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(Conic) Linear Programming Examples and Reviews

(LP) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0;

(SOCP) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,√
x2
2 + x2

3 ≤ x1.

(SDP) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1, x1 x2

x2 x3

 ≽ 0,
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Linear Programming and its Dual

Consider the classical linear program in standard form, called the primal problem,

(LP ) minimize cTx

subject to Ax = b, x ≥ 0 (∈ K),

where x ∈ Rn. The dual problem can be written as:

(LD) maximize bTy

subject to ATy + s = c, s ≥ 0 (∈ K∗),

where y ∈ Rm and s ∈ Rn. The components of s are called dual slacks.

Applying Farkars’ lemma: If either one is infeasible and the other is feasible, then the other is also

unbounded.
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LP, SOCP, and SDP Examples

min 2x1 + x2 + x3

s. t. x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

(s1; s2; s3) ≥ 0.

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

x1 −
√

x2
2 + x2

3 ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

s1 −
√
s22 + s23 ≥ 0.

For the SOCP case: 2− y ≥
√
2(1− y)2. Since y = 1 is feasible for the dual, y∗ ≥ 1 so that the dual

constraint becomes 2− y ≥
√
2(y − 1) or y ≤

√
2. Thus, y∗ =

√
2, and there is no duality gap.

4



Yinyu Ye, MS&E, Stanford CERMICS Summer School #01

minimize

 2 .5

.5 1

 ·

 x1 x2

x2 x3


subject to

 1 .5

.5 1

 ·

 x1 x2

x2 x3

 = 1, x1 x2

x2 x3

 ≽ 0,

maximize y

subject to

 1 .5

.5 1

 y + s =

 2 .5

.5 1

 ,

s =

 s1 s2

s2 s3

 ≽ 0.
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LP Duality Theories

Theorem 1 (LP Weak Duality Theorem) Let feasible regions Fp and Fd be non-empty. Then,

cTx ≥ bTy where x ∈ Fp, (y, s) ∈ Fd.

cTx− bTy = cTx− (Ax)Ty = xT (c−ATy) = xT s ≥ 0.

This theorem shows that a feasible solution to either problem yields a bound on the value of the other

problem. We call cTx− bTy the duality gap.

From this we have important implication: if we have cTx = bTy where x is feasible for LP and y is

feasible for LD, then they are optimal for LP and LD respectively.

Is the reverse also true?
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LP Strong Duality Theorem

Theorem 2 (LP Strong Duality Theorem) Let Fp and Fd be non-empty. Then, x∗ is optimal for (LP) if

and only if the following conditions hold:

i) x∗ ∈ Fp;

ii) there is (y∗, s∗) ∈ Fd such that

iii) cTx∗ = bTy∗.

Given Fp and Fd being non-empty, we like to prove that there is x∗ ∈ Fp and (y∗, s∗) ∈ Fd such that

cTx∗ ≤ bTy∗, or to prove that

Ax = b, ATy ≤ c, cTx− bTy ≤ 0, x ≥ 0

has a feasible solution if both LP and LD are feasible – using Farkas’ lemma again.
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Theorem 3 (LP Primal-Dual Theorem) If (LP) and (LD) both have feasible solutions then both problems

have optimal solutions and the optimal objective values of the objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either unbounded or has no feasible

solution. If one of (LP) or (LD) is unbounded then the other has no feasible solution.

The above theorems show that if a pair of feasible solutions can be found to the primal and dual problems

with equal objective values, then these are both optimal. The converse is also true; there is no “gap.”

Optimality Conditions:(x,y, s) ∈ (Rn
+,Rm,Rn

+) :

cTx− bTy = 0

Ax = b

−ATy − s = −c

 ,

which is a system of linear inequalities and equations. Now it is easy to verify whether or not a pair

(x,y, s) is optimal.
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LP Complementarity Condition

For feasible x and (y, s), xT s = xT (c−ATy) = cTx− bTy is called the complementarity gap.

Since both x and s are nonnegative, xT s = 0 implies that xjsj = 0 for all j = 1, . . . , n, where we say

x and s are complementary to each other.

xjsj = 0, ∀j,
Ax = b, x ≥ 0

ATy + s = c, s ≥ 0.

Theorem 4 (LP Strict-Complementarity Theorem) For any pair of LP and LD where both are feasible,

there exists an optimal or complementarity solution pair such that

xj + sj > 0, ∀j.
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Resource Allocation LP

(LP )

maximize x1 +2x2

subject to x1 ≤ 1

x2 ≤ 1

x1 +x2 ≤ 1.5

x1, x2 ≥ 0.

max pTx s.t. Ax ≤ r, x ≥ 0

where

• p: profit margin vector

• A: resources consumption rate matrix

• r: available resource vector

• x: allocation decision vector
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Dual Interpretation of Resource Allocation: Liquidation Pricing

(LD)

minimize y1 +y2 +1.5y3

subject to y1 +y3 ≥ 1

y2 +y3 ≥ 2

y1, y2, y3 ≥ 0.

min rTy s.t. ATy ≥ p, y ≥ 0

where

• y: the fair price vector

• ATy ≥ p: competitiveness

• y ≥ 0: positivity

• min rTy: minimize the total liquidation cost
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A Combinatorial Auction Pricing Problem

Given the m different states that are mutually exclusive and exactly one of them will be true at the

maturity. A contract on a state is a paper agreement so that on maturity it is worth a notional $1 if it is on

the winning state and worth $0 if is not on the winning state. There are n orders betting on one or a

combination of states, with a price limit and a quantity limit.

Order Data: The jth order is given as (aj ∈ Rm
+ , πj ∈ R+, qj ∈ R+): aj is the combination betting

vector where each component is either 1 or 0

aj =


a1j

a2j

...

amj

 ,

where 1 is winning and 0 is non-winning; πj is the price limit for one such a contract share, and qj is the

maximum number of shares the better like to buy.
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World Cup Information Market

Order: #1 #2 #3 #4 #5

Argentina 1 0 1 1 0

Brazil 1 0 0 1 1

Italy 1 0 1 1 0

Germany 0 1 0 1 1

France 0 0 1 0 0

Bidding Prize:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x x1 x2 x3 x4 x5
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Parimutuel Call Auction Mechanism I

Let xj be the number of contracts awarded to the jth order. Then, the jth better will pay the amount

πj · xj

and the total collected amount is
n∑

j=1

πj · xj = πTx

If the ith state is the winning state, then the auction organizer need to pay back n∑
j=1

aijxj


The question is, how to decide x ∈ Rn.
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Parimutuel Call Auction Mechanism II

max πTx−maxj{aT·jx}
s.t. x ≤ q,

x ≥ 0.

max πTx−max(ATx)

s.t. x ≤ q,

x ≥ 0.

This is NOT a linear program.
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Parimutuel Call Auction Mechanism III: Risk-Free LP model

max πTx− z

s.t. Ax− e · z ≤ 0,

x ≤ q,

x ≥ 0;

where e is the vector of all ones.

πTx: the optimistic amount can be collected. z: the worst-case amount need to pay back.
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Parimutuel Call Auction Mechanism IV: The Dual

min qTy

s.t. ATp+ y ≥ π,

eTp = 1,

(p,y) ≥ 0.

p represents the state price.

What is y?

Price information gaps/differentials/slacks where their weighted sum we like to minimize.
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Parimutuel Call Auction Mechanism V: Complementarity Condition

xj > 0 aTj p+ yj = πj and yj ≥ 0 so that aTj p ≤ πj

0 < xj < qj yj = 0 so that aTj p = πj

xj = qj yj > 0 so that aTj p < πj

xj = 0 aTj p+ yj > πj and yj = 0 so that aTj p > πj

The price is Fair:

pT (Ax− e · z) = 0 implies pTAx = pTe · z = z;

that is, the worst case cost equals the worth of total shares. Moreover, if a lower bid wins the auction, so

does the higher bid on any same type of bids.
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World Cup Information Market Result

Order: #1 #2 #3 #4 #5 State Price

Argentina 1 0 1 1 0 0.2

Brazil 1 0 0 1 1 0.35

Italy 1 0 1 1 0 0.2

Germany 0 1 0 1 1 0.25

France 0 0 1 0 0 0

Bidding Price:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x∗ 5 5 5 0 5

Question 1: The uniqueness of dual prices?
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Nonlinear Convex Programming Mechanism/Regularization

To value the uncertain revenue si between the worst-case cost and the actual cost when state i is

realized:

max πTx− z + U(s)

s.t. ATx− e · z + s = 0,

x ≤ q,

x ≥ 0.

where U(·) is a concave (risk aversion) and increasing value function for the possible slack revenues

s = e · z −ATx. For example,

U(s) = min
i
(s), or U(s) =

∑
i

u(si).

If u(·) is a strictly concave function, then the state price vector is unique.

Question 2: Online Auction?
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Online Combinatorial Auction Mechanism

• Traders come one by one with an order (a, π, q).

• Market maker has to make an order-fill decision as soon as an order arrives – may need to accept bets

that do not have a matching bet yet.

• Market maker still hopes: i) to pay the winners almost completely from the stakes of losers, and ii) to

update state prices reflect the traders’ aggregated belief on outcome states

21
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Market Scoring Rules

Market Scoring Rule: Traders report their beliefs/prices, p, on outcome states directly; then payment is

determined by a scoring rule, si(p), on reported probability vector p.

For example,

si(p) = b log(pi) + 1, ∀i.

Suppose constant b = 0.5 and you bet the distribution

p = (0.2, 0.3, 0.2, 0.25, 0.05)

over the five teams. Then, if Brazil wins, your profit for each share under (LMSR) is

0.5 log(0.3) + 1 = 0.398.

But if France wins, your profit for each share is

0.5 log(0.05) + 1 = −0.498.
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Online Combinatorial Auction: Sequential Convex Programming Mechanism

Given the previous (t− 1) order-fills x̄1, . . . , x̄t−1 on input {πj ,aj , qj}t−1
j=1 until time t, the tth order-fill

decision is to choose xt such that,

max πtxt − z + U(s) +
∑t−1

j=1 πj x̄j

s.t. atxt − e · z + s+
∑t−1

j=1 aj x̄j = 0,

xt ≤ qt,

xt ≥ 0.

(πt,at, qt): the newly arrived bidding data.

z: the new worst-case cost.∑t−1
j=1 πj x̄j : collected revenue before the new arrival.∑t−1
j=1 aj x̄j : outstanding shares in each state before the new arrival.
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Online Combinatorial Auction: Theorem and Initial Prices

Theorem 5 The SCPM with a concave and increasing value function is equivalent to choosing xt in order

to minimize a convex risk measure on random return revenue. Moreover, any convex risk measure can be

used to construct an SCPM model with a corresponding concave value function.

Initial Prices and Shares:

max −z + U(s)

s.t. −e · z + s = 0,

or

max −z + U(ez)

KKT condition: let z0 be the optimizer: eT∇U(z0) = 1, so that z0 can be viewed as the initial

outstanding shares in each state, and ∇U(z0) contains initial prices for each state!
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Online Combinatorial Auction: Simplified Formulation and Computation

max πtxt − z + U(s)

s.t. atxt − ez + s = −bt−1,

xt ≤ qt,

xt ≥ 0,

where bt−1 =
∑t−1

j=1 aj x̄j–outstanding shares in each state. Or

max πtxt − z + U(ez − atxt − bt−1)

s.t. xt ≤ qt,

xt ≥ 0.

This is actually a two-variable problem.
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KKT or Optimality Conditions for the Simplified Formulation

max πtxt − z + U(ez − atxt − bt−1)

s.t. xt ≤ qt,

xt ≥ 0,

πt − aT∇U(ez − atxt − bt−1)− λ ≤ 0, λ ≥ 0,

−1 + eT∇U(ez − atxt − bt−1) = 0

xt(πt − aT∇U(ez − atxt − bt−1)− λ) = 0

λ(qt − xt) = 0.

The equality eT∇U(ez − atxt − bt−1) = 1 implies that z is an implicit function of xt.

Let (x̄t, z̄
t) be the optimizer. Then new outstanding shares bt = bt−1 + atx̄t and

pt := ∇U(ez̄t − bt) represents the state price for each state after the tth order is optimally filled.
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Online KKT Implications

x̄t = 0 λ = 0 so that

πt < aTt ∇U(ez − atxt − bt−1)

x̄t = qt λ > 0 so that

πt > aTt ∇U(ez − atxt − bt−1)

0 < x̄t < qt λ = 0 so that

πt = aTt ∇U(ez − atxt − bt−1)

In the first case: z̄t = z̄t−1, bt = bt−1 and pt = pt−1.

In the third case: (z̄t, x̄t) is the solution of two equations

eT∇U(ez − atxt − bt−1) = 1 and aTt ∇U(ez − atxt − bt−1) = πt.
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Sequential Convex Programming Mechanism/Algorithm

• Step 1: if πt < aTt p
t−1, x̄t = 0, bt = bt−1 and pt = pt−1; otherwise go to Step 2;

• Step2: Solve

eT∇U(ez − atqt − bt−1) = 1

and let z̄t be the root. If πt > aTt ∇U(ey − atqt − bt−1), x̄t = qt, b
t = bt−1 + atqt and

pt = ∇U(ez̄t − bt); otherwise go to Step 3;

• Step 3: Solve for (z̄t, x̄t) from

eT∇U(ez − atxt − bt−1) = 1 and aTt ∇U(ez − atxt − bt−1) = πt.

Let bt = bt−1 + atx̄t and pt = ∇U(ez̄t − bt).
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Sequential Convex Programming Mechanism Example

Consider the five teams playing for the world cup. Let the vaule function U(s) =
∑

i u(si) and

u(si) = 0.2 · log(si); and the first bid comes as

π1 = 0.75, a1 = (1; 1; 0; 0; 0), and q1 = 2.5.

We see p0 = (1/5; 1/5; 1/5; 1/5; 1/5) and b0 = (1; 1; 1; 1; 1).

Step 1: aT1 p
0 = 0.4 < 0.75 = π1, so that we go to Step 2;

Step 2: We solve the equation

2
0.2

y − 3.5
+ 3

0.2

y − 1
= 1, ⇒ ȳ1 = 4.

But ∑
i

aitu
′(4− ait2.5− 1) =

0.2

0.5
+

0.2

0.5
= 0.8 > 0.75 = π1,

so that we go to Step 3;
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Step 3:We solve the two equations

2
0.2

y − x1 − 1
+ 3

0.2

y − 1
= 1 and 2

0.2

y − x1 − 1
= 0.75

so that the root ȳ1 = 17/5 and x̄1 = 28/15. Then

p1 = (3/8; 3/8; 1/12; 1/12; 1/12), and b1 = (43/15; 43/15; 1; 1; 1).

30



Yinyu Ye, MS&E, Stanford CERMICS Summer School #01

Market Scoring Rules and SCPM

Theorem 6 Every scoring rule has a concave and increasing value function representation in the Convex

Programming Mechanism/Regularization model. Conversely, every concave and increasing value function

induces a scoring rule that can be truthfully implemented. Furthermore, the properties of the value function

and its derivatives, such as boundedness, smoothness, span, etc, determine other desired or undesired

properties of the mechanism, such as the worst-case loss, properness, risk-attitude, etc.

• Exponential [Hanson, 2003]: u(si) = b · (1− exp(−si/b)), for some positive constant b.

• Logarithmic [Peters et al. 2007]: u(si) = b · log(si), for some positive constant b.

• Quadratic [Chen and Pennock 2007]:

u(si) =

 b · (1− (1− si/b)
2) 0 ≤ si ≤ b

b si ≥ b
for some positive constant b.
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General Offline and Online Resource Allocation Linear Programming

Now consider a more general resource allocation linear program:

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ bi, ∀i = 1, ...,m

0 ≤ xt ≤ 1, ∀t = 1, ..., n

Each order t requests up to one unit of a bundle of m goods, and is willing to pay πt for it.

In real applications, data/information is revealed sequentially, and one has to make decisions sequentially

based on what is known. That is, we only know b at the start, but

• the constraint matrix is revealed column by column sequentially along with the corresponding objective

coefficient.

• an irrevocable decision must be made as soon as an order arrives without observing or knowing the

future data.
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An Example

order 1(t = 1) order 2(t = 2) ..... Inventory(b)

Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100

Shoes 1 0 ... 50

T-shirts 0 1 ... 500

Jacket 0 0 ... 200

Socks 1 1 ... 1000
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Sequential Convex Programming Mechanism?

(SCPM): maximizext,s πtxt + u(s)

s.t. atxt + s = b−
∑t−1

j=1 aj x̄j ,

0 ≤ xt ≤ 1, s ≥ 0.∑t−1
j=1 aj x̄j : allocated resource vector before the new arrival.

Possible Concave Value Functions:

• Exponential: u(si) = b · (1− exp(−si/b)), for some positive constant b.

• Logarithmic: u(si) = b · log(si), for some positive constant b.

• Quadratic:

u(si) =

 b · (1− (1− si/b)
2) 0 ≤ si ≤ b

b si ≥ b
for some positive constant b.

Pros and Cons?
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More on the Online Linear Programming Model

Main Assumptions

• The columns at arrive in a random order.

• We know the total number of columns n a priori.

Other technical assumptions

• 0 ≤ ait ≤ 1, for all (i, t);

• πt ≥ 0 for all t

The algorithm/mechanism quality is evaluated on the expected performance over all the permutations

comparing to the offline optimal solution, i.e., an algorithm A is c-competitive if and only if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c ·OPT (A, π).
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Comments on the Online Model

• The online approach is distribution-free. It allows for great robustness in practical problems. If the

columns or arrivals are drawn i.i.d. from a certain distribution (either known or unknown to the

decision maker), then the first assumption is automatically met.

• The second assumption is necessary for one to obtain a near optimal solution. However, it can be

relaxed to an approximate knowledge of n or the length of decision horizon.

• Both assumptions are reasonable and standard in many operations research and computer science

applications.
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Main Theorems of Online Linear Programming Mechanism

Theorem 7 For any fixed 0 < ϵ < 1, there is no online algorithm for solving the linear program with

competitive ratio 1− ϵ if

B <
log(m)

ϵ2
.

Theorem 8 For any fixed 0 < ϵ < 1, there is a 1− ϵ competitive online algorithm for solving the linear

program if

B ≥ Ω

(
m log (n/ϵ)

ϵ2

)
.

Agrawal, Wang and Y [Operations Research 2014]
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Comments on the Main Theorems

• The condition of B to hold the main result is independent of the size of OPT (A, π) or the objective

coefficients, and is also independent of any possible distribution of input data. Therefore, it’s

checkable.

• The condition on sample size 1/ϵ2 is necessary as it is common in many learning-based algorithm.

• The condition is proportional only to log(n) so that it is way below to satisfy everyone’s demand.
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Key Ideas to Prove Negative Result

• Consider m = 1 and inventory level B, one can construct an instance where OPT = B, and there

will be a loss of
√
B with a high probability, which give an approximation ratio 1− 1√

B
.

• Consider general m and inventory level B for each good. We are able to construct an instance to

decompose the problem into log(m) separable problems, each of which has an inventory level

B/ log(m) on a composite “single good” and OPT = B/ log(m).

• Then, with hight probability each “single good” case has a loss of
√
B/ log(m) and the total loss of√

B · log(m). Thus, approximation ratio is at best 1−
√

log(m)√
B

.

39



Yinyu Ye, MS&E, Stanford CERMICS Summer School #01

Key Ideas to Prove Positive Result

The proof of the positive result is constructive and based on a learning policy.

• There is no distribution known so that any type of stochastic optimization models is not applicable.

• Unlike dynamic programming, the decision maker does not have full information/data so that a

backward recursion can not be carried out to find an optimal sequential decision policy.

• Thus, the online algorithm needs to be learning-based, in particular, learning-while-doing.

But what to lean?
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Itemized Pricing Method

The problem would be easy if there is an ”ideal price” vector:

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b) p∗

Bid(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100 $45

Shoes 1 0 ... 50 $45

T-shirts 0 1 ... 500 $10

Jackets 0 0 ... 200 $55

Hats 1 1 ... 1000 $15
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One-Time Learning Algorithm

We start with a simple

• Set xt = 0 for all 1 ≤ t ≤ ϵn;

• Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 πtxt

subject to
∑ϵn

t=1 aitxt ≤ (1− ϵ)ϵbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂;

• Determine the future allocation xt as:

xt =

 0 if πt ≤ p̂Tat

1 if πt > p̂Tat

as long as aitxt ≤ bi −
∑t−1

j=1 aijxj for all i; otherwise, set xt = 0.
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One-Time Learning Algorithm Result

Theorem 9 For any fixed ϵ > 0, the one-time learning algorithm is (1− ϵ) competitive for solving the

linear program when

B ≥ Ω
(

m log (n/ϵ)
ϵ3

)
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Outline of the Proof

• With high probability, we clear the market;

• With high probability, the revenue is near-optimal if we include the initial ϵ portion revenue;

• With high probability, the first ϵ portion revenue, a learning cost, doesn’t contribute too much.

Then, we prove that the one-time learning algorithm is (1− ϵ) competitive under condition

B ≥ 6m log(n/ϵ)
ϵ3 .

But this is one ϵ factor higher than the lower bound...
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Dynamic Price Updating Algorithm

In the dynamic price learning algorithm, we update the price at time ϵn, 2ϵn, 4ϵn, ..., till 2kϵ ≥ 1.

At time ℓ ∈ {ϵn, 2ϵn, ...}, the price vector is the optimal dual solution to the following linear program:

maximizex
∑ℓ

t=1 πtxt

subject to
∑ℓ

t=1 aitxt ≤ (1− hℓ)
ℓ
nbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

where

hℓ = ϵ

√
n

ℓ
;

and this price vector is used to determine the allocation for the next immediate period.
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Dynamic Price Updating Algorithm

In the dynamic price updating algorithm, we update the price at time ϵn, 2ϵn, 4ϵn ... At time

ℓ ∈ {ϵn, 2ϵn, ...}, the price is the optimal dual solution to the following linear program:

maximizex
∑ℓ

t=1 πtxt

subject to
∑ℓ

t=1 aitxt ≤ (1− hℓ)
ℓ
nbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

where

hℓ = ϵ

√
n

ℓ

And this price is used to determine the allocation for the next immediate period.
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Geometric Pace/Grid of Price Updating
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Comments on Dynamic Learning Algorithm

• In the dynamic algorithm, we update the prices log2 (1/ϵ) times during the entire time horizon.

• The numbers hℓ play an important role in improving the condition on B in the main theorem. It

basically balances the probability that the inventory ever gets violated and the lost of revenue due to

the factor 1− hℓ.

• Choosing large hℓ (more conservative) at the beginning periods and smaller hℓ (more aggressive) at

the later periods, one can now control the loss of revenue by an ϵ order while the required size of B

can be weakened by an ϵ factor.
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Related Ongoing Work on Random-Permutation

Sufficient Condition Learning

Kleinberg [2005] B ≥ 1
ϵ2

, for m = 1 Dynamic

Devanur et al [2009] OPT ≥ m2 log(n)

ϵ3
One-time

Feldman et al [2010] B ≥ m logn
ϵ3

and OPT ≥ m logn
ϵ

One-time

Agrawal et al [2010] B ≥ m logn
ϵ2

or OPT ≥ m2 logn
ϵ2

Dynamic

Molinaro/Ravi [2013] B ≥ m2 logm
ϵ2

Dynamic

Kesselheim et al [2014] B ≥ logm
ϵ2

Dynamic*

Gupta/Molinaro [2014] B ≥ logm
ϵ2

Dynamic*

Agrawal/Devanur [2014] B ≥ logm
ϵ2

Dynamic*

Table 1: Comparison of several existing results
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Online Resource Allocation with Production Costs

One may consider more general resource allocation problems with production costs:

maximizex
∑n

j=1(πjxj −
∑

k cijkyijk)

s.t.
∑

k yijk = aijxj ; ∀i, j,∑
i,j yijk ≤ ck; ∀k,

0 ≤ xj ≤ 1, ∀ j = 1, ..., n;

where cijk is the cost allocate good/resource i, which is produced by producer k = 1, ...,K , to bidder j;

and ck is the production capacity of producer k.
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Price-Post Learning

• Selling a good in a fixed horizon T , and there is no salvage value for the remaining quantities after the

horizon.

• The production lead time is long so that the inventory B is fixed and can not be replenished during the

selling season.

• Demand arrives in a Poisson process, where the arrival rate λ(p) depends only on the instantaneous

price posted by the seller.

• Objective is to maximize the expected revenue.

Historically, researchers mostly consider the case where the demand function λ(p) is known.
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Unknown Demand Function: Parametric and Non-parametric Learning

In this case, the seller has to learn the demand function “on the fly”.

• Parametric learning approach is to make the demand function λ(p) satisfy a parametric family (e.g.,

λ(p) = b− ap or λ(p) = e−ap).

• In the parametric case, a dynamic programming with Bayesian update is usually considered.

• Sometimes the demand function doesn’t belong to any function form (or one doesn’t know which form

it belongs to), so that considering a wrong demand family may be costly.

• Non-parametric approach only poses few requirements on the demand function thus is very robust to

model uncertainty.

• In a non-parametric learning algorithm, more price experimentations have to be made and the

question is how to reduce the learning cost.
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Evaluation of the Learning Algorithm: Asymptotic Regret I

For any pricing policy/algorithm π, denote its expected revenue by Jπ(B, T ;λ). Also denote the optimal

expected revenue as J∗(B, T ;λ). Then, we consider the regret

Rπ(B, T ;λ) = 1− Jπ(B, T ;λ)

J∗(B, T ;λ)

Since no one knows which λ is realized, so we consider the worst regret

sup
λ∈Γ

Rπ(B, T ;λ)

where Γ is a general family of functions which we will define later.

• However it is still very hard to evaluate the regret for a low volume.

• Therefore we consider a high-volume regime where the inventory B, together with the demand rate λ,

grows proportionally (multiplied in an positive integer n) and consider the asymptotic behavior of

Rπ(n ·B, T ;n · λ).

• This type of evaluation criterion is widely adopted.
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Prior Best Results of Learning Algorithms

• For the parametric case, the best algorithm achieves a regret of O(n−1/3), while for the

non-parametric case, it achieves a regret of O(n−1/4) (By Besbes and Zeevi, 2009).

• There is a lower bound showing that no algorithm can do better than O(n−1/2), for both parametric

and non-parametric case.

• The algorithms for both cases use one-time learning, that is, learning first and doing second. In the

learning period, a number of prices are tested and the best one is selected to be implemented in the

doing period.

• As presented earlier, under the auction model, the best learning algorithm can achieve an asymptotic

regret of O(n−1/2).

Could we close the gaps?
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Assumptions on the Demand Function and Main Result

• λ(p) is bounded

• λ(p) (and r(p) = pλ(p)) is Lipschitz continuous. Also there exists an inverse demand function γ(λ)

that is also Lipschitz continuous.

• r(λ) = λγ(λ) is (strictly) concave

• r′′(λ) exists and r′′(λ) ≤ −α < 0 for a fixed positive number α.

Theorem 10 (Wang, Deng and Y 2014, Operations Research) Let the above assumptions hold. Then,

there exists an admissible pricing policy π, such that for all n ≥ 1,

sup
λ∈Γ

Rπδ
n (n ·B, T ;n · λ) ≤ C(log n)4.5 · n−1/2

for some constant C that only depends on Γ, B and T .
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Description of the Algorithm

The algorithm is a dynamic pricing algorithm, where we integrate the “learning” and “doing” periods.

Specifically, we

• Divide the time into geometric intervals

• Keep a shrinking admissible price range

• Perform and apply price experimentation in each time interval within the current price range

• Find the optimal price, update the price range for the next time interval

The key is to balance and interplay demand learning (exploration) and near-optimal pricing (exploitation).

Geometric Pace of Price Testing:
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Summary and Future Questions on OLP

• B = logm
ϵ2 is now a necessary and sufficient condition (differing by a constant factor).

• Thus, they are near-optimal online algorithms for a very general class of online linear programs.

• The algorithms are distribution-free and/or non-parametric, thereby robust to distribution/data

uncertainty.

• The dynamic learning has the feature of “learning-while-doing”, and is provably better than one-time

learning by a factor.

• Buy-and-sell or double market?

• Price-Posting multi-good model?

• Online Utility Formulation for Resource Allocation?
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