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Recall the Lagrangian Functions

We consider

f∗ := min f(x) s.t. h(x) = 0, x ∈ X. (1)

Recall that the Lagrangian function:

L(x,y) = f(x)− yTh(x).

and the dual function:

ϕ(y) = min
x∈X

L(x,y); (2)

and the dual problem

(f∗ ≥)ϕ∗ := max ϕ(y). (3)

In many cases, one can find y∗ of dual problem (3), a unconstrained optimization problem; then go ahead

to find x∗ using (2).
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The Gradient and Hessian of ϕ

Let x(y) be a minimizer of (2). Then

ϕ(y) = f(x(y))− yTh(x(y))

Thus,

∇ϕ(y) = ∇f(x(y))T∇x(y)− yT∇h(x(y))∇x(y)− h(x(y))

= (∇f(x(y))T − yT∇h(x(y)))∇x(y)− h(x(y))

= −h(x(y)).
Similarly, we can derive

∇2ϕ(y) = −∇h(x(y))
(
∇2

xL(x(y),y)
)−1∇h(x(y))T ,

where∇2
xL(x(y),y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.
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The Toy Example

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 = 0, 2x1 + x2 − 1 = 0.

L(x,y) = (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1).

x1 = 0.5y1 + y2 + 1, x2 = y1 + 0.5y2 + 1.

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.

∇ϕ(y) =

 2.5y1 + 2y2 + 2

2y1 + 2.5y21 + 2

 ,

∇2ϕ(y) = −

 1 2

2 1

 2 0

0 2

−1  1 2

2 1

T

= −

 2.5 2

2 2.5
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The Augmented Lagrangian Function

In both theory and practice, we actually consider an Augmented Lagrangian function (ALF)

LA(x,y) = f(x)− yTh(x) +
β

2
∥h(x)∥2,

which corresponds to an equivalent problem of (1):

f∗ := min f(x) + β
2 ∥h(x)∥

2 s.t. h(x) = 0, x ∈ X.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve

strict convexity of the Lagrangian function.
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The Augmented Lagrangian Dual

Now the dual function:

ϕA(y) = min
x∈X

LA(x,y); (4)

and the dual problem

(f∗ ≥)ϕ∗
A := max ϕA(y). (5)

Note that the dual function satisfies 1
β -Lipschitz condition (see Chapter 14 of L&Y).

For the convex optimization case,

h(x) = Ax− b

we have

∇2LA(x,y) = ∇2f(x) + β(ATA).
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The Augmented Lagrangian Method

Augmented Lagrangian Method (ALM):

Start from any (x0 ∈ X,y0), we compute a new iterate pair

xk+1 = arg min
x∈X

LA(x,y
k), then yk+1 = yk − βh(xk+1).

The calculation of x is used to compute the gradient vector of ϕA(y), which is a steepest ascent

direction.

The method converges just like the Steepest Descent Method (SDM), because the dual function satisfies
1
β -Lipschitz condition.

Other SDM strategies may be adapted to update y (the Accelerated SDM, Conjugate, Quasi-Newton ...).
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Analysis of the Augmented Lagrangian Method

Consider the convex optimization case h(x) = Ax− b. Since xk+1 makes KKT condition:

0 = ∇f(xk+1)−ATyk + βAT (Axk+1 − b)

= ∇f(xk+1)−AT (yk − β(Axk+1 − b))

= ∇f(xk+1)−ATyk+1,

we only need to be concerned about whether or not ∥Axk − b∥ converges to zero and how fast it

converges. First, from the convexity of f(x), we have

0 ≤ (∇f(xk+1)−∇f(xk))T (xk+1 − xk)

= (−ATyk+1 +ATyk)T (xk+1 − xk)

= (yk+1 − yk)T (Axk+1 −Axk)

= −β(Axk+1 − b)(Axk+1 − b− (Axk − b)),

which implies that ∥Axk+1 − b∥ ≤ ∥Axk − b∥, that is, the error is non-increasing.
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Again, from the convexity, we have

0 ≤ (∇f(xk+1)−∇f(x∗))T (xk+1 − x∗)

= (ATyk+1 −ATy∗)T (xk+1 − x∗)

= (yk+1 − y∗)T (Axk+1 −Ax∗) = (yk+1 − y∗)T (Axk+1 − b)

= 1
β (y

k+1 − y∗)T (yk − yk+1).

Thus, from the positivity of the cross product, we have

∥yk − y∗∥2 = ∥yk − yk+1 + yk+1 − y∗∥2

≥ ∥yk − yk+1∥2 + ∥yk+1 − y∗∥2

= β∥Axk+1 − b∥2 + ∥yk+1 − y∗∥2.

Sum up from 0 to k of the inequality we have

∥y0 − y∗∥2 ≥ ∥yk+1 − y∗∥2 + β
∑k

l=0 ∥Axl+1 − b∥2

≥ β
∑k

l=0 ∥Axl+1 − b∥2

≥ (k + 1)β∥Axk+1 − b∥2.
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The Alternating Direction Method with Multipliers

For the ADMM method, we consider structured problem

min f1(x1) + f2(x2) s.t. A1x1 +A2x2 = b, x1 ∈ X1,x2 ∈ X2 (6)

where f1(x1) and f2(x2) are convex closed proper functions, and X1 and X2 are convex sets.

Original ADMM (Glowinski & Marrocco ’75, Gabay & Mercier ’76):
xk+1
1 = argmin{LA(x1,x

k
2 ,y

k) |x1 ∈ X1},

xk+1
2 = argmin{LA(x

k+1
1 ,x2,y

k) |x2 ∈ X2},

yk+1 = yk − β(A1x
k+1
1 +A2x

k+1
2 − b).

where theAugmented Lagrangian function LA again is

LA(x1,x2,y) =

2∑
i=1

fi(xi)− yT
( 2∑
i=1

Aixi − b
)
+

β

2

∥∥ 2∑
i=1

Aixi − b
∥∥2

.

Again, one can prove that the iterates converge with the same speed.
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Direct Application of ADMM to Dual Linear Programming I

Consider the dual LP

maximize(y,s) bTy

s.t. ATy + s = c, s ≥ 0.

The augmented Lagrangian function would be

LA(y, s,x) = −bTy − xT (ATy + s− c) +
β

2
∥ATy + s− c∥2,

where β is a positive parameter, and x is the multiplier vector.
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Direct Application of ADMM to Dual Linear Programming II

The ADMM for the dual is straightforward: starting from any y0, s0 ≥ 0, and multiplier x0,

• Update variable y:

yk+1 = argmin
y

L(y, sk,xk);

• Update slack variable s:

sk+1 = argmin
s≥0

L(yk+1, s,xk);

• Update multipliers x:

xk+1 = xk − β(ATyk+1 + sk+1 − c).

Note that the updates of y is a least-squares problem with constant matrix, and the update of s has a

simple close form. (Also note that x would be non-positive at the end, since we changed maximization to

minimization of the dual.)

To split y into multi blocks and update cyclically in random order?
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The ADMM with Three Blocks?

The ADMM method resembles the Block Coordinate Descent (BCD) Method – What about ADMM for

min f1(x1) + f2(x2) + f3(x3) s.t. A1x1 +A2x2 +A3x3 = b,

where the augmented Lagrangian function

LA(x1,x2,x3,y) = f1(x1) + f2(x2) + f3(x3)− yT (A1x1 +A2x2 +A3x3 − b)

+β
2 ∥A1x1 +A2x2 +A3x3 − b∥2.

Then, for any given (xk
1 ,x

k
2 ,x

k
3 ,y

k), the direct extension of ADMM would do

xk+1
1 = argminx1 LA(x1,x

k
2 ,x

k
3 ,y

k),

xk+1
2 = argminx2 LA(x

k+1
1 ,x2,x

k
3 ,y

k),

xk+1
3 = argminx3 LA(x

k+1
1 ,xk+1

2 ,x3,y
k),

yk+1 = yk − β(A1x
k+1 +A2x

k+1
2 +A3x

k+1
3 − b).
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Does it Converge?

Not easy to analyze the convergence: the operator theory for the ADMM cannot be directly extended to the

ADMM with three blocks, since the proof for two blocks breaks down for three blocks.

Existing results for convergence:

• Strong convexity; plus carefully select β in a specific range.

• Other restricted conditions on the problem, and take a sufficiently smaller step-size factor 1 > γ > 0

in dual update

yk+1 = yk − γβ(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b).

• Various post correction steps, which are costly.

But, these did not answer the open question whether or not the direct extension of multi-block ADMM

converges under the original simple convexity assumption.
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Divergent Example of the Extended ADMM I

We have recently resolved this long-standing question:

Theorem 1 There existing an example where the direct extension of ADMM of three blocks is not

necessarily convergent for any choice of β. Moreover, for any randomly generated initial point, ADMM

diverges with probability one.

Consider the system of homogeneous linear equations with three block where each block has a single

variable with unique solution x∗ = 0:

A1x1 +A2x2 +A3x3 = 0, where A = (A1, A2, A3) =


1 1 1

1 1 2

1 2 2

 .
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Divergent Example of the Extended ADMM II

The ADMM with β = 1 is a linear matrix mapping

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1



 xk+1

yk+1

 =



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



 xk

yk

 .

which can be reduced to 
xk+1
2

xk+1
3

yk+1

 = M


xk
2

xk
3

yk

 ,
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where

M =
1

162



144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88


.

The matrix M = VDiag(d)V−1 has d =



0.9836 + 0.2984i

0.9836− 0.2984i

0.8744 + 0.2310i

0.8744− 0.2310i

0


. Note that ρ(M) = |d1| = |d2| > 1.

which implies that the mapping is not a contraction.

Chen, He, Y, and Yuan [Math Programming 2016]
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Residuals vs Iteration Counts

18



Yinyu Ye, MS&E, Stanford CERMICS Summer School #04

Does Strong Convexity Help?

Consider the following example

min 0.05x2
1 + 0.05x2

2 + 0.05x2
3

s.t.


1 1 1

1 1 2

1 2 2




x1

x2

x3

 = 0.

• Then, the linear mapping matrix M in the extended ADMM (β = 1) has ρ(M) = 1.0087 > 1

• Therefore the directly extended ADMM still diverges

• Even for strongly convex programming, the extended ADMM is not necessarily convergent for β > 0

in a certain range.
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Does the Small-Stepsize Help?

Recall that, In the small stepsized ADMM, the Lagrangian multiplier is updated by

yk+1 := yk − γβ(A1x
k+1
1 +A2x

k+1
2 + . . .+A3x

k+1
3 ).

Convergence is proved:

• One block (Augmented Lagrangian Method): γ ∈ (0, 2), (Hestenes ’69, Powell ’69).

• Two blocks (Alternating Direction Method of Multipliers: γ ∈ (0, 1+
√
5

2
), (Glowinski, ’84).

• Three blocks: for γ sufficiently small provided additional conditions on the problem, (Hong & Luo ’12).

Question: Is there a problem-data-independent γ such that the method converges?

20



Yinyu Ye, MS&E, Stanford CERMICS Summer School #04

A Numerical Study

For any given γ > 0, consider the linear system
1 1 1

1 1 1 + γ

1 1 + γ 1 + γ




x1

x2

x3

 = 0.

γ 1 0.1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7

ρ(M) 1.0278 1.0026 1.0001 > 1 > 1 > 1 > 1 > 1

Table 1: The radius of M

Thus, there is no practical problem-data-independent γ such that the small-stepsize ADMM variant works.
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How to Make it Converge?

• There are many complicated correction method in the ADMM-type method, but ...

• Question: Is there a ”simple correction” of the ADMM for the multi-block convex minimization

problems?

Random-Permuted ADMM (RP-ADMM) for 3 blocks: in each round, draw a random permutation

σ = (σ(1), σ(2), σ(3)) of {1, 2, 3}, and

Update xσ(1) → xσ(2) → xσ(n) → y.

(This is the block sample without replacement, and there are total 6 different orderings.)

• Interpretation: Force “absolute fairness” among blocks, and make the mapping matrix more symmetric.

• Computations indicate it always works!
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The Diverging Example with Random Permutation
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Any Theory Behind the Success?

minx∈RN f1(x1) + . . .+ fn(xn),

s.t. Ax := A1x1 + · · ·+Anxn = b,

xi ∈ Xi ⊂ Rdi , i = 1, . . . , n.

(7)

LA(x1, . . . ,xn;y) =
∑
i

fi(xi)− yT (
∑
i

Aixi − b) +
β

2
∥
∑
i

Aixi − b∥2

The Randomly Permuted Cyclic Extension Multi-block ADMM update in each round with a randomly

permuted order σ = (σ(1), . . . , σ(n)) of {1, . . . , n}

xσ(1) ←− argminx1∈X1 LA(x1, . . . ,xn;y),

. . .

xσ(n) ←− argminxn∈Xn LA(x1, . . . ,xn;y),

y←− y − β(Ax− b),
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Random Permuted ADMM for Linear Systems

Consider solving a nonsingular square system of linear equations (fi = 0, ∀i).

minx∈RN 0,

s.t. A1x1 + · · ·+Anxn = b,

RP-ADMM generates zk = (xk;yk), an r.v., depending on

ξk = (σ1, . . . , σk), zi = Mσiz
i−1, i = 1, ..., k,

where σi is the random permutation at the i-th round.

Denote the expected iterate ϕk := Eξk
[zk]

Theorem 2 (Sun et al. [2016]) The expected output converges to the unique solution of the linear system

equations any number of variables N ≥ 1 and any block number N ≥ n ≥ 1.

Remark: Expected convergence ̸= convergence, but is a strong evidence for convergence for solving

most problems, e.g., when iterates are bounded.
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The Average Mapping is a Contraction

• The update equation of RP-ADMM is

zk+1 = Mσz
k,

where Mσ ∈ R2N×2N depend on σ.

• Define the expected update matrix as

M = Eσ[Mσ] =
1

n!

∑
σ

Mσ.

Theorem 3 (Sun et al. [2016]) The spectral radius of M , ρ(M), is strictly less than 1 for any integer

N ≥ 1 and any block number N ≥ n ≥ 1.

Remark: For A in the divergence example, ρ(Mσ) > 1 for any σ

– Averaging Helps, a Lot.
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Sketch of the Proof of Theorem 2

Theorem 3 implies Theorem 2 is relatively easy to show.

For simplicity consider n = 2. Each iteration is

either zk+1 = M1z
k or zk+1 = M2z

k.

Therefore

E(z1) = M1+M2

2 z0 = Mz0;

E(z2) = 1
4 (M

2
1 +M1M2 +M2M1 +M2

2 )z
0 = M2z0,

. . .

E(zk) = Mkz0.

Thus, ρ(M) < 1 implies convergence in expectation.
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Math Problem of Theorem 3

• Define

Q := E(L−1
σ ) =

1

n!

∑
σ

L−1
σ . (8)

• Example:

L(231) =


1 AT

1 A2 AT
1 A3

0 1 0

0 AT
3 A2 1

 .

• Need to prove that, for all A, ρ(M) < 1 where

M =

 I −QATA QAT

−A+AQATA I −AQAT

 .
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Difficulties of Proving Theorem 3

• Difficulty 1: Few tools deal with spectral radius of non-symmetric matrices.

– E.g. ρ(X + Y ) ≤ ρ(X) + ρ(Y ) and ρ(XY ) ≤ ρ(X)ρ(Y ) don’t hold.

– Though ρ(M) < ∥M∥, it turns out ∥M∥ > 2.3 for the counterexample.

• Difficulty 2: M is a complicated function of A.

– n = 3, let (ATA)k,l = bkl, then Q12 = − 1
2b12 +

1
6b13b23.

– n = 4, Q12 = − 1
2!b12 +

1
3! (b13b32 + b14b42)− 1

4! (b13b34b42 + b14b43b32).

• Solution: Symmetrization and Mathematical Induction.

29



Yinyu Ye, MS&E, Stanford CERMICS Summer School #04

Two Main Lemmas to Prove Theorem 3

• Step 1: Relate M to a symmetric matrix AQAT .

Lemma 1

y ∈ eig(M)⇐⇒ (1− y)2

1− 2y
∈ eig(AQAT ).

Since Q defined by Q def is symmetric, we have

ρ(M) < 1⇐⇒ eig(AQAT ) ⊆ (0,
4

3
).

• Step 2: Bound eigenvalues of AQAT - prove by induction.

Lemma 2

eig(AQAT ) ⊆ (0,
4

3
).

• Remark: 4/3 is “almost” tight; for n = 3, maximum≈ 1.18. Increase to 4/3 as n increases.
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RP-ADMM for Linear Constrained Convex QP

In general, consider a convex quadratic optimization problem

minx∈RN cT1 x1 + . . .+ cTnxn + 1
2x

TQx,

s.t. Ax := A1x1 + · · ·+Anxn = b.
(9)

Theorem 4 Under some technical assumptions, the expected output of randomly permuted ADMM

converges to the solution of the original problem for any integer N ≥ 1 and any block number

N ≥ n ≥ 1..

Key Observation: The objective function of the problem is not separable so that the traditional proof of

two-block ADMM does not work.

[Chen et al. 2018]
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V-Cycle or Double Sweep ADMM

It was proved that it converges for solving system of linear equations:

x1 ←− argminx1∈X1 LA(x1, . . . ,xn;y),
...

xn ←− argminxn∈Xn LA(x1, . . . ,xn;y),

xn−1 ←− argminx1∈X1 LA(x1, . . . ,xn;y),
...

x1 ←− argminxn∈Xn
LA(x1, . . . ,xn;y),

y←− y − β(Ax− b),
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Divergent Counter Example

33
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Solve Some Optimization Problems
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More Randomness: Randomly Assembled Cyclic ADMM (RAC-ADMM)

Add More Randomness: Randomly select variables in each block + Randomly permuting block order.

More precisely, in each ADMM step

• Randomly (without replacement) assemble primal variables into blocks xi, i = 1, ..., n.

• Then

x1 ←− argminx1∈X1 LA(x1, . . . ,xn;y),

. . .

xn ←− argminxn∈Xn LA(x1, . . . ,xn;y),

y←− y − β(Ax− b),

The idea originates from a randomized block coordinate descent (BCD) method from K. Mihic, K. Ryan,

and A. Wood, “Randomized decomposition solver with the quadratic assignment problem as a case study,”

INFORMS Journal on Computing, 30 (2018), pp. 295-308.
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RAC-ADMM Interpretation: Double Randomness

• RAC-ADMM could be viewed as a double-randomness procedure based on RP-ADMM

• RAC-ADMM is equivalent as

Step 1 : Uniformly random choose a Block Composition Structure (which variables should be assembled

into a block for all n blocks)

Step 2 : After selecting a block composition structure, do random permutation across n blocks for updating

• Consider the example: N = 6, n = 3, and each block has two variables. Then

#Block Composition Structures = 15 #RP = n! = 6 #RAC = 90.

Equivalent as first uniformly random choose one among all 15 different block composition structure,

then randomly permute across blocks for variable updates.

Theorem 5 (Mihic, Zhu and Y [2018]) The expected output from RAS-ADMM converges to the unique

solution of the linear system equations any number of variables N ≥ 1 and any block number

N ≥ n ≥ 1.
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But Is the More the Better?

Consider optimization problem x ∈ R6 (Mihic, Zhu and Y [2018]):

min
x

0Tx s.t. Ax = 0.

where

A =



1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 2

1 1 1 2 2 2

1 1 2 2 2 2

1 2 2 2 2 2


• Partition all variables equally into 3 blocks, compare ADMM, RSC ADMM and RP ADMM.

• Initial solutions and parameters of this specific model are x0,y0 ∼ N(0, 5I) and β = 1.
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Regular ADMM diverges

Fix the Block Composition Structure [x1, x2], [x3, x4], [x5, x6], and use the ppdate Order

[x1, x2]→ [x3, x4]→ [x5, x6]
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RP ADMM converges

Fix the Block Composition Structure [x1, x2], [x3, x4], [x5, x6], and use the RP-ADMM
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RAC-ADMM Does Not Converge I
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RAC-ADMM Does Not Converge II

41



Yinyu Ye, MS&E, Stanford CERMICS Summer School #04

Recall Convergence in Expectation

• The problem can be reformulated as a linear mapping

(xk+1;yk+1) = Mσ(x
k;yk).

• For all mapping matrices of RP-ADMM Mσ :

ρ(E[Mσ]) = 0.9887 < 1.

For RAC-ADMM:

• For all block composition structures and permutation mapping matrices M(RAC,σ):

ρ(E[M(RAC,σ)]) = 0.8215 < 1.
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Strong Notion for Convergence: Convergence Almost Surely

Let zk = [xk;yk], for any mutli-block ADMM randomized algorithm, let {Mσk
} be the set of all possible

updating matrices. At each iteration k, we randomly choose a Mσk
from the set and update

zk+1 = Mσk
zk.

Now consider the Expected Kronecker Product of Mapping Matrices Mσk
⊗Mσk

. If one can prove

ρ(E[Mσk
⊗Mσk

]) < 1.

Then from Borel-Cantelli’s theorem, xk converges to the solution almost surely, or a.s. in short.
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On this Example:

•
ρ(E[MRP

σk
⊗MRP

σk
]) = 0.9852, (ρ(E[MRP

σk
]) = 0.9887)

that is, RP-ADMM does converge almost surely for this specific linear system

• In fact, RP-ADMM with any fixed one of the all possible 15 block composition structures converges

almost surely for this specific linear system

• Unfortunately,

ρ(E[MRAC
σk

⊗MRAC
σk

]) = 1.0948, (ρ(E[MRAC
σk

]) = 0.8215)

that is, RAC-ADMM does not converge almost surely for this specific linear system.

• (Random) initial solutions do not change the convergence pattern.

Mihic, Zhu and Y [2018]
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Moderate Noise does Not Change the RAC-ADMM Outcome

Set A′ = A+N(0, 0.1I)
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When is Safer for RAC-ADMM?

For this example, instead of setting objective function equals to null, set the objective function
κ
2x

Tx = κ
2 ∥x∥

2. Then, with small κ = 0.05, RAC-ADMM now converges faster than RP-ADMM!
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Convex Regularization Kelps in General?

We conjecture that there exists κ such that for all κ ≥ κ, the spectral radius of expected Kronecker

Product Mapping Matrix is strictly less than one.
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Increase of Block Size Kelps

Increase matrix dimension of A to 9 where each block consists of three variables.
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Increase of Block Size Kelps (continued)

Here RP refer to RP-ADMM with block structure [x1, x2, x3], [x4, x5, x6], [x7, x8, x9]

ρRP = 0.9926 ρRP
Kron. = 0.9903

ρRSC = 0.8006 ρRSC
Kron. = 0.9836

Mihic, Zhu and Y [2018]
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Experiments on the Markowitz Mean-Variance Model

Consider the regularized (2-norm) Markowitz Mean-Variance Model

minx f(x) = xTV x+ τcTx+ κ
2 ||x||

2
2

s.t x ∈ X

where typically X = {x : eTx = 1,x ∈ Rn
+}.

In the following numerical experiments, we generate positive definite covariance matrix V and return

vector c randomly. For a 6 variable instance with κ = 1.e− 5:

ρRP = 0.7539 ρRP
Kron. = 0.5787

ρRSC = 0.4815 ρRSC
Kron. = 0.2947

We even consider X = {x : eTx = m,x ∈ {0, 1}n,m < n} a Binary-Variant of Markowitz-based

portfolio selection with the cardinality constraint.
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Numerical Results: Markowitz Mean-Variance Model

µ σ2 min max

RSC-ADMM 18.7 9.8 2 72

ADMM 197.1 175.8 2 >1000

RP-ADMM 241.1 231.9 2 >1000

Table 2: 4800 variables, 5 Blocks, β = 1, Number of iterations till convergence
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Solution Times: Markowitz Mean-Variance Model

RAC-ADMM

n. blocks objVal solver time [s] model time [s]

2 0.2996511 3254 38

3 0.2996513 973 51

4 0.2996510 365 69

5 0.2996513 166 83

6 0.2996512 97 99

Table 3: 4800 variables, β = 1, ∥Ax− b∥ ≤ 1.e− 6

model time: total time spent preparing sub problems.

Gurobi Direct Convex QP Run: obj val: 0.299650947, and time[s]: 588.95.

52



Yinyu Ye, MS&E, Stanford CERMICS Summer School #04

Numerical results: Binary Markowitz Mean-Variance Model I

Number of blocks

k=2 k=3 k=4 k=5

µ σ2 µ σ2 µ σ2 µ σ2

RSC-ADMM 0.28 0.14 0.12 0.09 0.15 0.08 0.05 0.04

ADMM 0.85 0.48 1.20 0.50 1.06 0.57 1.09 0.59

RP-ADMM 0.66 0.29 1.26 0.68 0.72 0.34 1.24 0.51

Table 4: Gap of the best local solution for different number of blocks (4800 variables, 5 Blocks, β = 1)

Gap (gapGA) between the best solution found by the algorithms (objValA)and the solution found by Gurobi

(objValG) by solving a problem as whole is defined by:

gapGA =
objValG − objValA

objValG
× 100
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Numerical results: Binary Markowitz Mean-Variance Model II

Figure 1: Evaluation of the objective function value for binary Markowitz model
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Extensions and Research Directions (Suggested Project #4)

• Convergence almost surely for RP-ADMM on solving the example with general N and n??

• Convergence almost surely for RP-ADMM on solving general linear system of equations??

• Convergence almost surely for RAC-ADMM on solving convex QP programs??

• Generalize to solving linear programquitming problems??

• Generalize to solving general convex optimization at large??

• Generalize to solving non-convex or binary optimization??
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