma 10 ensures that the existence of state equigraph is equivalent to the
existence of a path from a source distribution to a sink distribution in G.

As the distribution graph of a network state graph is acyclic, the complexity
of a path finding algorithm in this graph is linear in the number of arcs in the
distributions graph. Finally Lemma 11 ensures that the number of arcs in the
distribution graph is bounded from above by |V |(maxv∈V |Vv|)k, which gives
the result because maxv∈V |Vv| ≤ D and |V | ≤ 2n.

.

Remark 2. In the proof to Theorem 8, we have proved that network path par-
tition problem can be solved in polynomial time when the flow of the network
equigraph is fixed.

Remark 3. A shortest path algorithm in distribution graph solves the network
path partition optimization problem introduced in the next section. Its com-
plexity admits the same bound B0 and B1 as the path finding algorithm.

3.3 Linear program for aircraft routing problem

In this section, we introduce a compact linear program to solve efficiently the
network path partition problem introduced in Section 3.1. A special case of this
program gives a compact linear program to solve aircraft routing problem.

Let G be a state graph on equigraph G, and for each α in A, let cα ∈ R
be a cost attached to state arc α. In the case of aircraft routing, cost cα could
represent the risk of operating a flight after o days without maintenance. The
cost of a network path partition Π is defined as the sum of the cost of state arcs
in the partition C(Π) =

∑
α∈π∈Π cα. The network path partition optimization

problem can be stated as follows:

Problem Network path partition optimization problem
Instance: A network graph G, its state graph G, and costs cα
Solution: A minimum cost network path partition

To solve the network path partition optimization problem, we introduce the
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following linear integer program:

min
∑
α∈A cαxα

s.t.
∑
α∈δ−(ϑ) xα =

∑
α∈δ+(ϑ) xα ∀ϑ ∈ A∑

α∈Aa
xα = 1 ∀a ∈ A∑

α∈δ+(ϑ) xα = sϑ ∀ϑ ∈ S∑
α∈δ−(ϑ) xα = tϑ ∀ϑ ∈ T

xα ∈ {0, 1} ∀α ∈ A

(3)

The first constraint in (3) ensures that the partial graph (V,B) where B =
{α|xα = 1} is an equigraph, and the second constraint ensures that exactly
one arc α ∈ Aa belongs to B for each arc a ∈ A. As a consequence, (V,B) is
a state equigraph. Besides, if two network path partitions shares Π1 and Π2

sharing the same state equigraph, then
⋃
α∈π∈Π1

α =
⋃
α∈π∈Π2

α and therefore
C(Π1) = C(Π2). As a consequence, the cost of a network path partition only
depends of its state equigraph, and therefore, an optimal solution to program
(3) gives an optimal network path partition.

Remark 4. Symbol = can be changed in ≥ or in ≤ in the second constraint
of Program (3) except for the sources arcs (or even for the sources arcs but
adding the inequality

∑
α∈δ+(S) xα ≤ |δ+(S)|). Indeed, the flow intersecting

each directed cut is equal. Thus, for each cut C,
∑
a∈C

(∑
α∈Aa

xα
)

= |C| and(∑
α∈Aa

xα
)
≥ 1 implies

(∑
α∈Aa

xα
)

= 1 for all a ∈ C.

3.3.1 Linear relaxation and column generation

The traditional linear programming approach to solve the aircraft routing prob-
lem use column generation where columns are feasible source to sink paths [5].
Column generation can be used to solve the network path partition problem,
but as we prove in this section, compact linear program (3) has the same con-
tinuous relaxation as the column generation program. Using paths as columns,
the master problem of the column generation approach stands as follows:

min
∑
π∈F

(∑
α∈π cα

)
yπ

s.t.
∑
π covering a yπ = 1 ∀a ∈ A

yπ ∈ {0, 1} ∀π ∈ F
(4)

where F is the set of source to sink paths in G.

Proposition 12. Linear relaxation of path formulation (4) and linear relax-
ation of compact formulation (3) have the same optimal value.

Proof. This proposition is a corollary of Minkowski-Weyl theorem for convex
polyhedra. A constructive proof is given in appendix.

This proposition shows that compact linear integer program (3) is an efficient
substitute to the tradition column generation approach to solve the aircraft
routing problem.

Remark 5. Proposition 12 is a corollary of Minkowski-Weyl theorem for convex
polyhedra.
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4 Aircraft routing NP-completeness

The two-commodities arc-disjoint paths problem on acyclic directed graph is
NP-complete [15].

Problem Two-commodities arc-disjoint paths on acyclic directed graph
Instance: A directed acyclic graph G = (V,E), vertices s1 and s2 called
sources, t1 and t2 called terminals, two non negative R1 and R2

Solution: Ri arc paths forms si to ti for i = 1, 2

Theorem 13. Aircraft routing problem is NP-complete, even restricted to two
days short horizon problem

Proof. The two-commodities arc-disjoint paths problem on acyclic directed graph
can be reduced to aircraft routing

Let H, s1, s2, t1, t2, R1, R2 be an instance of the two-commodities arc-disjoint
paths problem on acyclic directed graph. The graph G is extended from H in
the following way: 2R1 + 2R2 sources vertices are added to form S1, t1 and
S2, T2, an arc is added from each vertex of Si to si and from ti to each vertex of
Ti . Other vertices are internal vertices. If v is such that δ−(v) > δ+(v), then
δ−(v)− δ+(v) sources are added with one arc between each of these and v, and
δ+(v) − δ−(v) terminal linked to v are added if δ+(v) > δ−(v). Thus, G is an
equigraph. This extension is illustrated on Figure 7.

Suppose that two-commodities arc-disjoint paths problem on acyclic directed
graph admits a solution P. Then, applying Lemma 3 for each path P of P, G\P
is still an equigraph, and can be covered by arc disjoint paths using the greedy
algorithm relying on Lemma 3 . Thus, P can be extended to an equigraph
cover of G with Ri paths from Si to Ti, thus it is a solution to aircraft routing
problem.

Conversely, suppose that aircraft routing problem admits a solution P. Then
P ∩H is a solution to the two-commodities arc-disjoint paths problem.
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Research directions

Further research is currently done to use the network state formalism introduced
in this section to find an aircraft minimize the expected costs of delay in the
network of flights. Another axis is the use of compact linear program (3) in an
integrated aircraft routing and crew pairing optimization problem.

References

[1] Jeph Abara. Applying integer linear programming to the fleet assignment
problem. Interfaces, 19(4):20–28, 1989.

[2] Ranga Anbil, Rajan Tanga, and Ellis L. Johnson. A global approach to
crew-pairing optimization. IBM Systems Journal, 31(1):71–78, 1992.

[3] Michael Ball and Anito Roberts. A graph partitioning approach to airline
crew scheduling. Transportation Science, 19(2):107–126, 1985.

[4] Cynthia Barnhart, Peter Belobaba, and Amedeo R Odoni. Applications of
operations research in the air transport industry. Transportation Science,
37(4):369, 2003.

[5] Cynthia Barnhart, Natashia L Boland, Lloyd W Clarke, Ellis L Johnson,
George L Nemhauser, and Rajesh G Shenoi. Flight string models for air-
craft fleeting and routing. Transportation Science, 32(3):208–220, 1998.

[6] Cynthia Barnhart, Timothy S Kniker, and Manoj Lohatepanont. Itinerary-
based airline fleet assignment. Transportation Science, 36(2):199–217, 2002.

[7] John E Beasley and B Cao. A tree search algorithm for the crew scheduling
problem. European Journal of Operational Research, 94(3):517–526, 1996.

[8] M Berge. Timetable optimization: Formulation, solution approaches, and
computational issues. In AGIFORS proceedings, pages 341–357, 1994.

[9] Hai D Chu, Eric Gelman, and Ellis L Johnson. Solving large scale crew
scheduling problems. European Journal of Operational Research, 97(2):260–
268, 1997.

[10] Lloyd Clarke, Ellis Johnson, George Nemhauser, and Zhongxi Zhu. The
aircraft rotation problem. Annals of Operations Research, 69:33–46, 1997.

[11] Amy Mainville Cohn and Cynthia Barnhart. Improving crew scheduling
by incorporating key maintenance routing decisions. Operations Research,
51(3):387–396, 2003.

[12] Jean-François Cordeau, Goran Stojković, François Soumis, and Jacques
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A Appendix

In this section, detailed and constructive proofs of Theorem 1 and Proposition
12 are given.

Proof of Theorem 1. We first prove that aircraft routing problem can be reduced
in linear time to an equivalent equigraph routing problem. Let T,A,B, F,D, κdα, γdα
be an instance of the aircraft routing problem.

First, we build the equigraph routing problem instanceG′, N ′d,M
′
d, D

′, κds
′
, γdt
′
.

Let t be a chronological index: time td on day d gives index τ · d+ td. The total
number of airplanes initially in α is θt0α =

∑D
o=1 κ

o
a. As each flight is covered

exactly once, the number of airplanes θtα at t in a is obtained by counting the
arrivals and the departures.

θtα = θt0α + |{arrivals before t}| − |{departures before t}| (5)

= θt0α +

t∑
τ=0

 ∑
f |αa

f=α,taf=τ

1−
∑

f |αd
f=α,tdf=τ

1

 (6)

The aircraft routing directed graph G′ = (V ′, A′) is defined as follows: for
each airport a ∈ A and each time t such that there is at least one departure
from α at t, there is a corresponding internal vertex v′(α, t) ∈ V ′. For each
airport α there is a corresponding source s′α ∈ S and a sink t′α ∈ T . For each
flight f = ((αdf , t

d
f , d

d
f ), (αaf , t

a
f , d

a
f )), there is a corresponding flight arc between

v′(αdf , t
d
f , d

d
f ) and v′(αaf , t1, d1) where t1, d1 is the first time index greater than

taf , d
a
f such that there is a flight departure from α in t1, d1. If such a t1 does

not exist, then the destination vertex of the flight arc is t′α. Each vertex v′

corresponds to an airport, a time and a day day(v′). Let t1, t2, . . . , tn be the
successive departure times at an airport α, for i ∈ [n], there are θtiα ground
arcs between v′(α, ti) and v′(α, ti+1) or t′a if i = n. Night N ′d = δ−(U ′d) is the
directed cut of events on day greater than d, i.e. U ′d = {v′|day(v′) > d}. Thus,
night characterization U ′d+1 ⊂ U ′d is satisfied. Maintenance arcs in Md are night
arcs in Nd that are ground arcs in a base b. For all s, t and d, initial and final
constraints are equal κdα

′
= κds and γdt

′
= γdt . This process for a small instance

of aircraft routing in on Figure 8.
The resulting graph is an equigraph. Indeed, sources s′ and terminals t′

satisfy d−(s′) = 0 and d+(t′) = 0. Let v = v′(α, t) be an internal vertex, and
t− the former departure time from α, then

d+(v)− d−(v) = θtv − θt−v −

 ∑
f |αa

f=α,taf=t

1−
∑

f |αd
f=α,tdf=t

1

 = 0 (7)

which gives the result.
Aircraft routing feasibility implies equigraph routing feasibility. Suppose the

aircraft routing admits a solution S. A flight string σ covers a ground arc a if
a is between two successive flight arcs in σ. The number of parallel ground arcs
is equal to the number or airplanes at the corresponding airport and time, thus
each copy can be assigned to one unique flight string σ to form a corresponding
path P ′(σ). P ′(σ) is feasible because σ is feasible. P = {P (σ)|σ ∈ S} satisfies
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Figure 8: Aircraft routing instance and corresponding equigraph
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equigraph cover constraint, initial constraints, and final constraints because R
satisfies equigraph cover constraint and terminal constraints.

Conversely, equigraph routing feasibility implies aircraft routing feasibility.
Let P be a solution of the equigraph problem. Each feasible path P induces
(without ambiguity) a feasible string S(P ) and σ = {S(P ), P ∈ P} is a feasible
routing.

Now, we prove that the equigraph routing problem can be reduced to the
aircraft routing problem. Let G = (V,A), B,D, κds , γ

d
t be an instance of equi-

graph routing problem. Then an instance T ′,A′,B′, F,D′, κd,α , γd,α of aircraft
routing is built as follows. Day day(v) has already been defined for an equi-
graph with night. A time index respecting the natural ordering of each vertex
of a day is obtained thanks to a depth first exploration of the reduced graphs
Ud\Ud+1 corresponding to one day, assigning to each vertex the maximum index
of its predecessors plus one. To each arc in (v1, v2) ∈ A\B corresponds a flight
f = ((α(v1), t(v1), d(v1)), (α(v2), t(v2), d(v2)). T ′ is the maximum of the time
indices.

Aircraft routing feasibility implies equigraph routing feasibility: Feasible paths
gives feasible strings. Equigraph routing feasibility implies implies aircraft rout-
ing feasibility: Feasible strings gives feasible paths.

Proof of Proposition 12. Let (yP ) ∈ [0, 1]P be a feasible solution to the linear
relaxation of the path formulation (4). To each path P corresponds a unique
path π ∈ G. Let bαP be equal to 1 if α ∈ π(P ) and 0 otherwise, and xα =∑
P∈F bαP yP . Then (xα) satisfies equation

∑
α∈δ−(ϑ) xα =

∑
α∈δ+(ϑ) xα as

yP equally contributes to
∑
α∈δ−(ϑ) xα and

∑
α∈δ+(ϑ) xα, and satisfies equation∑

α∈Aa
xα = 1 due to equation

∑
π covering a yπ = 1. Thus (xα) is a feasible

solution to the linear relaxation of the compact formulation (3).
Let (xα)α∈A be a feasible solution to the linear relaxation of formulation

(3). Let α0 be an arc such that xα0
is one of the minima in A0 = {xα > 0}. As

equation
∑
α∈δ−(ϑ) xα =

∑
α∈δ+(ϑ) xα is satisfied and xα0 is minimal, if α0 does

not end in a sink (resp. source), there exists α0
1 among the successors (resp.

predecessors) of α0 such that xα0
1
> xα0 . Therefore, by choosing predecessors

and successors in a greedy manner, a path π0 form sources to sinks and satisfying
α0 ∈ π0 and xα > xα0 for all α ∈ π0 is built. Let yπ0 = xα0 and

x1
α =

{
xα if α /∈ π0

xα − xα0 if α ∈ π0 (8)

As (x1
α)α∈A still satisfies equation

∑
α∈δ−(ϑ) xα =

∑
α∈δ+(ϑ) xα,we apply the

same method to build π1, then obtain (x2
α), build π2 etc. As xαi /∈ Aj for

j > 1, set Ak = ∅ after at most |A| iterations. Besides, (yπi) satisfies cover
constraint

∑
π covering a yπ = 1 as (xα) satisfies cover constraint

∑
α∈Aa

xα = 1,
and (yπ) is a feasible solution of formulation (4) which has the same cost as
(xα), which gives the result.
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