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> In worst-case finding global optima takes an exponential amount of time.

» Instead we want to find an ‘approximate local optima’, more precisely a Fritz
John point.
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a(x) <0 (Primal feasibility)
[Vxf(x) = yTVa(x)H2 <p/lyll;+1 y>0 (Dual feasibility)
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» Fritz John is a necessary condition for local optimality
» MFCQ constraint qualification, i.e., dual multipliers are bounded then Fritz
John = KKT point

objective objective

Fritz John points

KKT point Fritz John point

== Dual multipliers —) == Dual multipliers




How do we solve this problem?



How do we solve this problem?

> One popular approach, move constraints into a log barrier:

Yu(x) == f(x) — plog(—a(x)).

and apply (modified) Newton's method to find an approximate local optima.



How do we solve this problem?

> One popular approach, move constraints into a log barrier:

Yu(x) == f(x) — plog(—a(x)).

and apply (modified) Newton's method to find an approximate local optima.

> Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.



How do we solve this problem?

> One popular approach, move constraints into a log barrier:

Yu(x) == f(x) — plog(—a(x)).

and apply (modified) Newton's method to find an approximate local optima.

> Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

» Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.



How do we solve this problem?

One popular approach, move constraints into a log barrier:

Yu(x) == f(x) — plog(—a(x)).

and apply (modified) Newton's method to find an approximate local optima.

v

> Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

» Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

» Local superlinear convergence is known.



How do we solve this problem?

One popular approach, move constraints into a log barrier:

Yu(x) == f(x) — plog(—a(x)).

and apply (modified) Newton's method to find an approximate local optima.

v

> Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

» Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

» Local superlinear convergence is known.

» Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/p.



How do we solve this problem?

One popular approach, move constraints into a log barrier:

Yu(x) == f(x) — plog(—a(x)).

and apply (modified) Newton's method to find an approximate local optima.
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> Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

» Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

» Local superlinear convergence is known.

» Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/p.

> Goal: runtime with polynomial in 1/u to find u-approximate Fritz John point.
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Brief history of IPM theory

Conic optimization Linear programming General objective/constraints

Birth of interior point methods
[Karmarkar, 1984]

O(v/mlog(1/e))
L 2

Log barrier + Newton
[Regnar, 1988]

Self-concordant barriers Successful implementations:
[Nesterov, Nemiroviskii, 1994] LOQO, KNTIRO, IPOPT, ...

O(v/vlog(1/e))

Successful implementations:
MOSEK, GUROBI, ...

Successful implementations: Good theoretical Less theoretical
SEDUMI, MOSEK, GUROBI, ... . .
understanding understanding
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> Best achievable runtimes (of any method) with Vf and V?f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

» Nonconvex objective, linear inequality constraints. Affine scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(e=3/2) runtime to find KKT points.

» Nonconvex objective and constraints.

>

Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(e™?) runtime.

» Sequential linear programming [Cartis et al, 2015] has O(e™?) runtime.
» Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
Log barrier does not have Lipschitz derivatives!
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algorithm | # iteration | primitive | evaluates
Birgin et al., 2016 Oo(n=3) vector operation \Y
Cartis et al., 2011 O(p2) linear program Y,

Birgin et al., 2016 O(/L_Q) KKT of NCQP Vv, V?
IPM (this paper) | O(u~7/%) | linear system v, V2



Convex result

Modify our IPM have sequence of decreasing p, i.e., uY) with () — 0.

Theorem

Assume:
» Strictly feasible initial point x(°) and feasible region is bounded.
> f, Vf, Va, V?f, V?a are Lipschitz.
» Slaters condition holds.

Then our IPM starting takes at most

%) <m1/3e_2/3>

trust region steps to terminate with a e-optimal solution.
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One-phase results
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