Optimal Randomized Classification Trees

Cristina Molero-Río

Joint work with Rafael Blanquero, Emilio Carrizosa and Dolores Romero Morales.

Fréjus, June 28th 2018

< ロ > < 同 > < 回 > < 回 > .

Contents

Classic Classification Trees CARTs

Optimal Classification Trees ORCTs

- 3 Current and future research
 - Sparsity on ORCTs at depth 1
 - Sparsity on ORCTs at any depth

(a)

CARTs

Contents

Classic Classification TreesCARTs

Optimal Classification TreesORCTs

- 3 Current and future research
 - Sparsity on ORCTs at depth 1
 - Sparsity on ORCTs at any depth

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CARTs

CARTs (Breiman et al. 1984)

Applicant	Age	Income level	Loan granted
1	22	Low	No
2	26	High	No
3	30	Low	Yes
4	32	Low	No
5	20	High	No
6	45	High	Yes
7	60	High	No
8	54	High	Yes
9	50	Low	No
10	48	High	Yes

<ロ> <同> <同> < 回> < 回>

æ

Cristina Molero-Río Optimal Randomized Classification Trees

CARTs

Motivation

Pros

- They are rule-based and, when they are not very deep, deemed to be easy-to-interpret.
- Low computational times.

Cons

• Classification Trees is a GREEDY procedure, not OPTIMAL.

+ Advances in both computer performance and Mathematical Optimization solvers

< ロ > < 同 > < 三 > < 三 > 、

ORCTs

Contents

Classic Classification Trees CARTs

Optimal Classification TreesORCTs

- 3 Current and future research
 - Sparsity on ORCTs at depth 1
 - Sparsity on ORCTs at any depth

<ロ> <同> <同> < 同> < 同>

ORCTs

Recent literature

• Integer Programming-based strategies:

- + Bertsimas and Dunn 2017.
- + Günlük et al. 2018.
- $+\,$ Verwer and Zhang 2017, Verwer et al. 2017.
- It is commonly assumed that training sets are small.
- A CPU time limit is imposed to the solver.

ORCTs

Recent literature

• Integer Programming-based strategies:

- + Bertsimas and Dunn 2017.
- + Günlük et al. 2018.
- $+\,$ Verwer and Zhang 2017, Verwer et al. 2017.
- It is commonly assumed that training sets are small.
- A CPU time limit is imposed to the solver.

Our proposal: a **continuous** optimization-based method which yields **better results** by performing several local searches in relatively **short time**.

・ロン ・雪 と ・ ヨ と ・ ヨ と …

ORCTs

Optimal Randomized Classification Trees

We have a sample $I = \{(\mathbf{x}_i, y_i)\}_{1 \le i \le n}$, where $\mathbf{x}_i \in [0, 1]^p$ and $y_i \in \{1, \dots, K\}$.

ヘロト ヘヨト ヘヨト ヘヨト

3

ORCTs

Optimal Randomized Classification Trees

We have a sample $I = \{(\mathbf{x}_i, y_i)\}_{1 \le i \le n}$, where $\mathbf{x}_i \in [0, 1]^p$ and $y_i \in \{1, \dots, K\}$. A maximal binary tree of depth \overline{D} . Nodes: Branch $t \in \tau_B$, Leaf $t \in \tau_L$.

ORCTs

Optimal Randomized Classification Trees

We have a sample $I = \{(\mathbf{x}_i, y_i)\}_{1 \le i \le n}$, where $\mathbf{x}_i \in [0, 1]^p$ and $y_i \in \{1, \dots, K\}$. A maximal binary tree of depth \overline{D} . Nodes: Branch $t \in \tau_B$, Leaf $t \in \tau_L$.

• Orthogonal splits:

 $a_{jt} = \begin{cases} 1, & \text{variable } j \text{ splits } t \\ 0, & \text{otherwise} \end{cases}, \ j = 1, \dots, p, \ t \in \tau_B.$ $\sum_{j=1}^{p} a_{jt} = 1, \ t \in \tau_B.$ Cristina Molero-Río Optimal Randomized Classification Trees

ORCTs

Optimal Randomized Classification Trees

Probabilities

 $\mathsf{CDF} \ \mathsf{F} \ (\cdot; \alpha) \ , \ \alpha \in \mathsf{A}.$

- 4 回 2 - 4 □ 2 - 4 □

ORCTs

Optimal Randomized Classification Trees

Probabilities

 $\mathsf{CDF} \ \mathsf{F}(\cdot; \alpha), \ \alpha \in \mathsf{A}.$

$$p_{it} = F\left(\sum_{j=1}^{p} a_{jt} x_{ij}; \boldsymbol{\alpha}_t\right), \ i = 1, \dots, n, \ t \in \tau_B.$$

- 4 回 2 - 4 □ 2 - 4 □

ORCTs

Optimal Randomized Classification Trees

Probabilities

CDF $F(\cdot; \alpha), \ \alpha \in A.$

$$p_{it} = F\left(\sum_{j=1}^{p} a_{jt} x_{ij}; \boldsymbol{\alpha}_{t}\right), \quad i = 1, \dots, n, \quad t \in \tau_{B}.$$

$$P_{it} \equiv \mathbb{P}\left(\boldsymbol{x}_{i} \in t\right) = \prod_{t_{i} \in N_{L}(t)} p_{it_{i}} \prod_{t_{r} \in N_{R}(t)} \left(1 - p_{it_{r}}\right), \quad i = 1, \dots, n, \quad t \in \tau_{L}.$$

- 4 回 2 - 4 □ 2 - 4 □

ORCTs

Optimal Randomized Classification Trees

• Each $t \in \tau_L$ is labeled with one class:

$$C_{kt} = \begin{cases} 1, & \text{node } t \text{ is labeled with class } k \\ 0, & \text{otherwise} \end{cases}, k = 1, \dots, K, \ t \in \tau_L$$

$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in au_L.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

3

ORCTs

Optimal Randomized Classification Trees

• Each $t \in \tau_L$ is labeled with one class:

$$C_{kt} = \begin{cases} 1, & \text{node } t \text{ is labeled with class } k \\ 0, & \text{otherwise} \end{cases}, k = 1, \dots, K, \ t \in \tau_L$$

$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in au_L.$$

• Each class k = 1, ..., K is identified by, at least, one terminal node:

$$\sum_{t\in\tau_L}C_{kt}\geq 1,\ k=1,\ldots,K.$$

-

ORCTs

Optimal Randomized Classification Trees

• We now introduce a misclassification cost for classifying an individual from class k in class k':

$$W_{kk'} \ge 0, \ k, k' = 1, \dots, K, \ k \neq k'.$$

イロン 不同 とくほう イロン

-

ORCTs

Optimal Randomized Classification Trees

• We now introduce a misclassification cost for classifying an individual from class k in class k':

$$W_{kk'} \ge 0, \ k, k' = 1, \dots, K, \ k \neq k'.$$

• Objective

min
$$\sum_{k=1}^{K} \sum_{i \in I_k} \sum_{t \in \tau_L} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'}$$

イロン 不同 とくほう イロン

-

ORCTs

Optimal Randomized Classification Trees

(Mixed-Integer Non-Linear Optimization Problem)

$$\min \sum_{k=1}^{K} \sum_{i \in I_k} \sum_{t \in \tau_L} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'}$$
s.t.
$$\sum_{j=1}^{p} a_{jt} = 1, \ t \in \tau_B,$$

$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_L,$$

$$\sum_{t \in \tau_L} C_{kt} \ge 1, \ k = 1, \dots, K,$$

$$a_{jt} \in \{0, 1\}, \ j = 1, \dots, p, \ t \in \tau_B,$$

$$C_{kt} \in \{0, 1\}, \ k = 1, \dots, K, \ t \in \tau_L,$$

$$\alpha_t \in A, \ t \in \tau_B.$$

ヘロト ヘ部ト ヘヨト ヘヨト

3

ORCTs

Optimal Randomized Classification Trees

(Continuous Non-Linear Optimization Problem)

OBLIQUE splits

イロン 不同 とくほう イロン

3

min
$$\sum_{k=1}^{K} \sum_{i \in I_k} \sum_{t \in \tau_L} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'}$$

s.t.

$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_L,$$

$$\sum_{t \in \tau_L} C_{kt} \ge 1, \ k = 1, \dots, K,$$

$$a_{jt} \in [-1, 1], \ j = 1, \dots, p, \ t \in \tau_B,$$

$$C_{kt} \in [0, 1], \ k = 1, \dots, K, \ t \in \tau_L,$$

$$\alpha_t \in A, \ t \in \tau_B.$$
(ORCT)

ORCTs

Optimal Randomized Classification Trees

Theorem

There exists an optimal solution to ORCT such that $C_{kt} \in \{0, 1\}$, $k = 1, ..., K, t \in \tau_L$.

ORCTs

ORCT's prediction

イロン 不同 とくほう イロン

3

A new unlabeled observation \boldsymbol{x}

Once the optimization problem has been solved

the decision variables are used for predicting its class:

$$m_n(\mathbf{x}) = \arg \max_k \left\{ \sum_{t \in \tau_L} \mathbb{P}\left(\mathbf{x} \in k | \mathbf{x} \in t\right) \mathbb{P}\left(\mathbf{x} \in t\right) \right\} = \arg \max_k \left\{ \sum_{t \in \tau_L} C_{kt} \cdot P_{xt} \right\}$$

ORCTs

Computational experience

イロト イポト イヨト イヨト

э

UCI Machine Learning Repository

Data set	n	р	K	Class distribution
Connectionist-bench-sonar	208	60	2	55% - 45%
Wisconsin	569	30	2	63% - 37%
Credit-approval	653	37	2	55% - 45%
Pima-indians-diabetes	768	8	2	65% - 35%
Statlog-project-German-credit	1000	48	2	70% - 30%
Ozone-level-detection-one	1848	72	2	97% - 3%
Spambase	4601	57	2	61% - 39%
Iris	150	4	3	33.3%-33.3%-33.3%
Wine	178	13	3	40%-33%-27%
Seeds	210	7	3	33.3%-33.3%-33.3%
Thyroid-disease-ann-thyroid	3772	21	3	92.5%-5%-2.5%
Car-evaluation	1728	15	4	70%-22%-4%-4%

ORCTs

Computational experience

イロン 不同 とくほう イロン

3

Logistic CDF:

$${\sf F}\left(\cdot;\mu,\gamma
ight)=rac{1}{1+\exp\left(-\left(\cdot-\mu
ight)\gamma
ight)},\,\,\mu\in\mathbb{R},\,\,\gamma>0.$$

 $\mu_t \in [-1, 1], \ t \in \tau_L, \ \gamma_t = \gamma = 512, \ t \in \tau_L.$

ORCTs

Computational experience

イロト イポト イヨト イヨト

э

Logistic CDF:

$$F\left(\cdot;\mu,\gamma
ight)=rac{1}{1+\exp\left(-\left(\cdot-\mu
ight)\gamma
ight)},\ \mu\in\mathbb{R},\ \gamma>0.$$

$$\mu_t \in [-1, 1], \ t \in \tau_L, \ \gamma_t = \gamma = 512, \ t \in \tau_L.$$

• Equal misclassification weights,

$$W_{kk'} = 0.5, \ k, k' = 1, \dots, K, \ k \neq k'.$$

ORCTs

Computational experience

Logistic CDF:

$$F\left(\cdot;\mu,\gamma
ight)=rac{1}{1+\exp\left(-\left(\cdot-\mu
ight)\gamma
ight)},\ \mu\in\mathbb{R},\ \gamma>0.$$

$$\mu_t \in [-1, 1], \ t \in \tau_L, \ \gamma_t = \gamma = 512, \ t \in \tau_L.$$

• Equal misclassification weights,

$$W_{kk'} = 0.5, \ k, k' = 1, \dots, K, \ k \neq k'.$$

• 10 hold-out runs: training subset (75%) and test subset (25%).

ORCTs

Computational experience

Logistic CDF:

$$F\left(\cdot;\mu,\gamma
ight)=rac{1}{1+\exp\left(-\left(\cdot-\mu
ight)\gamma
ight)},\ \mu\in\mathbb{R},\ \gamma>0.$$

$$\mu_t \in [-1, 1], \ t \in \tau_L, \ \gamma_t = \gamma = 512, \ t \in \tau_L.$$

• Equal misclassification weights,

$$W_{kk'} = 0.5, \ k, k' = 1, \dots, K, \ k \neq k'.$$

- 10 hold-out runs: training subset (75%) and test subset (25%).
- Performance measure: average accuracy over the 10 test subsets.

ORCTs

Computational experience

ORCT compared with:

- CART (Breiman et al. 1984).
- OCT-H (Bertsimas and Dunn 2017).

ORCTs

Computational experience

ヘロト ヘヨト ヘヨト ヘヨト

3

Data set	ORCT average	Out-of	^F -sample a	ccuracy
Data set	time (in secs)	ORCT	CART	OCT-H
Connectionist-bench-sonar	22	76.3	70.0	70.4
Wisconsin	24	96.4	92.0	93.1
Credit-approval	22	83.7	85.7	87.9
Pima-indians-diabetes	21	75.8	74.2	71.6
Statlog-project-German-credit	28	72.8	72.1	71.6
Ozone-level-detection-one	94	96.7	95.6	96.8
Spambase	72	89.8	89.2	83.6

D = 1

ORCTs

Computational experience

Data sot	ORCT average	Out-of	-sample a	ccuracy
Data set	time (in secs)	ORCT	CART	OCT-H
Connectionist-bench-sonar	22	76.3	70.0	70.4
Wisconsin	24	96.4	92.0	93.1
Credit-approval	22	83.7	85.7	87.9
Pima-indians-diabetes	21	75.8	74.2	71.6
Statlog-project-German-credit	28	72.8	72.1	71.6
Ozone-level-detection-one	94	96.7	95.6	96.8
Spambase	72	89.8	89.2	83.6

D = 1

D = 2

Data set	ORCT average	Out-of-sample accuracy			
Data set	time (in secs)	ORCT	CART	OCT-H	
Iris	17	95.9	92.7	95.1	
Wine	23	96.6	88.6	91.1	
Seeds	20	94.2	90.2	90.6	
Thyroid-disease-ann-thyroid	145	92.2	99.1	92.5	
Car-evaluation	71	90.8	88.1	87.5	

Cristina Molero-Río

Optimal Randomized Classification Trees

ヘロン ヘロン ヘビン ヘビン

3

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Contents

Classic Classification Trees CARTs

Optimal Classification Trees ORCTs

3 Current and future research

- Sparsity on ORCTs at depth 1
- Sparsity on ORCTs at any depth

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at depth 1

ヘロン ヘロン ヘビン ヘビン

э

$$\begin{array}{ll} { {\rm min} } & & \sum\limits_{k = 1}^2 { \sum\limits_{i \in I_k} { \sum\limits_{t \in \tau_L} {{P_{it}}\sum\limits_{k' \ne k} {{C_{k't}}{W_{kk'}}} } } } \\ { {\rm s.t.} & & {C_{12} + {C_{22}} = 1,} \\ & & {C_{13} + {C_{23}} = 1,} \\ & & {C_{12} + {C_{13}} \ge 1,} \\ & & {C_{22} + {C_{23}} \ge 1,} \\ & & {a_{j1} \in [-1,1]}, \; j = 1, \ldots, p, \\ & & {C_{12}, \; C_{13}, \; C_{22}, \; C_{23} \in [0,1],} \\ & & {\mu_1 \in [-1,1]}. \end{array}$$

Cristina Molero-Río Optimal Randomized Classification Trees

2

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at depth 1

イロト イポト イヨト イヨト

э

A lasso penalization to ORCT

mi

$$\begin{array}{ll} \min & & \sum_{k=1}^{} \sum_{i \in I_k} \sum_{t \in \tau_L} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'} + \lambda \| \boldsymbol{a}_1 \|_1 \\ \text{s.t.} & & C_{12} + C_{22} = 1, \\ & & C_{13} + C_{23} = 1, \\ & & C_{12} + C_{13} \geq 1, \\ & & C_{22} + C_{23} \geq 1, \\ & & \boldsymbol{a}_{j1} \in [-1, 1], \ j = 1, \dots, p, \\ & & C_{12}, \ C_{13}, \ C_{22}, \ C_{23} \in [0, 1], \\ & & \mu_1 \in [-1, 1]. \end{array}$$

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at depth 1

イロト イポト イヨト イヨト

A lasso penalization to ORCT

 $\begin{array}{ll} \min & & \sum_{k=1}^{2} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'} + \lambda \sum_{j=1}^{p} |a_{j1}| \\ \text{s.t.} & & C_{12} + C_{22} = 1, \\ & & C_{13} + C_{23} = 1, \\ & & C_{12} + C_{13} \geq 1, \\ & & C_{22} + C_{23} \geq 1, \\ & & a_{j1} \in [-1, 1], \ j = 1, \dots, p, \\ & & C_{12}, \ C_{13}, \ C_{22}, \ C_{23} \in [0, 1], \\ & & \mu_{1} \in [-1, 1]. \end{array}$

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at depth 1

・ロト ・回ト ・ヨト ・ヨト

A lasso penalization to ORCT

$$\begin{array}{l}
a_{j1} = a_{j1}^{+} - a_{j1}^{-} \\
\end{array}$$
min
$$\begin{array}{l}
\sum_{k=1}^{2} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'} + \lambda \sum_{j=1}^{p} \left(a_{j1}^{+} + a_{j1}^{-} \right) \\$$
s.t.
$$\begin{array}{l}
C_{12} + C_{22} = 1, \\
C_{13} + C_{23} = 1, \\
C_{12} + C_{13} \ge 1, \\
C_{22} + C_{23} \ge 1, \\
a_{j1}^{+}, a_{j1}^{-} \in [0, 1], j = 1, \dots, p, \\
C_{12}, C_{13}, C_{22}, C_{23} \in [0, 1], \\
\mu_{1} \in [-1, 1].
\end{array}$$

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at depth 1

Cristina Molero-Río

Optimal Randomized Classification Trees

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at depth 1

イロン 不同 とくほう イロン

Theorem

Let $F \in C^1$ a CDF with f as its corresponding PDF. There exists a minimum λ from which $a_1 = 0$ is an optimal solution to the lasso penalization of ORCT at depth 1:

$$\lambda = \max\left\{\lambda_{\mu_1=-1}, \lambda_{\mu_1=1}\right\},\,$$

where

$$\lambda_{\mu_{1}} = \frac{1}{p} f\left(-\frac{\mu_{1}}{p}\right) \max_{j=1,\dots,p} \left| -W_{21} \sum_{i \in I_{2}} x_{ij} + W_{12} \sum_{i \in I_{1}} x_{ij} \right|.$$

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at depth 1

Cristina Molero-Río

Optimal Randomized Classification Trees

200

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at any depth

ヘロン 人間 とくほと 人ほとう

3

CURRENT RESEARCH

Cristina Molero-Río Optimal Randomized Classification Trees

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at any depth

イロト イポト イヨト イヨト

CURRENT RESEARCH

A Sparse oblique cuts. A generalization of the previous model.

$$\min \sum_{k=1}^{K} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'} + \lambda \sum_{t \in \tau_{L}} ||a_{t}||_{2}$$
s.t.
$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_{L},$$

$$\sum_{t \in \tau_{L}} C_{kt} \geq 1, \ k = 1, \dots, K,$$

$$a_{jt} \in [-1, 1], \ j = 1, \dots, P, \ t \in \tau_{B},$$

$$C_{kt} \in [0, 1], \ k = 1, \dots, K, \ t \in \tau_{L},$$

$$\mu_{t} \in [-1, 1], \ t \in \tau_{B}.$$

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Sparsity on ORCTs at any depth

イロト イポト イヨト イヨト

CURRENT RESEARCH

A Sparse oblique cuts. A generalization of the previous model.

$$\min \sum_{k=1}^{K} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it} \sum_{k' \neq k} C_{k't} W_{kk'} + \lambda \sum_{t \in \tau_{L}} \|\boldsymbol{a}_{t}\|_{2}$$
s.t.
$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_{L},$$

$$\sum_{t \in \tau_{L}} C_{kt} \geq 1, \ k = 1, \dots, K,$$

$$\boldsymbol{a}_{jt} \in [-1, 1], \ j = 1, \dots, p, \ t \in \tau_{B},$$

$$C_{kt} \in [0, 1], \ k = 1, \dots, K, \ t \in \tau_{L},$$

$$\mu_{t} \in [-1, 1], \ t \in \tau_{B}.$$

B Sparse ORCT.

Sparsity on ORCTs at depth 1 Sparsity on ORCTs at any depth

Bibliography

Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. *Classification and regression trees.* CRC press, 1984.

Dimitris Bertsimas and Jack Dunn.

Optimal classification trees. Machine Learning, 106(7):1039–1082, 2017.

Oktay Günlük, Jayant Kalagnanam, Matt Menickelly, and Katya Scheinberg. Optimal Decision Trees for Categorical Data via Integer Programming. arXiv preprint arXiv:1612.03225v2 2018.

Sicco Verwer and Yingqian Zhang.

Learning decision trees with flexible constraints and objectives using integer optimization. In International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 94–103. Springer, 2017.

Sicco Verwer, Yingqian Zhang, and Qing Chuan Ye.

Auction optimization using regression trees and linear models as integer programs. Artificial Intelligence, 244:368–395, 2017.

イロト イポト イヨト イヨト

Thank you for your attention!

mmolero@us.es

Cristina Molero-Río Optimal Randomized Classification Trees