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Recall Conic LP

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ K,

where K is a closed and pointed convex cone.

Linear Programming (LP): c,ai,x ∈ Rn and K = Rn
+

Second-Order Cone Programming (SOCP): c,ai,x ∈ Rn and K = SOC = {x : x1 ≥ ∥x−1∥2}.

Semidefinite Programming (SDP): c,ai,x ∈ Sn and K = Sn
+

p-Order Cone Programming (POCP): c,ai,x ∈ Rn and K = POC = {x : x1 ≥ ∥x−1∥p}.

Here, x−1 is the vector (x2; ...;xn) ∈ Rn−1.
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Dual of Conic LP

The dual problem to

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ K.

is

(CLD) maximize bTy

subject to
∑m

i yiai + s = c, s ∈ K∗,

where y ∈ Rm, s is called the dual slack vector/matrix, and K∗ is the dual cone of K . The former is

called the primal problem, and the latter is called dual problem.

Theorem 1 The dual of the dual is the primal.
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CLP Duality Theorems

The weak duality theorem shows that a feasible solution to either problem yields a bound on the value of

the other problem. We call c • x− bTy the duality gap.

Corollary 1 Let x∗ ∈ Fp and (y∗, s∗) ∈ Fd. Then, c • x∗ = bT y∗ implies that x∗ is optimal for

(CLP) and (y∗, s∗) is optimal for (CLD).

Is the reverse also true? That is, given x∗ optimal for (CLP), then there is (y∗, s∗) feasible for (CLD) and

c • x∗ = bTy∗?

This is called the Strong Duality Theorem.

“True” when K = Rn
+, that is, the polyhedral cone case, but it may fail in general.
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SDP Example with a Duality Gap

c =


0 1 0

1 0 0

0 0 0

 ,a1 =


0 0 0

0 1 0

0 0 0

 ,a2 =


0 −1 0

−1 0 0

0 0 2


and

b =

 0

10

 .
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When Strong Duality Theorems Holds for CLP

Theorem 2 (Strong duality theorem) Let Fp and Fd be non-empty and at least one of them has an

interior. Then, x∗ is optimal for (CLP) and (y∗, s∗) is optimal for (CLD) if any only if

c • x∗ = bTy∗.

Theorem 3 (CLP duality theorem) If one of (CLP) or (CLD) is unbounded then the other has no feasible

solution.

If (CLP) and (CLD) are both feasible, then both have bounded optimal objective values and the optimal

objective values may have a duality gap.

If one of (CLP) or (CLD) has a strictly or interior feasible solution and it has an optimal solution, then the

other is feasible and has an optimal solution with the same optimal value.
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Optimality Conditions for SDP

c •X − bTy = 0

AX = b

−ATy − S = −c

X,S ≽ 0

, (1)

or

XS = 0

AX = b

−ATy − S = −c

X,S ≽ 0

(2)

Here

Ax = (a1 • x; ...;am • x) ∈ Rm and ATy =
m∑
i

yiai.
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Sensor Network Localization

Given ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj , ∀ (k, j) ∈ Na,

(ij) ((kj)) connects points xi and xj (or ak and xj ) with an edge whose Euclidean length is dij (or

d̂kj ).

Does the system have a localization or realization of all xj ’s? Is the localization unique? Is there a

certification for the solution to make it reliable or trustworthy? Is the system partially localizable with

certification?

The SNL problem is closely related to Data Dimension Reduction, Molecular Confirmation, Graph

Realization/Embedding, etc.. and it is one of the major topics in Dada Sciences.
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Figure 1: 50-node 2-D Sensor Localization
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Figure 2: A 3-D Tensegrity Graph Realization; provided by Anstreicher
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Figure 3: Tensegrity Graph: A Needle Tower; provided by Anstreicher

11



Yinyu Ye, MS&E, Stanford CERMICS Summer School #02

Figure 4: Molecular Conformation: 1F39(1534 atoms) with 85% of distances below 6rA and 10% noise on

upper and lower bounds
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Figure 5: Dimension Reduction: Unfolding Scroll of Happiness
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Variable Matrix Representation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined and ej be the vector of all zero

except 1 at the jth position. Then

xi − xj = X(ei − ej) and ak − xj = [I X](ak;−ej);

d2ij = ∥xi − xj∥2 = (ei − ej)
TXTX(ei − ej),

d̂2kj = ∥ak − xj∥2 = (ak;−ej)
T [I X]T [I X](ak;−ej)

= (ak;−ej)
T

(
I X

XT XTX

)
(ak;−ej).

Or, equivalently,

(ei − ej)
TY (ei − ej) = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T

(
I X

XT Y

)
(ak;−ej) = d̂2kj , ∀ k, j ∈ Na,

Y = XTX.
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SDP Relaxation and SDP Standard Form

Relax Y = XTX to Y ≽ XTX. The matrix inequality is equivalent to

Z :=

 I X

XT Y

 ≽ 0.

Matrix Z has rank at least d; if it’s d, then Y = XTX , and the converse is also true.

The SDP relaxation becomes: Find a symmetric matrix Z ∈ R(d+n)×(d+n) such that

Z1:d,1:d = I

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d̂2kj , ∀ k, j ∈ Na,

Z ≽ 0.

If every sensor point is connected, directly or indirectly, to an anchor point, then the solution set must be

bounded.

15



Yinyu Ye, MS&E, Stanford CERMICS Summer School #02

Sensor Localization SDP Relaxation in 2D

(1; 0;0)(1; 0;0)T • Z = 1, (w1)

(0; 1;0)(0; 1;0)T • Z = 1, (w2)

(1; 1;0)(1; 1;0)T • Z = 2, (w3)

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j, (wij)

(ak;−ej)(ak;−ej)
T • Z = d̂2kj , ∀ k, j ∈ Na, (ŵkj)

Z ≽ 0.

Z̄ =

 I X̄

X̄T X̄T X̄

 = (I, X̄)T (I, X̄) ∈ Sn+2

is a feasible rank-2 solution for the relaxation, where X̄ = [x̄1 x̄2 ... x̄n] and x̄j is the true location of

sensor j (if the distance measurements are accurate).
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The Dual of the SDP Relaxation in 2D

min w1 + w2 + 2w3 +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

ŵkj d̂
2
kj

s.t. w1(1; 0;0)(1; 0;0)
T + w2(0; 1;0)(0; 1;0)

T + w3(1; 1;0)(1; 1;0)
T+∑

i<j∈Nx
wij(0; ei − ej)(0; ei − ej)

T +
∑

k,j∈Na
ŵkj(ak;−ej)(ak;−ej)

T ≽ 0

Variable ŵkj represent internal/tensional force on edge ij; and dual objective can be interpreted as the

potential energy of the network.

The left-hand matrix, also in Sn+2, is called the stress matrix.

Since the primal is feasible, the minimal value of the dual is not less than 0. Note that all 0 is an minimal

solution for the dual. Thus, there is no duality gap.

Is a non-trivial optimal dual solution attainable?
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Duality Theorem for SNL

Theorem 4 Let Z̄ be a feasible solution for SDP and Ū be an optimal stress matrix of the dual. Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;

2. Rank(Z̄) + Rank(Ū) ≤ 2 + n;

3. Rank(Z̄) ≥ 2 and Rank(Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 2 If an optimal dual stress matrix has rank n, then every solution of the SDP has rank 2, that is,

the SDP relaxation solves the original problem exactly. Such a sensor network with distance information is

called Strongly Localizable (SL).

Physical interpretation: All stresses or internal forces are balanced at every sensor point.
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Theoretical Analyses on Sensor Network Localization

A sensor network is 2-Universally-Localizable (UL), weaker than SL, if there is a unique localization in R2

and there is no xj ∈ Rh, j = 1, ..., n, where h > 2, such that

∥xi − xj∥2 = d2ij , ∀ i, j ∈ Nx, i < j,

∥(ak;0)− xj∥2 = d̂2kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space where anchor points are

simply augmented to (ak;0) ∈ Rh, k = 1, ...,m.
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Figure 6: One sensor-Two anchors: Not localizable
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Figure 7: Two sensor-Three anchors: Strongly Localizable
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Figure 8: Two sensor-Three anchors: Localizable but not Strongly
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Figure 9: Two sensor-Three anchors: Not Localizable
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Figure 10: Two sensor-Three anchors: Strongly Localizable
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UL Problems can be Localized by the SDP Relaxation

Theorem 5 The following statements are equivalent:

1. The sensor network is 2-universally-localizable;

2. The max-rank solution of the SDP relaxation has rank 2;

3. The solution matrix has Y = XTX or Tr(Y −XTX) = 0 .

For the following SNL problems:

• If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg

1942);

• there is a sensor network (trilateral graph), with only O(n) edge lengths specified, that is

2-universally-localizable (So 2007);

• if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is

2-strongly-localizable (one of problems in HW2).
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Universally-Localizable Problems (ULP)

Theorem 6 The following SNL problems are Universally-Localizable:

• If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg

1942).

• There is a sensor network (trilateral graph), with O(n) edge lengths specified, that is

2-universally-localizable (So 2007).

• If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is

2-universally-localizable (So and Y 2005).
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ULPs can be localized in polynomial time

Theorem 7 (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2-universally-localizable;

2. The max-rank solution of the SDP relaxation has rank 2;

3. The solution matrix has Y = XTX or Tr(Y −XTX) = 0 .

When an optimal dual (stress) slack matrix has rank n, then the problem is 2-strongly-localizable-problem

(SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is

2-strongly-localizable.
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One sensor and three anchors

Find x1 ∈ R2 such that

∥ak − x1∥2 = d̂2kj , for k = 1, 2, 3,

Let x̄1 be the true position of the sensor.
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SDP Standard Form

(1; 0; 0)(1; 0; 0)T • Z = 1,

(0; 1; 0)(0; 1; 0)T • Z = 1,

(1; 1; 0)(1; 1; 0)T • Z = 2,

(ak;−1)(ak;−1)T • Z = d̂2k1, for k = 1, 2, 3,

Z ≽ 0.

Z̄ =

 I x̄1

x̄T
1 x̄T

1 x̄1

 = (I, x̄1)
T (I, x̄1)

is a feasible rank-2 solution for the relaxation.
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The dual slack matrix

 (
w1 + w3 w3

w3 w2 + w3

) +
∑3

k=1 ŵk1aka
T
k −

∑3
k=1 ŵk1ak

−(
∑3

k=1 ŵk1ak)
T ŵ11 + ŵ21 + ŵ31

 ≽ 0.

Does an optimal slack matrix U have rank 1 with

w1 + w2 + 2w3 +
3∑

k=1

ŵk1d̂
2
k1 = 0?
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An optimal dual slack matrix

If we choose w•’s such that

Ū = (−x̄1; 1)(−x̄1; 1)
T ,

then, Ū ≽ 0 and Ū • X̄ = 0 so that Ū is an optimal slack matrix for the dual and its rank is 1.
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How to select w’s

We only need to consider choosing ŵ’s:∑3
k=1 ŵk1ak = x̄1

ŵ11 + ŵ21 + ŵ31 = 1.
or

∑3
k=1 ŵk1(ak − x̄1) = 0

ŵ11 + ŵ21 + ŵ31 = 1.

This system always has a solution if ak is not co-linear.

Then, select  w1 + w3 w3

w3 w2 + w3

 = x̄1x̄
T
1 −

3∑
k=1

ŵk1aka
T
k
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Other Conditions?

Even if ak is co-linear, the system ∑3
k=1 ŵk1(ak − x̄1) = 0

ŵ11 + ŵ21 + ŵ31 = 1

may still have a solution w•?

Physical interpretation: ŵkj is a stress/force on the edge and all stresses are balanced or at an

equilibrium state. The objective represents the potential of the system.
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Proof of Theorem 3

If the primal feasible matrix generated from the interior-point algorithm has rank 2, that is, Ȳ = X̄T X̄ or

the trace of Ȳ = X̄T X̄ equal 0, then the feasible solution for the original problem is unique.

We now prove it’s unique. First, every feasible matrix has rank at least 2 since Y ≽ XTX .

Second, since the matrix solution computed from the interior-point algorithm has the maximal rank and it is

2, we conclude that every feasible matrix has rank exact 2.

Suppose that the system has two rank-2 feasible matrices:

Z1 =

 I X1

XT
1 XT

1 X1

 and Z2 =

 I X2

XT
2 XT

2 X2


Consider Z = αZ1 + βZ2, where α+ β = 1 and α, β > 0. Then Z is a feasible solution and its rank

must be 2.
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Z =

 I αX1 + βX2

αXT
1 + βXT

2 αXT
1 X1 + βXT

2 X2

 =

 I αX1 + βX2

αXT
1 + βXT

2 (αX1 + βX2)
T (αX1 + βX2)


Thus,

0 = αXT
1 X1 + βXT

2 X2 − (αX1 + βX2)
T (αX1 + βX2) =

αβ(X1 −X2)
T (X1 −X2)

or

∥X1 −X2∥ = 0.
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Localize All Localizable Points

Theorem 8 (So and Y 2005) If a problem (graph) contains a subproblem (subgraph) that is

universally-localizable, then the submatrix solution corresponding to the subproblem in the SDP solution

has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown

sensor points.

The proof is similar to the proof of Theorem 3 by removing the notes that is not localizable.

Implication: Diagonals of “co-variance” matrix

Ȳ − X̄T X̄,

Ȳjj − ∥x̄j∥2, can be used as a measure to see whether jth sensor’s estimated position is reliable or not.
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Uncertainty Analysis and Confidence Measure

Alternatively, each xj ’s can be viewed as uncertain points from the incomplete/uncertain distance

measures. Then the solution to the SDP problem provides the first and second moment estimation

(Bertsimas and Y 1998).

Generally, x̄j is a point estimate of xj and Ȳij is a point estimate xT
i xj .

Consequently,

Ȳjj − ∥x̄j∥2,

which is the individual variance estimation of sensor j, gives an interval estimation for its true position

(Biswas and Y 2004).
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Generically Universally-Localizability (GUL)

• The 2-universally-localizability depends on graph combinatorics as well as distance measurements

dij .

• Is there a sparse graph that is generically 2-universally-localizable (GUL), that is, it depends on the

graph combinatorics but independent of distance measurements?

Theorem 9 (So 2007, Zhu, So and Y 2009)

• A graph is generically 2-universally-localizable if it contains a spanning subgraph that is generically

2-universally-localizable.

• The union of two generically 2-universally-localizable graphs connected with at least 3 nodes is

generically 2-universally-localizable.

• The spanning d-trilateration graph in dimension d is generically d-universally-localizable.

• The information-theoretical complexity of the spanning d-trilateration graph is near-optimal with only

(d+ 1) · n distance measurements, where the freedom dimension of the problem is d · n.
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2-Trilateration Graph

Let n ≥ 1 be integers with n ≥ 3. An n–node graph G = (V,E) is called a 2-trilateration graph if there

exists an ordering {1, 2, . . . , n} of the notes in V (called trilateration ordering) such that (i) the first 3

notes form a complete graph, and (ii) every vertex j ≥ 4 is connected to at least 3 of the nodes from

1, 2, . . . , j − 1.

4
6

.....

5

21

3
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More Localizability of Trilateration Graphs

Theorem 10 The spanning d-trilateration graph in dimension d is d-strongly-localizable if and only if the

nodes are in general positions.

Note the difference between “generic” and “general”.
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Objective Regularization for Low-rank SNL

One typically maximizes or minimizes the the trace of Z :

Maximize I • Z
Subject to (1; 0;0)(1; 0;0)T • Z = 1,

(0; 1;0)(0; 1;0)T • Z = 1,

(1; 1;0)(1; 1;0)T • Z = 2,

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d2kj , ∀ k, j ∈ Na,

Z ≽ 0.
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Tensegrity (Tensional-Integrity) Objective for SNL: a 1D problem

Anchor-free SNL:

(ei − ej)(ei − ej)
T • Y = d2ij , ∀ (i, j) ∈ E, i < j,

Y ≽ 0.

For certain graphs, to select a subset edges to maximize and/or a subset of edges to minimize is

guaranteed to finding the lowest rank SDP solution – Tensegrity Method.

To Maximize
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The Chain Graph Example

Consider:

max e3e3 • Y
s.t. e1e

T
1 • Y = 1,

(e1 − e2)(e1 − e2)
T • Y = 1,

(e2 − e3)(e2 − e3)
T • Y = 1,

Y ≽ 0 ∈ M3,

The dual is

min y1 + y2 + y3

s.t. y1e1e
T
1 + y2(e1 − e2)(e1 − e2)

T + y3(e2 − e3)(e2 − e3)
T − S = e3e3,

S ≽ 0 ∈ M3,
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Interpretation of the Dual

What’s the interpretation of the dual? What’s the interpretation of complementarity?

Dual variables are stresses (internal-forces) on edges, and the objective is the total potential of the graph.

At the optimal solution, stresses reach an equilibrium or balanced state with an external force added at

node 3.

(1; 2; 3)(1; 2; 3)T • S = 0 implies S(1; 2; 3) = 0;

or (
3e1e

T
1 + 3(e1 − e2)(e1 − e2)

T + 3(e2 − e3)(e2 − e3)
T − e3e3

)
(1; 2; 3) = 0,

that is,

3e1 − 3(e1 − e2)− 3(e2 − e3) = 3e3.
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Rank of the Dual Slack Matrix: Strongly Localizability

X = (1, 2, 3)(1, 2, 3)T , and e3e3 •X = 9.

The dual slack matrix

S =


y1 + y2 −y2 0

−y2 y2 + y3 −y3

0 −y3 y3 − 1

 ,

where (y1 = 3, y2 = 3, y3 = 3) make the dual slack matrix

S =


6 −3 0

−3 6 −3

0 −3 2

 .

The rank of the matrix is 2, indicating the max-rank primal solution matrix is 1.
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A More Complicated Example

8 1

2

3

45

6

7

Figure 11: Maximization of non-edge (1, 4) will work
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Extension to d-Triangulation Graph, Davood et al. 2011

4
6

.....

5

21

3

Figure 12: Maximization of the sum of diagonal non-edges
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SDP Solution Post Rank Reduction: A Practical Method

• When measurement noises exist, the SDP solution almost always has a high rank. How to round the

high-rank solution into a low rank?

• Gradient-based local search: using the SDP solution projection as the initial point, apply the steepest

descent method to further minimize∑
(i,j)∈Nx

(∥xi − xj∥2 − d2ij)
2 +

∑
(k,j)∈Na

(∥ak − xj∥2 − d2kj)
2
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Gradient Search Trajectories: an Example
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SDP/Gradient Search: Start from the SDP solution
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No-SDP/Gradient Search: Start from a Random Point
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Large Scale Problems: Distributed Computation

1. Partition the anchors into a number of clusters according to their geographical positions or connectivity.

2. Assign un-positioned sensors to clusters. Note that a sensor may be assigned into multiple clusters

and some sensors are not assigned into any cluster.

3. For each cluster of anchors and unknown sensors, formulate the error minimization problem for that

cluster, and solve the resulting SDP model if the number of anchors is more than 2.

4. After solving each SDP model, check the individual trace for each unknown sensor in the model. If it is

below a predetermined small tolerance, label the sensor as positioned and its estimation x̄j becomes

an “ anchor”.

5. Consider positioned sensors as anchors and return to Step 1 to start the next round of estimation.
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A distributed example: Step 1
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A distributed example: Step 2
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A distributed example: Step 4
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Some Ongoing Work on SNL

• Other measurements could be distance intervals, absolute angles, relative angles, path-distances, etc

(Biswas 2007).

• Other Problems: Localization based on Time-Series Data Measurement, Structural Knowledges

(nodes on a sphere), etc.

• More systematic objective regularizations?

• More theorems on UL and SL?

• More low-rank SDP applications.
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