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Partially-Ranked Choice Models for Data-Driven Assortment Optimization

Llntroduction to Assortment Planning

Assortment planning: Context

» Process of identifying the set of products that should be
offered to the customer

> Direct impact on profit
» online ads: number of clicks on ads; sales by visiting links, etc.
> retail: conversion rate of a product, i.e., frequency of sales

Examples:
» Online advertising » Brick-and-mortar retail
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Llntroduction to Assortment Planning

Assortment planning: Objectives

» Find assortment that maximizes revenue

» Encourage the user to select the product(s) that has/have
highest utility (e.g. profit)
> In retail: assortment changes can be quite costly

Examples:

» Online advertising » Brick-and-mortar retail
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LIntrctducti(:vn to Assortment Planning

Assortment Planning: Challenges

v

Small assortments = less choice = less sales |

v

More products = more choice = more sales ?
» offering all products is known to be non-optimal

Substitution effect
» the presence of a product may jeopardize the sales of another
» e.g. the Apple iPad reduced the sales of the Apple Powerbook

> the absence of a preferred product may encourage the
customer to “substitute” to a (more profitable) alternative

v

v

Complexity of assortment constraints:
> capacity: limited shelf size or space on website
» product dependencies: subset constraints, balance between
product categories (e.g. male and female shoe models) etc.



Partially-Ranked Choice Models for Data-Driven Assortment Optimization
|—Introducticm to Assortment Planning

Assortment Planning: Challenges

Given historical data on assortments and transactions:

e l L,k}

How to learn from historical transaction data to predict the
performance of a future assortment?

— customer choice models
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LCustomer Choice Models

Parametric Choice Models

Multinomial Logit (MNL) models
» Attributes an utility to each product
» The probability that a customer selects product i from
assortment S is: P(i[S) = (e)/(e™ + 3 ;s €%)
» Independence of Irrelevant Alternatives (I1A) property
» Cannot capture substitution effect

Nested Logit (NL) models

> capture certain substitution among categories, but each nest
is subject to the IIA property

Mixed Multinomial Logit (MMNL) models
» Overcomes shortfalls of MNL and NL models

» Computationally expensive; overfitting issues
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LCustomer Choice Models

Rank-based choice models

Customer behavior o: list of products ranked according to
preferences of customer k, e.g. (2, 4,0, 1, 3,5, 6):

Customer selects highest ranked product in the assortment.

Choice model: composed of behaviors o and corresponding
probabilities )\, that a random customer follows behavior oy.

A A2 A3 A1)
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LCustomer Choice Models

Recent approaches using rank-based choice models

Challenge: an N-factorial large search space of customer behaviors

» Honhon et al. (2012), Vulcano and Van Ryzin (2017), ect.
> require market knowledge, e.g. customer behaviors
» Jagabathula (2011) and Farias et al. (2013)

» find the worst-case choice model for a given assortment
» tractable approach to estimate probabilities for all behaviors
» find the sparsest model

» Bertsimas and Misic (2016)

» master problem minimizes estimation error for given behaviors
column generation to find new customer behaviors

pricing problem solved heuristically, since exact MIP intractable
limited to small number of products

vV vy
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LCustomer Choice Models

Scope and Objectives of this work
Objectives:

» Develop an (efficient) data-driven approach to design
optimized assortments

» Consider substitution effect (cannibalization)

> Integrate complex side constraints on the assortment (size,
precedence, etc.)

» Be easy to interpret and provide market insights to
management: sparse and concise models
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LCustomer Choice Models

Scope and Objectives of this work

Objectives:
» Develop an (efficient) data-driven approach to design
optimized assortments
» Consider substitution effect (cannibalization)
> Integrate complex side constraints on the assortment (size,
precedence, etc.)

» Be easy to interpret and provide market insights to
management: sparse and concise models

Industrial collaboration:

» JDA Labs (research lab of JDA Software) Od
» Data from a large North-American retail chain l a*

. Plan to deliver”
> clothes (shoes and shirts)

» seasonal choice of products
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LA Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models with Indifference Sets

A new choice model:
» The customer has a strict preference on certain products.

» If unavailable, the customer may buy any similar product,
which is available, without preference.
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LA Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models with Indifference Sets

A new choice model:

> The customer has a strict preference on certain products.

» If unavailable, the customer may buy any similar product,
which is available, without preference.

Consider a customer behavior (P(o), (c),0), e.g.
(3,4,1,{2,5,6},0)

» P(o) =(3,4,1) C N is a strictly ranked list of preferred
products

» I(c) ={2,5,6} C N\P(0) is the subset of indifferent
products which will be chosen with uniform probability
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La Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models: Properties
(1) Equivalence of choice models:

» Transformation from fully-ranked (o ¢, Ac) to partially-ranked
choice model (op,Ap), and vice versa.

» Partially-ranked behaviors more compact: factorially large

number of fully-ranked behaviors required to represent the
same buying behavior
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LA Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models: Properties
(1) Equivalence of choice models:
» Transformation from fully-ranked (o ¢, Ac) to partially-ranked
choice model (op,Ap), and vice versa.
» Partially-ranked behaviors more compact: factorially large

number of fully-ranked behaviors required to represent the
same buying behavior

(1) (Ir)relevance of low ranked products:
> low ranked products — less important & explain less sales
> e.g. in assortment density 0.5, the probability that product at
rank 10 is selected from an “average” assortment is 0.05%

» explanatory power of indifference sets in “average” assortment
is similarly low

» — concise list of strictly ranked products — insights for
managers
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LA Rank-based Choice-model with Indifference Sets

Simplified Partially-Ranked Choice Model

Given:
» equal transformation: partial to completely ranked behaviors

> irrelevance of low ranked products and the likely small impact
of indifference set on explaining the sales

we consider a simplified variant:

(P(0), 1(0),0), where:
» P(c) =(3,4,1) C N is a strictly ranked list of preferred
products
» I(c) = N\P(c) ={0,2,5,6} is the indifference set.

—> several computational advantages without compromising
theoretical coherence
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|—Training the Choice Model

Training and Testing the Choice Models
Training set

» Set of M assortments: {Sp,},m=1,....M

» Probabilities of selling product i in assortment S, to a
random customer: (vj m)
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|—Training the Choice Model

Training and Testing the Choice Models
Training set

» Set of M assortments: {Sp,},m=1,....M

» Probabilities of selling product i in assortment S, to a
random customer: (Vv; m)

Test set

» Sales for each product i in each of the M other assortments

[m]

=
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LTraining the Choice Model

Training the choice model: completeley ranked behaviors

» Given: a subset of customer behaviors and historical sales v

» Find: probability distribution (A) that best explains the sales

» Define a choice matrix A, for each behavior k and
product/assortment tuple (i, m) (BM, 2016):

A 1 if iis chosen by customer k in assortment Sp,
nm 0 if i is not chosen by customer k in assortment S,
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LTraining the Choice Model

Training the choice model: completeley ranked behaviors

» Given: a subset of customer behaviors and historical sales v

» Find: probability distribution (A) that best explains the sales

» Define a choice matrix A, for each behavior k and
product/assortment tuple (i, m) (BM, 2016):

0 if i is not chosen by customer k in assortment S,,

{ 1 if iis chosen by customer k in assortment Sp,
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|—Training the Choice Model

Training the choice model: partially-ranked behaviors

Required: the total probability of buying a product sums to 1:

V(k,m), Y Af, =1
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LTraining the Choice Model

Training the choice model: partially-ranked behaviors

Required: the total probability of buying a product sums to 1:

V(k,m), Y Af, =1

1

For partially-ranked behaviors, a term ﬁ is distributed on the
m

products in the indifference set:

1, if j is chosen by customer k among assortment S,

Ak 0, if i is not chosen by customer k among assortment S,
im —
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LTraining the Choice Model

How to efficiently find important behaviors?

» BM (2016) use column generation to find columns k for the
LP above

» MIP pricing problem is intractable for large instances; local
search converges slowly
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LTraining the Choice Model

How to efficiently find important behaviors?

» BM (2016) use column generation to find columns k for the
LP above

» MIP pricing problem is intractable for large instances; local
search converges slowly

Questions:

» How to exploit special structure of indifference sets?

» How to exploit the fact that high ranked products have much
more impact?
> low-ranked products may eventually not be considered
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LTraining the Choice Model

How to efficiently find important behaviors?

» BM (2016) use column generation to find columns k for the
LP above

» MIP pricing problem is intractable for large instances; local
search converges slowly

Questions:

» How to exploit special structure of indifference sets?

» How to exploit the fact that high ranked products have much
more impact?
> low-ranked products may eventually not be considered

— expansion of a tree: each node represents a behavior.
= Growing Decision Tree (GDT)
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LTraining the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 1

D Ay W

Tree is initialized with N behaviors: one for each product:
» P(o1) =(0), I(o1) =10
» P(o3) = (1), I(02) = N\1=1{0,2,3}
» P(o3) =(2), I(03) =N\2=1{0,1,3}
> P(o4) = (3), I(04) = N\3 ={0,1,2}

Master problem is solved.
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LTraining the Choice Model

Iteration 1

Expansion of the Growing Decision Tree (GDT)

For each of the relevant customer behaviors oy:

» compute reduced costs (using dual values from Master
problem)
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LTraining the Choice Model

Expansion of the Growing Decision Tree (GDT)
Iteration 2

» add customer behaviors with lowest (negative) reduced costs
to the Master problem

> resolve Master problem




Partially-Ranked Choice Models for Data-Driven Assortment Optimization
|—Training the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 2
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|—Training the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 3
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LTraining the Choice Model

L Computational results

Problem Instances

Randomly generated instances:

» Via Mixed Multinomial Logit model: K classes (one for each
customer type)

» Uniformly [0, 1] chosen utilities for all products
» Random selection of 4 products: 100 times higher utilities
» M (typically = 40) assortments (20 to train, 20 to test)
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LTraining the Choice Model

L Computational results

Problem Instances

Randomly generated instances:

» Via Mixed Multinomial Logit model: K classes (one for each
customer type)

» Uniformly [0, 1] chosen utilities for all products
» Random selection of 4 products: 100 times higher utilities
» M (typically = 40) assortments (20 to train, 20 to test)

Industrial data:
» From JDA Labs: Northamerican retail chain (shoes)

> 10 stores during 10 consecutive weeks = 100 assortments
> 192 products
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|—Training the Choice Model
|—Computational results

Generated data - Learning curves

n = 100 products

Learning curves: training and test error CG-GDT and CG-LS (BM)

——GDT-Train  ---GDT-Test ——BM-Train ---BM-Test

Epsilon (error)

35 40

10 15 20 25 30
Time (s)

E DAC® 3
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|—Training the Choice Model

L Computational results

Real industrial data - Computational results

n = 192 products

Learning curves: training and test error CG-GDT and CG-LS (BM)

——GDT -Train  ——BM - Train
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70%
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30%
20%
10%

0%
0 100 200 300 400 500
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LTraining the Choice Model

L Computational results

Training phase: Scalability & Sparsity

Learning performance and generated choice models sizes K for:
» CG-GDT
» CG-LS

Averaged over 10 random instances

M =20, ¢g = 0.01

Assortment density = 0.3 (assortment size equals 0.3 X N)
24 hours time limit, 48 Gbyte memory limit

CG-GDT CG-LS

Train. time # # inst. Train. time #
N error (sec) iter K oom error (sec) iter K
30 0.37 23 9.2 105.6 0 0.39 225 392.0 223.8
50 0.38 6.0 10.3 104.7 0 0.40 57.3 603.2 370.1
100 0.39 29.7 15.4 127.3 0 0.40 269.8 1,070.7 721.3
250 0.39 321.8 21.0 2133 0 0.40 5,204.8 2,492.9 1,788.7
500 0.38 2,341.5 19.4 416.6 1 0.40 49,615.3 4,555.0 3,484.2
1000 0.33 5511.2 7.0 850.2 10 - - - -
all (avg) 0.38 1,368.7 13.7 303.0 11 0.40 10,459.6 1,795.6 1,295.3

Results for assortment densities 0.1 and 0.5 show the same tendencies.
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LTraining the Choice Model

L Computational results

Characteristics of the generated choice model

Averaged over 10 random instances

M =20, ¢g = 0.01

Assortment density = 0.3 (assortment size equals 0.3 X N)
720 minutes time limit, 48 Gbyte memory limit

Choice model: concision

# # strictly % explained by

€0 N | iter K  ranked products indifference sets
avg max exact comp. theor. est.
0.01 30 | 10.2 105.6 2.24 4 20.28 21.22
0.01 50 | 11.3 104.7 1.84 4 29.69 27.85
0.01 100 | 16.4 127.3 1.55 3 36.35 34.17
0.01 250 | 22.0 2133 1.22 3 44.76 43.07
0.01 500 | 20.4 416.6 1.07 3 47.78 47.69
0.01 1000 | 8.8 836.2 1.03 2 48.54 48.98
0.01 all | 149 300.6 1.49 4 37.90 35.59
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LAssortment optimization

Assortment optimization

Assortment optimization

Given a choice model, which subset of the products is likely to
maximize the revenue?

» Problem NP-hard (2" revenues to compute by explicit
enumeration).

» If all prices are equal: Mahajan & van Ryzin (1999) have
proposed a linear-complexity algorithm.

» General case: only heuristics (see for example ADXOpt by
Jagabathula (2011).

» Parametric choice models generally lead to difficult
formulations for assortment optimization.
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LAssonment optimization

Assortment Optimization: Mixed Integer Programming
Completely ranked preference lists:

» Efficient MIP to find optimal assortment (BM, 2016)

» MIP requires completely ranked customer behaviors
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LAssortment optimization

Assortment Optimization: Mixed Integer Programming

Completely ranked preference lists:
» Efficient MIP to find optimal assortment (BM, 2016)

» MIP requires completely ranked customer behaviors

Partially-ranked lists from GDT:
» (a) boosting: remaining ranks can be completed at random
» (b) add “indifference constraints’
» If strictly ranked products are not in the assortment:
distribute sales flow (1 unit) uniformly on all products in the
indifference set that are part of the assortment

» forces all products with equal rank to take same values
» K x N2 constraints = branch-and-cut
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LAssortment optimization

L Computational results

Scalablity of assortment optimization for:
» CG-GDT with AO B&C
» CG-GDT with AO-Boosting
» CG-LS with classical AO-MIP

Averaged over 10 random instances
720 minutes time limit, 48 Gbyte memory limit

Assortment optimization: Scalability

CG-GDT with AO B&C

CG-GDT with AO-Boosting

CG-LS with classical AO-MIP

# #
time GT oot time GT oot time GT
N K (min) revenue oom K (min) revenue oom K (min) revenue
30 109.9 0.1 74.5 0 386.8 0.0 74.2 0 220.0 0.0 73.6
50 113.5 0.1 82.5 0 397.9 0.1 81.9 0 379.8 0.1 81.9
100 117.8 0.8 88.8 0 407.7 0.6 86.0 0 722.0 2.0 86.3
250 211.0 7.3 90.4 0 655.5 9.5 88.9 0 1,813.1 1413 89.7
500 438.1 113.1 94.5 0 1,321.7 249.4 92.9 10 - - -
1000 897.4 669.9 95.0 10 - - - 10 - - -
all 314.6 131.9 87.6 10 633.9 51.9 84.8 20 783.7 35.8 82.9

Revenue: value based on ground-truth MMNL model
Boosting: at least 3 randomly completed lists for each k
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L Conclusion

Summary

» New representation for rank-based choice models
> Indifference sets

behaviors

» Implicitly equivalent to choice models with completely ranked
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L Conclusion

Summary

» New representation for rank-based choice models
> Indifference sets
» Implicitly equivalent to choice models with completely ranked
behaviors
» Computational advantages
» Fast training of choice model; good convergence after few
iterations
» Fast generation of new customer behaviors (products with high
ranks have more impact)
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LConclusion

Summary

» New representation for rank-based choice models
> Indifference sets
» Implicitly equivalent to choice models with completely ranked
behaviors
» Computational advantages
» Fast training of choice model; good convergence after few
iterations
» Fast generation of new customer behaviors (products with high
ranks have more impact)
» Advantages from the managerial perspective

» Model is sparse: less customer behaviors
» Model is concise: low number strictly ranked products
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L Conclusion

Open research directions

Extensions:
> Learn the choice model by “classical” ML algorithms

» Generalization to new products: how can we learn the
importance of products that have never been part of past
assortments?

Q(?) &A(Y)
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L Conclusion
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