
A polynomial time interior point method for problems with
nonconvex constraints

Oliver Hinder, Yinyu Ye

Department of Management Science and Engineering

Stanford University

June 28, 2018



The problem

I Consider problem

min
x2Rd

f (x) s.t. a(x)  0

where f : Rd ! R and a : Rd ! Rm have Lipschitz first and second
derivatives.

I Captures a huge variety of practical problems . . . drinking water network,
electricity network, trajectory optimization, engineering design, etc.

I In worst-case finding global optima takes an exponential amount of time.

I Instead we want to find an ‘approximate local optima’, more precisely a Fritz
John point.



The problem

I Consider problem

min
x2Rd

f (x) s.t. a(x)  0

where f : Rd ! R and a : Rd ! Rm have Lipschitz first and second
derivatives.

I Captures a huge variety of practical problems . . . drinking water network,
electricity network, trajectory optimization, engineering design, etc.

I In worst-case finding global optima takes an exponential amount of time.

I Instead we want to find an ‘approximate local optima’, more precisely a Fritz
John point.



The problem

I Consider problem

min
x2Rd

f (x) s.t. a(x)  0

where f : Rd ! R and a : Rd ! Rm have Lipschitz first and second
derivatives.

I Captures a huge variety of practical problems . . . drinking water network,
electricity network, trajectory optimization, engineering design, etc.

I In worst-case finding global optima takes an exponential amount of time.

I Instead we want to find an ‘approximate local optima’, more precisely a Fritz
John point.



The problem

I Consider problem

min
x2Rd

f (x) s.t. a(x)  0

where f : Rd ! R and a : Rd ! Rm have Lipschitz first and second
derivatives.

I Captures a huge variety of practical problems . . . drinking water network,
electricity network, trajectory optimization, engineering design, etc.

I In worst-case finding global optima takes an exponential amount of time.

I Instead we want to find an ‘approximate local optima’, more precisely a Fritz
John point.



µ-approximate Fritz John point

a(x) < 0 (Primal feasibility)
��r

x

f (x) � yTra(x)
��
2

 µ
q

kyk
1

+ 1 y > 0 (Dual feasibility)

y
i

a
i

(x)

µ
2 [1/2, 3/2] 8i 2 {1, . . . ,m} (Complementarity)

I Fritz John is a necessary condition for local optimality
I MFCQ constraint qualification, i.e., dual multipliers are bounded then Fritz

John = KKT point



µ-approximate Fritz John point

a(x) < 0 (Primal feasibility)
��r

x

f (x) � yTra(x)
��
2

 µ
q

kyk
1

+ 1 y > 0 (Dual feasibility)

y
i

a
i

(x)

µ
2 [1/2, 3/2] 8i 2 {1, . . . ,m} (Complementarity)

I Fritz John is a necessary condition for local optimality
I MFCQ constraint qualification, i.e., dual multipliers are bounded then Fritz

John = KKT point

objective

KKT point
Dual multipliers

objective

Fritz John point
Dual multipliers

Fritz John points

Local 
minimizers

KKT
points



How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.



How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.



How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.



How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.



How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.



How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.



How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.



Brief history of IPM theory



Brief history of IPM theory

Linear programming

Birth of interior point methods 
[Karmarkar, 1984]

O(
�

m log(1/�))



Brief history of IPM theory

Log barrier + Newton
[Regnar, 1988]

Linear programming

Birth of interior point methods 
[Karmarkar, 1984]

O(
�

m log(1/�))



Brief history of IPM theory

Log barrier + Newton
[Regnar, 1988]

Linear programming

Birth of interior point methods 
[Karmarkar, 1984]

O(
�

m log(1/�))



Brief history of IPM theory

Log barrier + Newton
[Regnar, 1988]

Self-concordant barriers 
[Nesterov, Nemiroviskii, 1994]

Linear programmingConic optimization General objective/constraints

Birth of interior point methods 
[Karmarkar, 1984]

O(
�

m log(1/�))

O(
�

v log(1/�))



Brief history of IPM theory

Log barrier + Newton
[Regnar, 1988]

Self-concordant barriers 
[Nesterov, Nemiroviskii, 1994]

Successful implementations:
MOSEK, GUROBI, …

Successful implementations:
SEDUMI, MOSEK, GUROBI, …

Successful implementations:
LOQO, KNTIRO, IPOPT, … 

Linear programmingConic optimization General objective/constraints

Birth of interior point methods 
[Karmarkar, 1984]

O(
�

m log(1/�))

O(
�

v log(1/�))



Brief history of IPM theory

Log barrier + Newton
[Regnar, 1988]

Self-concordant barriers 
[Nesterov, Nemiroviskii, 1994]

Successful implementations:
MOSEK, GUROBI, …

Successful implementations:
SEDUMI, MOSEK, GUROBI, …

Successful implementations:
LOQO, KNTIRO, IPOPT, … 

Good theoretical 
understanding

Less theoretical 
understanding

Linear programmingConic optimization General objective/constraints

Birth of interior point methods 
[Karmarkar, 1984]

O(
�

m log(1/�))

O(
�

v log(1/�))



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.

I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.

I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).

I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.

I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].

I Best achievable runtimes (of any method) with rf and r2f Lipschitz
respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.

I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.

I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.

I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.

I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.
I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].

Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.
I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].

Has O(✏�2) runtime.
I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.

I Both these methods plug and play directly with unconstrained optimization
methods, e.g., they need their penalty functions to have Lipschitz derivatives.

I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.
I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].

Has O(✏�2) runtime.
I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.

I Log barrier does not have Lipschitz derivatives!



Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.
I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.
I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].

Has O(✏�2) runtime.
I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!



Our IPM for nonconvex optimization

Feasible region

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)

Reminder:
 µ(x) := f (x) � µ log(�a(x)).

Each iteration of our IPM we:
1 Pick trust region size r ⇡ µ3/4(1 + kyk

1

)�1/2.
2 Compute direction d

x

by solving trust region problem.
3 Pick step size ↵ 2 (0, 1] to ensure x

new

= x + ↵d
x

satisfies a(x) < 0.
4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)

Reminder:
 µ(x) := f (x) � µ log(�a(x)).

Each iteration of our IPM we:
1 Pick trust region size r ⇡ µ3/4(1 + kyk

1

)�1/2.
2 Compute direction d

x

by solving trust region problem.
3 Pick step size ↵ 2 (0, 1] to ensure x

new

= x + ↵d
x

satisfies a(x) < 0.
4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)

&

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1+ kyk
1

)�1/2
.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)
&$

'
dx 2 argminu:�u�2�r

1

2
uT r2�µ(x)u + uT r�µ(x)

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d

x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)

&

'($

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x

new

= x+ ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x

new

= x+ ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)
?

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Our IPM for nonconvex optimization

!"($)

Theoretical properties?

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
1

)�1/2.

2 Compute direction d
x

by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
new

= x + ↵d
x

satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.



Nonconvex result

Theorem
Assume:

I Strictly feasible initial point x (0).

I rf , ra, r2f , r2a are Lipschitz.

Then our IPM takes as most

O
⇣⇣
 µ(x

(0)) � inf
z

 µ(z)
⌘
µ�7/4

⌘

trust region steps to terminate with a µ-approximate second-order Fritz John
point (x+, y+).

algorithm # iteration primitive evaluates
Birgin et al., 2016 O(µ�3) vector operation r
Cartis et al., 2011 O(µ�2) linear program r
Birgin et al., 2016 O(µ�2) KKT of NCQP r, r2

IPM (this paper) O(µ�7/4) linear system r,r2



Nonconvex result

Theorem
Assume:

I Strictly feasible initial point x (0).

I rf , ra, r2f , r2a are Lipschitz.

Then our IPM takes as most

O
⇣⇣
 µ(x

(0)) � inf
z

 µ(z)
⌘
µ�7/4

⌘

trust region steps to terminate with a µ-approximate second-order Fritz John
point (x+, y+).

algorithm # iteration primitive evaluates
Birgin et al., 2016 O(µ�3) vector operation r
Cartis et al., 2011 O(µ�2) linear program r
Birgin et al., 2016 O(µ�2) KKT of NCQP r, r2

IPM (this paper) O(µ�7/4) linear system r,r2



Convex result

Modify our IPM have sequence of decreasing µ, i.e., µ(j) with µ(j) ! 0.

Theorem
Assume:

I Strictly feasible initial point x (0) and feasible region is bounded.

I f , rf , ra, r2f , r2a are Lipschitz.

I Slaters condition holds.

Then our IPM starting takes at most

Õ
⇣
m1/3✏�2/3

⌘

trust region steps to terminate with a ✏-optimal solution.



Questions?



One-phase results


