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CARTs

CARTs (Breiman et al. 1984)

Applicant Age Income level Loan granted

1 22 Low No
2 26 High No
3 30 Low Yes
4 32 Low No
5 20 High No
6 45 High Yes
7 60 High No
8 54 High Yes
9 50 Low No

10 48 High Yes
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CARTs

Motivation

Pros

They are rule-based and, when they are not very deep,
deemed to be easy-to-interpret.

Low computational times.

Cons

Classification Trees is a GREEDY procedure, not OPTIMAL.

+ Advances in both computer performance and Mathematical
Optimization solvers
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ORCTs

Recent literature

Integer Programming-based strategies:

+ Bertsimas and Dunn 2017.
+ Günlük et al. 2018.
+ Verwer and Zhang 2017, Verwer et al. 2017.

It is commonly assumed that training sets are small.

A CPU time limit is imposed to the solver.

Our proposal: a continuous optimization-based method which
yields better results by performing several local searches in
relatively short time.
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ORCTs

Optimal Randomized Classification Trees

We have a sample I = {(xi , yi )}1≤i≤n , where xi ∈ [0, 1]p and yi ∈ {1, . . . ,K}.

A maximal binary tree of depth D. Nodes: Branch t ∈ τB , Leaf t ∈ τL.

Orthogonal splits:

ajt =

{
1, variable j splits t
0, otherwise

, j = 1, . . . , p, t ∈ τB .

p∑
j=1

ajt = 1, t ∈ τB .
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Optimal Randomized Classification Trees

Probabilities
CDF F (·;α) , α ∈ A.

pit = F

(
p∑

j=1

ajtxij ;αt

)
, i = 1, . . . , n, t ∈ τB .

Pit ≡ P (xi ∈ t) =
∏

tl∈NL(t)

pitl
∏

tr∈NR (t)

(1− pitr ) , i = 1, . . . , n, t ∈ τL.
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Optimal Randomized Classification Trees

Each t ∈ τL is labeled with one class:

Ckt =

{
1, node t is labeled with class k
0, otherwise

, k = 1, . . . ,K , t ∈ τL

K∑
k=1

Ckt = 1, t ∈ τL.

Each class k = 1, . . . ,K is identified by, at least, one terminal node:∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K .
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Optimal Randomized Classification Trees

We now introduce a misclassification cost for classifying an
individual from class k in class k ′:

Wkk ′ ≥ 0, k , k ′ = 1, . . . ,K , k 6= k ′.

Objective

min
K∑

k=1

∑
i∈Ik

∑
t∈τL

Pit

∑
k ′ 6=k

Ck ′tWkk ′
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Optimal Randomized Classification Trees

(Mixed-Integer Non-Linear Optimization Problem)

min
K∑

k=1

∑
i∈Ik

∑
t∈τL

Pit

∑
k′ 6=k

Ck′tWkk′

s.t.

p∑
j=1

ajt = 1, t ∈ τB ,

K∑
k=1

Ckt = 1, t ∈ τL,∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K ,

ajt ∈ {0, 1} , j = 1, . . . , p, t ∈ τB ,
Ckt ∈ {0, 1} , k = 1, . . . ,K , t ∈ τL,
αt ∈ A, t ∈ τB .
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Optimal Randomized Classification Trees

(Continuous Non-Linear Optimization Problem) OBLIQUE splits

min
K∑

k=1

∑
i∈Ik

∑
t∈τL

Pit

∑
k′ 6=k

Ck′tWkk′

s.t.

K∑
k=1

Ckt = 1, t ∈ τL,∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K ,

ajt ∈ [−1, 1], j = 1, . . . , p, t ∈ τB ,
Ckt ∈ [0, 1], k = 1, . . . ,K , t ∈ τL,
αt ∈ A, t ∈ τB .

(ORCT)
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ORCTs

Optimal Randomized Classification Trees

Theorem

There exists an optimal solution to ORCT such that Ckt ∈ {0, 1},
k = 1, . . . ,K , t ∈ τL.
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ORCTs

ORCT’s prediction

A new unlabeled observation x

Once the optimization problem has been solved

,

the decision variables are used for predicting its class:

mn(x) = arg max
k

{∑
t∈τL

P (x ∈ k |x ∈ t)P (x ∈ t)

}
= arg max

k

{∑
t∈τL

Ckt · Pxt

}
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ORCTs

Computational experience

UCI Machine Learning Repository

Data set n p K Class distribution
Connectionist-bench-sonar 208 60 2 55% - 45%
Wisconsin 569 30 2 63% - 37%
Credit-approval 653 37 2 55% - 45%
Pima-indians-diabetes 768 8 2 65% - 35%
Statlog-project-German-credit 1000 48 2 70% - 30%
Ozone-level-detection-one 1848 72 2 97% - 3%
Spambase 4601 57 2 61% - 39%
Iris 150 4 3 33.3%-33.3%-33.3%
Wine 178 13 3 40%-33%-27%
Seeds 210 7 3 33.3%-33.3%-33.3%
Thyroid-disease-ann-thyroid 3772 21 3 92.5%-5%-2.5%
Car-evaluation 1728 15 4 70%-22%-4%-4%
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ORCTs

Computational experience

Logistic CDF:

F (·;µ, γ) =
1

1 + exp (− (· − µ) γ)
, µ ∈ R, γ > 0.

µt ∈ [−1, 1] , t ∈ τL, γt = γ = 512, t ∈ τL.

Equal misclassification weights,

Wkk′ = 0.5, k, k ′ = 1, . . . ,K , k 6= k ′.

10 hold-out runs: training subset (75%) and test subset (25%).

Performance measure: average accuracy over the 10 test subsets.
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ORCTs

Computational experience

ORCT compared with:

CART (Breiman et al. 1984).

OCT-H (Bertsimas and Dunn 2017).
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ORCTs

Computational experience

D = 1

Data set
ORCT average Out-of-sample accuracy
time (in secs) ORCT CART OCT-H

Connectionist-bench-sonar 22 76.3 70.0 70.4
Wisconsin 24 96.4 92.0 93.1
Credit-approval 22 83.7 85.7 87.9
Pima-indians-diabetes 21 75.8 74.2 71.6
Statlog-project-German-credit 28 72.8 72.1 71.6
Ozone-level-detection-one 94 96.7 95.6 96.8
Spambase 72 89.8 89.2 83.6

D = 2

Data set
ORCT average Out-of-sample accuracy
time (in secs) ORCT CART OCT-H

Iris 17 95.9 92.7 95.1
Wine 23 96.6 88.6 91.1
Seeds 20 94.2 90.2 90.6
Thyroid-disease-ann-thyroid 145 92.2 99.1 92.5
Car-evaluation 71 90.8 88.1 87.5
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Cristina Molero-Ŕıo Optimal Randomized Classification Trees



Classic Classification Trees
Optimal Classification Trees
Current and future research

Sparsity on ORCTs at depth 1
Sparsity on ORCTs at any depth

Contents

1 Classic Classification Trees
CARTs

2 Optimal Classification Trees
ORCTs

3 Current and future research
Sparsity on ORCTs at depth 1
Sparsity on ORCTs at any depth
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Sparsity on ORCTs at depth 1

A lasso penalization to ORCT

min
2∑

k=1

∑
i∈Ik

∑
t∈τL

Pit

∑
k′ 6=k

Ck′tWkk′

+ λ‖a1‖1

s.t. C12 + C22 = 1,

C13 + C23 = 1,

C12 + C13 ≥ 1,

C22 + C23 ≥ 1,

aj1 ∈ [−1, 1] , j = 1, . . . , p,

C12, C13, C22, C23 ∈ [0, 1] ,

µ1 ∈ [−1, 1] .
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2∑

k=1

∑
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Pit

∑
k′ 6=k
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j=1

|aj1|
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Sparsity on ORCTs at depth 1

A lasso penalization to ORCT aj1 = a+
j1 − a−j1

min
2∑

k=1

∑
i∈Ik

∑
t∈τL

Pit

∑
k′ 6=k

Ck′tWkk′ + λ

p∑
j=1

(
a+
j1 + a−j1

)
s.t. C12 + C22 = 1,

C13 + C23 = 1,

C12 + C13 ≥ 1,

C22 + C23 ≥ 1,

a+
j1, a−j1 ∈ [0, 1], j = 1, . . . , p,

C12, C13, C22, C23 ∈ [0, 1] ,

µ1 ∈ [−1, 1] .
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Sparsity on ORCTs at depth 1

Theorem

Let F ∈ C1 a CDF with f as its corresponding PDF. There exists a
minimum λ from which a1 = 0 is an optimal solution to the lasso
penalization of ORCT at depth 1:

λ = max {λµ1=−1, λµ1=1} ,

where

λµ1 =
1

p
f

(
−µ1

p

)
max

j=1,...,p

∣∣∣∣∣−W21

∑
i∈I2

xij + W12

∑
i∈I1

xij

∣∣∣∣∣ .
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Sparsity on ORCTs at any depth

CURRENT RESEARCH

A Sparse oblique cuts. A generalization of the previous model.

min
K∑

k=1

∑
i∈Ik

∑
t∈τL

Pit

∑
k′ 6=k

Ck′tWkk′ + λ
∑
t∈τL

‖at‖1

s.t.
K∑

k=1

Ckt = 1, t ∈ τL,∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K ,

ajt ∈ [−1, 1] , j = 1, . . . , p, t ∈ τB ,
Ckt ∈ [0, 1] , k = 1, . . . ,K , t ∈ τL,
µt ∈ [−1, 1] , t ∈ τB .

B Sparse ORCT.
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Thank you for your attention!

mmolero@us.es
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