A polynomial time interior point method for problems with nonconvex constraints

Oliver Hinder, Yinyu Ye

Department of Management Science and Engineering Stanford University

June 28, 2018

$$\min_{x\in\mathbb{R}^d}f(x) \text{ s.t. } a(x)\leq 0$$

where $f : \mathbb{R}^d \to \mathbb{R}$ and $a : \mathbb{R}^d \to \mathbb{R}^m$ have Lipschitz first and second derivatives.

$$\min_{x\in\mathbb{R}^d}f(x) \text{ s.t. } a(x)\leq 0$$

where $f : \mathbb{R}^d \to \mathbb{R}$ and $a : \mathbb{R}^d \to \mathbb{R}^m$ have Lipschitz first and second derivatives.

 Captures a huge variety of practical problems ... drinking water network, electricity network, trajectory optimization, engineering design, etc.

$$\min_{x\in\mathbb{R}^d}f(x) \text{ s.t. } a(x)\leq 0$$

where $f : \mathbb{R}^d \to \mathbb{R}$ and $a : \mathbb{R}^d \to \mathbb{R}^m$ have Lipschitz first and second derivatives.

- Captures a huge variety of practical problems ... drinking water network, electricity network, trajectory optimization, engineering design, etc.
- In worst-case finding global optima takes an exponential amount of time.

$$\min_{x\in\mathbb{R}^d}f(x) \text{ s.t. } a(x)\leq 0$$

where $f : \mathbb{R}^d \to \mathbb{R}$ and $a : \mathbb{R}^d \to \mathbb{R}^m$ have Lipschitz first and second derivatives.

- Captures a huge variety of practical problems ... drinking water network, electricity network, trajectory optimization, engineering design, etc.
- ► In worst-case finding global optima takes an exponential amount of time.
- Instead we want to find an 'approximate local optima', more precisely a Fritz John point.

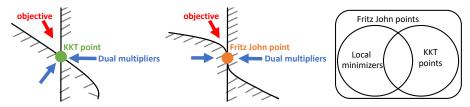
$\mu\textsc{-}\mathsf{approximate}$ Fritz John point

$$a(x) < 0$$
(Primal feasibility) $\|\nabla_x f(x) - y^T \nabla a(x)\|_2 \le \mu \sqrt{\|y\|_1 + 1}$ $y > 0$ (Dual feasibility) $\frac{y_i a_i(x)}{\mu} \in [1/2, 3/2]$ $\forall i \in \{1, \dots, m\}$ (Complementarity)

μ -approximate Fritz John point

$$a(x) < 0$$
(Primal feasibility) $\|\nabla_x f(x) - y^T \nabla a(x)\|_2 \le \mu \sqrt{\|y\|_1 + 1}$ $y > 0$ (Dual feasibility) $\frac{y_i a_i(x)}{\mu} \in [1/2, 3/2]$ $\forall i \in \{1, \dots, m\}$ (Complementarity)

- Fritz John is a necessary condition for local optimality
- MFCQ constraint qualification, i.e., dual multipliers are bounded then Fritz John = KKT point



$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$

$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$

and apply (modified) Newton's method to find an approximate local optima.

 Used for real systems, e.g., drinking water networks, electricity networks, trajectory control, etc.

$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$

- Used for real systems, e.g., drinking water networks, electricity networks, trajectory control, etc.
- Examples of practical codes using this method include IPOPT, KNITRO, LOQO, One-Phase (my code), etc.

$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$

- Used for real systems, e.g., drinking water networks, electricity networks, trajectory control, etc.
- Examples of practical codes using this method include IPOPT, KNITRO, LOQO, One-Phase (my code), etc.
- Local superlinear convergence is known.

$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$

- Used for real systems, e.g., drinking water networks, electricity networks, trajectory control, etc.
- Examples of practical codes using this method include IPOPT, KNITRO, LOQO, One-Phase (my code), etc.
- Local superlinear convergence is known.
- Global convergence: most results show convergence in limit but provide no explicit runtime bound. Implicitly runtime bound is exponential in 1/μ.

$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$

- Used for real systems, e.g., drinking water networks, electricity networks, trajectory control, etc.
- Examples of practical codes using this method include IPOPT, KNITRO, LOQO, One-Phase (my code), etc.
- Local superlinear convergence is known.
- ► Global convergence: most results show convergence in limit but provide no explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.
- Goal: runtime with polynomial in $1/\mu$ to find μ -approximate Fritz John point.

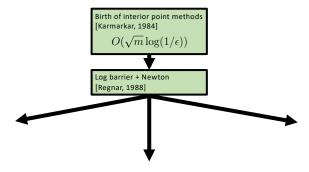
Linear programming

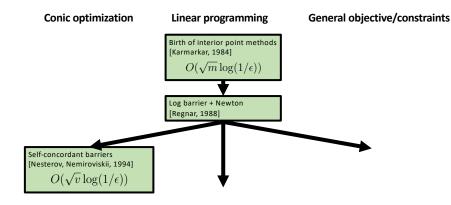
Birth of interior point methods [Karmarkar, 1984] $O(\sqrt{m}\log(1/\epsilon))$

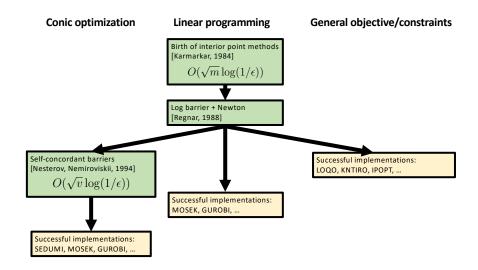
Linear programming

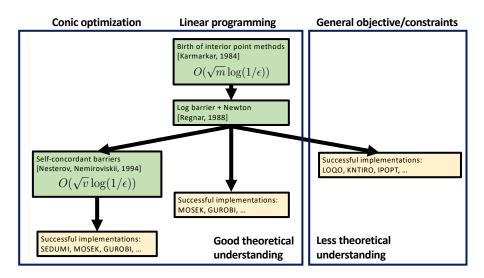
Birth of interior point methods [Karmarkar, 1984]
$O(\sqrt{m}\log(1/\epsilon))$
t
Log barrier + Newton
[Regnar, 1988]

Linear programming









• Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.

Literature review nonconvex optimization

- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.

- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.

 - ▶ Gradient descent O(e⁻²).
 ▶ Cubic regularization O(e^{-3/2}) [Nesterov, Polyak, 2006].

- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.
 - Cubic regularization $O(\epsilon^{-3/2})$ [Nesterov, Polyak, 2006].
 - ▶ Best achievable runtimes (of any method) with ∇f and $\nabla^2 f$ Lipschitz respectively [Carmon, Duchi, Hinder, Sidford, 2017].

- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.
 - Cubic regularization $O(\epsilon^{-3/2})$ [Nesterov, Polyak, 2006].
 - ► Best achievable runtimes (of any method) with ∇f and ∇²f Lipschitz respectively [Carmon, Duchi, Hinder, Sidford, 2017].
- ▶ Nonconvex objective, linear inequality constraints. Affine scaling IPM [Ye, (1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has $O(\epsilon^{-3/2})$ runtime to find KKT points.

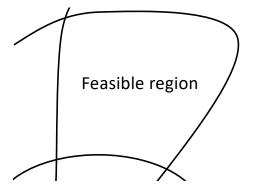
- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.
 - Cubic regularization $O(\epsilon^{-3/2})$ [Nesterov, Polyak, 2006].
 - ▶ Best achievable runtimes (of any method) with ∇f and $\nabla^2 f$ Lipschitz respectively [Carmon, Duchi, Hinder, Sidford, 2017].
- ▶ Nonconvex objective, linear inequality constraints. Affine scaling IPM [Ye, (1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has $O(\epsilon^{-3/2})$ runtime to find KKT points.
- Nonconvex objective and constraints.

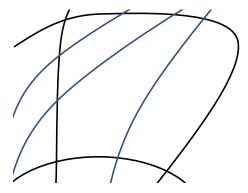
- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.
 - Cubic regularization $O(\epsilon^{-3/2})$ [Nesterov, Polyak, 2006].
 - ▶ Best achievable runtimes (of any method) with ∇f and $\nabla^2 f$ Lipschitz respectively [Carmon, Duchi, Hinder, Sidford, 2017].
- ▶ Nonconvex objective, linear inequality constraints. Affine scaling IPM [Ye, (1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has $O(\epsilon^{-3/2})$ runtime to find KKT points.
- Nonconvex objective and constraints.
 - Apply cubic regularization to quadratic penalty function [Birgin et al, 2016]. Has O(e⁻²) runtime.

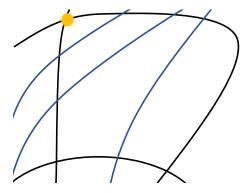
- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.
 - Cubic regularization $O(\epsilon^{-3/2})$ [Nesterov, Polyak, 2006].
 - ▶ Best achievable runtimes (of any method) with ∇f and $\nabla^2 f$ Lipschitz respectively [Carmon, Duchi, Hinder, Sidford, 2017].
- ▶ Nonconvex objective, linear inequality constraints. Affine scaling IPM [Ye, (1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has $O(\epsilon^{-3/2})$ runtime to find KKT points.
- Nonconvex objective and constraints.
 - Apply cubic regularization to quadratic penalty function [Birgin et al, 2016]. Has O(e⁻²) runtime.
 - ▶ Sequential linear programming [Cartis et al, 2015] has $O(\epsilon^{-2})$ runtime.

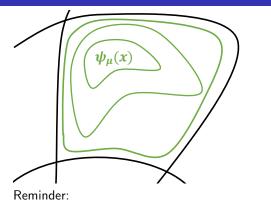
- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.
 - Cubic regularization $O(\epsilon^{-3/2})$ [Nesterov, Polyak, 2006].
 - ▶ Best achievable runtimes (of any method) with ∇f and $\nabla^2 f$ Lipschitz respectively [Carmon, Duchi, Hinder, Sidford, 2017].
- ▶ Nonconvex objective, linear inequality constraints. Affine scaling IPM [Ye, (1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has $O(\epsilon^{-3/2})$ runtime to find KKT points.
- Nonconvex objective and constraints.
 - Apply cubic regularization to quadratic penalty function [Birgin et al, 2016]. Has O(e⁻²) runtime.
 - ▶ Sequential linear programming [Cartis et al, 2015] has $O(\epsilon^{-2})$ runtime.
 - Both these methods plug and play directly with unconstrained optimization methods, e.g., they need their penalty functions to have Lipschitz derivatives.

- Unconstrained. Goal: find a point with $\|\nabla f(x)\|_2 \leq \epsilon$.
 - Gradient descent $O(\epsilon^{-2})$.
 - Cubic regularization $O(\epsilon^{-3/2})$ [Nesterov, Polyak, 2006].
 - ▶ Best achievable runtimes (of any method) with ∇f and $\nabla^2 f$ Lipschitz respectively [Carmon, Duchi, Hinder, Sidford, 2017].
- ▶ Nonconvex objective, linear inequality constraints. Affine scaling IPM [Ye, (1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has $O(\epsilon^{-3/2})$ runtime to find KKT points.
- Nonconvex objective and constraints.
 - Apply cubic regularization to quadratic penalty function [Birgin et al, 2016]. Has O(e⁻²) runtime.
 - ▶ Sequential linear programming [Cartis et al, 2015] has $O(\epsilon^{-2})$ runtime.
 - Both these methods plug and play directly with unconstrained optimization methods, e.g., they need their penalty functions to have Lipschitz derivatives.
 - Log barrier does not have Lipschitz derivatives!

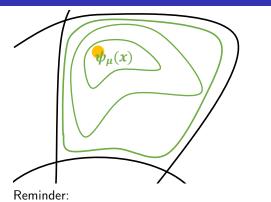




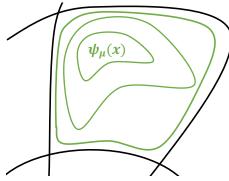




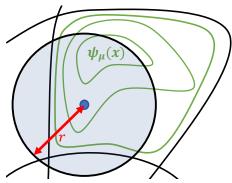
$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$



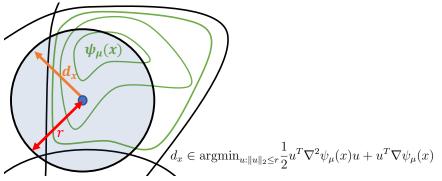
$$\psi_{\mu}(x) := f(x) - \mu \log(-a(x)).$$



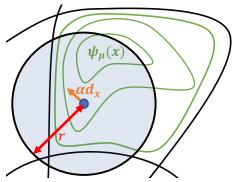
- 1 Pick trust region size $r \approx \mu^{3/4} (1 + \|y\|_1)^{-1/2}$.
- **2** Compute direction d_{x} by solving trust region problem.
- **3** Pick step size $\alpha \in (0, 1]$ to ensure $x_{new} = x + \alpha d_x$ satisfies a(x) < 0.
- 4 Is new point Fritz John point? If no then return to step one.



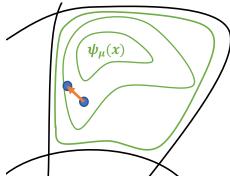
- 1 Pick trust region size $\mathbf{r} \approx \mu^{3/4} (1 + \|\mathbf{y}\|_1)^{-1/2}$.
- **2** Compute direction d_{x} by solving trust region problem.
- **3** Pick step size $\alpha \in (0, 1]$ to ensure $x_{new} = x + \alpha d_x$ satisfies a(x) < 0.
- 4 Is new point Fritz John point? If no then return to step one.



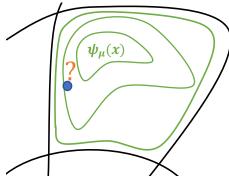
- 1 Pick trust region size $r \approx \mu^{3/4} (1 + \|y\|_1)^{-1/2}$.
- **2** Compute direction d_x by solving trust region problem.
- **3** Pick step size $\alpha \in (0, 1]$ to ensure $x_{new} = x + \alpha d_x$ satisfies a(x) < 0.
- 4 Is new point Fritz John point? If no then return to step one.



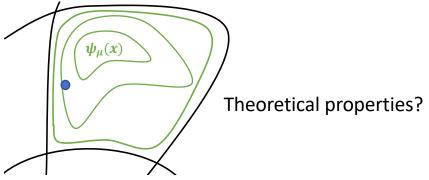
- 1 Pick trust region size $r \approx \mu^{3/4} (1 + \|y\|_1)^{-1/2}$.
- **2** Compute direction d_{x} by solving trust region problem.
- **3** Pick step size $\alpha \in (0, 1]$ to ensure $x_{new} = x + \alpha d_x$ satisfies a(x) < 0.
- 4 Is new point Fritz John point? If no then return to step one.



- 1 Pick trust region size $r \approx \mu^{3/4} (1 + \|y\|_1)^{-1/2}$.
- **2** Compute direction d_{\times} by solving trust region problem.
- **3** Pick step size $\alpha \in (0, 1]$ to ensure $x_{new} = x + \alpha d_x$ satisfies a(x) < 0.
- 4 Is new point Fritz John point? If no then return to step one.



- 1 Pick trust region size $r \approx \mu^{3/4} (1 + \|y\|_1)^{-1/2}$.
- **2** Compute direction d_{\times} by solving trust region problem.
- **3** Pick step size $\alpha \in (0, 1]$ to ensure $x_{new} = x + \alpha d_x$ satisfies a(x) < 0.
- **4** Is new point Fritz John point? If no then return to step one.



- 1 Pick trust region size $r \approx \mu^{3/4} (1 + \|y\|_1)^{-1/2}$.
- **2** Compute direction d_{x} by solving trust region problem.
- **3** Pick step size $\alpha \in (0, 1]$ to ensure $x_{new} = x + \alpha d_x$ satisfies a(x) < 0.
- 4 Is new point Fritz John point? If no then return to step one.

Nonconvex result

Theorem

Assume:

- Strictly feasible initial point $x^{(0)}$.
- ∇f , ∇a , $\nabla^2 f$, $\nabla^2 a$ are Lipschitz.

Then our IPM takes as most

$$\mathcal{O}\left(\left(\psi_{\mu}(x^{(0)}) - \inf_{z}\psi_{\mu}(z)\right)\mu^{-7/4}
ight)$$

trust region steps to terminate with a μ -approximate second-order Fritz John point (x^+, y^+) .

Nonconvex result

Theorem

Assume:

- Strictly feasible initial point $x^{(0)}$.
- ∇f , ∇a , $\nabla^2 f$, $\nabla^2 a$ are Lipschitz.

Then our IPM takes as most

$$\mathcal{O}\left(\left(\psi_{\mu}(x^{(0)}) - \inf_{z}\psi_{\mu}(z)\right)\mu^{-7/4}
ight)$$

trust region steps to terminate with a μ -approximate second-order Fritz John point (x^+, y^+) .

algorithm	# iteration	primitive	evaluates
Birgin et al., 2016	$\mathcal{O}(\mu^{-3})$	vector operation	∇
Cartis et al., 2011	$\mathcal{O}(\mu^{-2})$	linear program	∇
Birgin et al., 2016	$\mathcal{O}(\mu^{-2})$	KKT of NCQP	∇ , ∇^2
IPM (this paper)	$\mathcal{O}(\mu^{-7/4})$	linear system	∇, ∇^2

Modify our IPM have sequence of decreasing μ , i.e., $\mu^{(j)}$ with $\mu^{(j)} \rightarrow 0$.

Theorem

Assume:

- Strictly feasible initial point $x^{(0)}$ and feasible region is bounded.
- $f, \nabla f, \nabla a, \nabla^2 f, \nabla^2 a$ are Lipschitz.
- Slaters condition holds.

Then our IPM starting takes at most

$$\tilde{\mathcal{O}}\left(m^{1/3}\epsilon^{-2/3}\right)$$

trust region steps to terminate with a ϵ -optimal solution.

Questions?

One-phase results

