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The problem

I Consider problem

min
x2Rd

f (x) s.t. a(x)  0

where f : Rd ! R and a : Rd ! Rm have Lipschitz first and second
derivatives.

I Captures a huge variety of practical problems . . . drinking water network,
electricity network, trajectory optimization, engineering design, etc.

I In worst-case finding global optima takes an exponential amount of time.

I Instead we want to find an ‘approximate local optima’, more precisely a Fritz
John point.
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How do we solve this problem?

I One popular approach, move constraints into a log barrier:

 µ(x) := f (x) � µ log(�a(x)).

and apply (modified) Newton’s method to find an approximate local optima.

I Used for real systems, e.g., drinking water networks, electricity networks,
trajectory control, etc.

I Examples of practical codes using this method include IPOPT, KNITRO,
LOQO, One-Phase (my code), etc.

I Local superlinear convergence is known.

I Global convergence: most results show convergence in limit but provide no
explicit runtime bound. Implicitly runtime bound is exponential in 1/µ.

I Goal: runtime with polynomial in 1/µ to find µ-approximate Fritz John point.
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Literature review nonconvex optimization

I Unconstrained. Goal: find a point with krf (x)k
2

 ✏.

I Gradient descent O(✏�2).
I Cubic regularization O(✏�3/2) [Nesterov, Polyak, 2006].
I Best achievable runtimes (of any method) with rf and r2f Lipschitz

respectively [Carmon, Duchi, Hinder, Sidford, 2017].

I Nonconvex objective, linear inequality constraints. A�ne scaling IPM [Ye,
(1998), Bian, Chen, and Ye (2015), Haeser, Liu, and Ye (2017)]. Has
O(✏�3/2) runtime to find KKT points.

I Nonconvex objective and constraints.

I Apply cubic regularization to quadratic penalty function [Birgin et al, 2016].
Has O(✏�2) runtime.

I Sequential linear programming [Cartis et al, 2015] has O(✏�2) runtime.
I Both these methods plug and play directly with unconstrained optimization

methods, e.g., they need their penalty functions to have Lipschitz derivatives.
I Log barrier does not have Lipschitz derivatives!
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Our IPM for nonconvex optimization

Feasible region

Each iteration of our IPM we:

1 Pick trust region size r ⇡ µ3/4(1 + kyk
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by solving trust region problem.

3 Pick step size ↵ 2 (0, 1] to ensure x
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satisfies a(x) < 0.

4 Is new point Fritz John point? If no then return to step one.
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Nonconvex result

Theorem
Assume:

I Strictly feasible initial point x (0).

I rf , ra, r2f , r2a are Lipschitz.

Then our IPM takes as most

O
⇣⇣
 µ(x

(0)) � inf
z

 µ(z)
⌘
µ�7/4

⌘

trust region steps to terminate with a µ-approximate second-order Fritz John
point (x+, y+).

algorithm # iteration primitive evaluates
Birgin et al., 2016 O(µ�3) vector operation r
Cartis et al., 2011 O(µ�2) linear program r
Birgin et al., 2016 O(µ�2) KKT of NCQP r, r2

IPM (this paper) O(µ�7/4) linear system r,r2
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Convex result

Modify our IPM have sequence of decreasing µ, i.e., µ(j) with µ(j) ! 0.

Theorem
Assume:

I Strictly feasible initial point x (0) and feasible region is bounded.

I f , rf , ra, r2f , r2a are Lipschitz.

I Slaters condition holds.

Then our IPM starting takes at most

Õ
⇣
m1/3✏�2/3

⌘

trust region steps to terminate with a ✏-optimal solution.
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