Partially-Ranked Choice Models for Data-Driven Assortment Optimization

Sanjay Dominik Jena
Andrea Lodi
Hugo Palmer

Canada Excellence Research Chair, andrea.lodi@polymtl.ca

CERMICS 2018 - June 29, 2018, Fréjus

Assortment planning: Context

- Process of identifying the set of products that should be offered to the customer
- Direct impact on profit
- online ads: number of clicks on ads; sales by visiting links, etc.
- retail: conversion rate of a product, i.e., frequency of sales

Examples:

- Online advertising

- Brick-and-mortar retail

Assortment planning: Objectives

- Find assortment that maximizes revenue
- Encourage the user to select the product(s) that has/have highest utility (e.g. profit)
- In retail: assortment changes can be quite costly

Examples:

- Online advertising

- Brick-and-mortar retail

Assortment Planning: Challenges

- Small assortments \Longrightarrow less choice \Longrightarrow less sales !
- More products \Longrightarrow more choice \Longrightarrow more sales ?
- offering all products is known to be non-optimal
- Substitution effect
- the presence of a product may jeopardize the sales of another
- e.g. the Apple iPad reduced the sales of the Apple Powerbook
- the absence of a preferred product may encourage the customer to "substitute" to a (more profitable) alternative
- Complexity of assortment constraints:
- capacity: limited shelf size or space on website
- product dependencies: subset constraints, balance between product categories (e.g. male and female shoe models) etc.

Assortment Planning: Challenges

Given historical data on assortments and transactions:

How to learn from historical transaction data to predict the performance of a future assortment?

\rightarrow customer choice models

Parametric Choice Models

Multinomial Logit (MNL) models

- Attributes an utility to each product
- The probability that a customer selects product i from assortment S is: $\mathbb{P}(i \mid S)=\left(e^{u_{i}}\right) /\left(e^{u_{0}}+\sum_{j \in S} e^{u_{j}}\right)$
- Independence of Irrelevant Alternatives (IIA) property
- Cannot capture substitution effect

Nested Logit (NL) models

- capture certain substitution among categories, but each nest is subject to the IIA property
Mixed Multinomial Logit (MMNL) models
- Overcomes shortfalls of MNL and NL models
- Computationally expensive; overfitting issues

Rank-based choice models

Customer behavior σ_{k} : list of products ranked according to preferences of customer k, e.g. ($2,4,0,1,3,5,6$):

$$
(x, 1, m, 1,1, \infty)
$$

Customer selects highest ranked product in the assortment.
Choice model: composed of behaviors σ and corresponding probabilities λ_{k} that a random customer follows behavior σ_{k}.

Recent approaches using rank-based choice models

Challenge: an N -factorial large search space of customer behaviors

- Honhon et al. (2012), Vulcano and Van Ryzin (2017), ect.
- require market knowledge, e.g. customer behaviors
- Jagabathula (2011) and Farias et al. (2013)
- find the worst-case choice model for a given assortment
- tractable approach to estimate probabilities for all behaviors
- find the sparsest model
- Bertsimas and Misic (2016)
- master problem minimizes estimation error for given behaviors
- column generation to find new customer behaviors
- pricing problem solved heuristically, since exact MIP intractable
- limited to small number of products

Scope and Objectives of this work

Objectives:

- Develop an (efficient) data-driven approach to design optimized assortments
- Consider substitution effect (cannibalization)
- Integrate complex side constraints on the assortment (size, precedence, etc.)
- Be easy to interpret and provide market insights to management: sparse and concise models

Scope and Objectives of this work

Objectives:

- Develop an (efficient) data-driven approach to design optimized assortments
- Consider substitution effect (cannibalization)
- Integrate complex side constraints on the assortment (size, precedence, etc.)
- Be easy to interpret and provide market insights to management: sparse and concise models

Industrial collaboration:

- JDA Labs (research lab of JDA Software)
- Data from a large North-American retail chain
- clothes (shoes and shirts)
- seasonal choice of products

Partially-Ranked Choice Models with Indifference Sets

A new choice model:

- The customer has a strict preference on certain products.
- If unavailable, the customer may buy any similar product, which is available, without preference.

Partially-Ranked Choice Models with Indifference Sets

A new choice model:

- The customer has a strict preference on certain products.
- If unavailable, the customer may buy any similar product, which is available, without preference.

Consider a customer behavior $(P(\sigma), I(\sigma), 0)$, e.g.
$(3,4,1,\{2,5,6\}, 0)$

- $P(\sigma)=(3,4,1) \subseteq \mathcal{N}$ is a strictly ranked list of preferred products
- $I(\sigma)=\{2,5,6\} \subseteq \mathcal{N} \backslash P(\sigma)$ is the subset of indifferent products which will be chosen with uniform probability

Partially-Ranked Choice Models: Properties

(I) Equivalence of choice models:

- Transformation from fully-ranked $\left(\sigma_{C}, \boldsymbol{\lambda}_{C}\right)$ to partially-ranked choice model ($\sigma_{P}, \boldsymbol{\lambda}_{P}$), and vice versa.
- Partially-ranked behaviors more compact: factorially large number of fully-ranked behaviors required to represent the same buying behavior

Partially-Ranked Choice Models: Properties

(I) Equivalence of choice models:

- Transformation from fully-ranked $\left(\sigma_{C}, \boldsymbol{\lambda}_{C}\right)$ to partially-ranked choice model ($\sigma_{P}, \boldsymbol{\lambda}_{P}$), and vice versa.
- Partially-ranked behaviors more compact: factorially large number of fully-ranked behaviors required to represent the same buying behavior
(II) (Ir)relevance of low ranked products:
- low ranked products \rightarrow less important \& explain less sales
- e.g. in assortment density 0.5, the probability that product at rank 10 is selected from an "average" assortment is 0.05%
- explanatory power of indifference sets in "average" assortment is similarly low
- \rightarrow concise list of strictly ranked products \rightarrow insights for managers

Simplified Partially-Ranked Choice Model

Given:

- equal transformation: partial to completely ranked behaviors
- irrelevance of low ranked products and the likely small impact of indifference set on explaining the sales
we consider a simplified variant:
$(P(\sigma), I(\sigma), 0)$, where:
- $P(\sigma)=(3,4,1) \subseteq \mathcal{N}$ is a strictly ranked list of preferred products
- I $\sigma)=\mathcal{N} \backslash P(\sigma)=\{0,2,5,6\}$ is the indifference set.
\Longrightarrow several computational advantages without compromising theoretical coherence

Training and Testing the Choice Models

Training set

- Set of M assortments: $\left\{S_{m}\right\}, m=1, \ldots, M$
- Probabilities of selling product i in assortment S_{m} to a random customer: $\left(v_{i, m}\right)$

Training and Testing the Choice Models

Training set

- Set of M assortments: $\left\{S_{m}\right\}, m=1, \ldots, M$
- Probabilities of selling product i in assortment S_{m} to a random customer: $\left(v_{i, m}\right)$

Test set

- Sales for each product i in each of the M other assortments

Training the choice model: completeley ranked behaviors

- Given: a subset of customer behaviors and historical sales v
- Find: probability distribution ($\boldsymbol{\lambda}$) that best explains the sales
- Define a choice matrix \boldsymbol{A}, for each behavior k and product/assortment tuple (i,m) (BM, 2016):
$A_{i, m}^{k}=\left\{\begin{array}{l}1 \text { if } i \text { is chosen by customer } k \text { in assortment } S_{m} \\ 0 \text { if } i \text { is not chosen by customer } k \text { in assortment } S_{m}\end{array}\right.$

Training the choice model: completeley ranked behaviors

- Given: a subset of customer behaviors and historical sales v
- Find: probability distribution $(\boldsymbol{\lambda})$ that best explains the sales
- Define a choice matrix \boldsymbol{A}, for each behavior k and product/assortment tuple (i, m) (BM, 2016):
$A_{i, m}^{k}=\left\{\begin{array}{l}1 \text { if } i \text { is chosen by customer } k \text { in assortment } S_{m} \\ 0 \text { if } i \text { is not chosen by customer } k \text { in assortment } S_{m}\end{array}\right.$
Linear program to find λ that minimizes estimation error

$$
\begin{array}{ll}
\min _{\lambda, \epsilon^{+}, \epsilon^{-}} & 1^{T} \epsilon^{+}+1^{T} \epsilon^{-} \\
\text {s.t. } & A \lambda+\epsilon^{+}-\epsilon^{-}=v \quad(\alpha) \\
& 1^{T} \lambda=1 \\
& \lambda, \epsilon^{+}, \epsilon^{-} \geq 0
\end{array}
$$

Training the choice model: partially-ranked behaviors

Required: the total probability of buying a product sums to 1 :

$$
\forall(k, m), \sum_{i} A_{i, m}^{k}=1
$$

Training the choice model: partially-ranked behaviors

Required: the total probability of buying a product sums to 1 :

$$
\forall(k, m), \sum_{i} A_{i, m}^{k}=1
$$

For partially-ranked behaviors, a term $\frac{1}{\left|S_{m}\right|}$ is distributed on the products in the indifference set:
$A_{i, m}^{k}= \begin{cases}1, & \text { if } i \text { is chosen by customer } k \text { among assortment } S_{m} \\ 0, & \text { if } i \text { is not chosen by customer } k \text { among assortment } S_{m} \\ \frac{1}{\left|S_{m}\right|}, & \text { if } i \in S_{m}, i \in I\left(\sigma_{k}\right) \text { and } P\left(\sigma_{k}\right) \cap S_{m}=\emptyset\end{cases}$

How to efficiently find important behaviors?

- BM (2016) use column generation to find columns k for the LP above
- MIP pricing problem is intractable for large instances; local search converges slowly

How to efficiently find important behaviors?

- BM (2016) use column generation to find columns k for the LP above
- MIP pricing problem is intractable for large instances; local search converges slowly

Questions:

- How to exploit special structure of indifference sets?
- How to exploit the fact that high ranked products have much more impact?
- low-ranked products may eventually not be considered

How to efficiently find important behaviors?

- BM (2016) use column generation to find columns k for the LP above
- MIP pricing problem is intractable for large instances; local search converges slowly

Questions:

- How to exploit special structure of indifference sets?
- How to exploit the fact that high ranked products have much more impact?
- low-ranked products may eventually not be considered
\Longrightarrow expansion of a tree: each node represents a behavior.
\Longrightarrow Growing Decision Tree (GDT)

Expansion of the Growing Decision Tree (GDT)

Iteration 1

Tree is initialized with N behaviors: one for each product:

- $P\left(\sigma_{1}\right)=(0), I\left(\sigma_{1}\right)=\emptyset$
- $P\left(\sigma_{2}\right)=(1), I\left(\sigma_{2}\right)=\mathcal{N} \backslash 1=\{0,2,3\}$
- $P\left(\sigma_{3}\right)=(2), I\left(\sigma_{3}\right)=\mathcal{N} \backslash 2=\{0,1,3\}$
- $P\left(\sigma_{4}\right)=(3), I\left(\sigma_{4}\right)=\mathcal{N} \backslash 3=\{0,1,2\}$

Master problem is solved.

Expansion of the Growing Decision Tree (GDT)

Iteration 1

For each of the relevant customer behaviors σ_{k} :

- compute reduced costs (using dual values from Master problem)

Expansion of the Growing Decision Tree (GDT)

Iteration 2

- add customer behaviors with lowest (negative) reduced costs to the Master problem
- resolve Master problem

Expansion of the Growing Decision Tree (GDT)

Iteration 2

Expansion of the Growing Decision Tree (GDT)

Iteration 3

Problem Instances

Randomly generated instances:

- Via Mixed Multinomial Logit model: K classes (one for each customer type)
- Uniformly $[0,1]$ chosen utilities for all products
- Random selection of 4 products: 100 times higher utilities
- M (typically $=40$) assortments (20 to train, 20 to test)

Problem Instances

Randomly generated instances:

- Via Mixed Multinomial Logit model: K classes (one for each customer type)
- Uniformly $[0,1]$ chosen utilities for all products
- Random selection of 4 products: 100 times higher utilities
- M (typically $=40$) assortments (20 to train, 20 to test)

Industrial data:

- From JDA Labs: Northamerican retail chain (shoes)
- 10 stores during 10 consecutive weeks $\Longrightarrow 100$ assortments
- 192 products

Generated data - Learning curves

$$
n=100 \text { products }
$$

Learning curves: training and test error CG-GDT and CG-LS (BM)

$$
\text { —GDT - Train } \quad---G D T \text { - Test } \quad \text {-BM - Train } \quad--- \text { BM - Test }
$$

Real industrial data - Computational results

$n=192$ products
Learning curves: training and test error CG-GDT and CG-LS (BM)

Training phase: Scalability \& Sparsity

Learning performance and generated choice models sizes K for:

- CG-GDT
- CG-LS

Averaged over 10 random instances
$M=20, \epsilon_{0}=0.01$
Assortment density $=0.3$ (assortment size equals $0.3 \times N$)
24 hours time limit, 48 Gbyte memory limit

N	CG-GDT				CG-LS				
	Train. error	$\begin{aligned} & \text { time } \\ & (\mathrm{sec}) \end{aligned}$	$\underset{\substack{\text { itor }}}{\#}$	K	$\begin{aligned} & \text { \# inst. } \\ & \text { oom } \end{aligned}$	Train. error	time (sec)	$\begin{gathered} \# \\ \text { iter } \end{gathered}$	K
30	0.37	2.3	9.2	105.6	0	0.39	22.5	392.0	223.8
50	0.38	6.0	10.3	104.7	0	0.40	57.3	603.2	370.1
100	0.39	29.7	15.4	127.3	0	0.40	269.8	1,070.7	721.3
250	0.39	321.8	21.0	213.3	0	0.40	5,204.8	2,492.9	1,788.7
500	0.38	2,341.5	19.4	416.6	1	0.40	49,615.3	4,555.0	3,484.2
1000	0.33	5,511.2	7.0	850.2	10	-	-	-	-
all (avg)	0.38	1,368.7	13.7	303.0	11	0.40	10,459.6	1,795.6	1,295.3

Results for assortment densities 0.1 and 0.5 show the same tendencies.

Choice model: concision

Characteristics of the generated choice model
Averaged over 10 random instances
$M=20, \epsilon_{0}=0.01$
Assortment density $=0.3$ (assortment size equals $0.3 \times N$)
720 minutes time limit, 48 Gbyte memory limit

		$\#$			\# strictly		\% explained by	
ϵ_{0}	N	iter	K	ranked products	indifference sets			
				avg	max	exact comp.	theor. est.	
0.01	30	10.2	105.6	2.24	4	20.28	21.22	
0.01	50	11.3	104.7	1.84	4	29.69	27.85	
0.01	100	16.4	127.3	1.55	3	36.35	34.17	
0.01	250	22.0	213.3	1.22	3	44.76	43.07	
0.01	500	20.4	416.6	1.07	3	47.78	47.69	
0.01	1000	8.8	836.2	1.03	2	48.54	48.98	
0.01	all	14.9	300.6	1.49	4	37.90	35.59	

Assortment optimization

Assortment optimization

Given a choice model, which subset of the products is likely to maximize the revenue?

Literature

- Problem NP-hard (2^{n} revenues to compute by explicit enumeration).
- If all prices are equal: Mahajan \& van Ryzin (1999) have proposed a linear-complexity algorithm.
- General case: only heuristics (see for example ADXOpt by Jagabathula (2011).
- Parametric choice models generally lead to difficult formulations for assortment optimization.

Assortment Optimization: Mixed Integer Programming

Completely ranked preference lists:

- Efficient MIP to find optimal assortment (BM, 2016)
- MIP requires completely ranked customer behaviors

Assortment Optimization: Mixed Integer Programming

Completely ranked preference lists:

- Efficient MIP to find optimal assortment (BM, 2016)
- MIP requires completely ranked customer behaviors

Partially-ranked lists from GDT:

- (a) boosting: remaining ranks can be completed at random
- (b) add "indifference constraints":
- If strictly ranked products are not in the assortment: distribute sales flow (1 unit) uniformly on all products in the indifference set that are part of the assortment
- forces all products with equal rank to take same values
- $K \times N^{2}$ constraints \Longrightarrow branch-and-cut

Assortment optimization: Scalability

Scalablity of assortment optimization for:

- CG-GDT with AO B\&C
- CG-GDT with AO-Boosting
- CG-LS with classical AO-MIP

Averaged over 10 random instances
720 minutes time limit, 48 Gbyte memory limit

N	CG-GDT with AO B\&C			CG-GDT with AO-Boosting				CG-LS with classical AO-MIP			
	K	$\begin{array}{r} \text { time } \\ (\mathrm{min}) \end{array}$	GT revenue		K	$\begin{array}{r} \text { time } \\ (\mathrm{min}) \\ \hline \end{array}$	GT revenue		K	$\begin{array}{r} \text { time } \\ (\mathrm{min}) \end{array}$	$\begin{array}{r} \mathrm{GT} \\ \text { revenue } \end{array}$
30	109.9	0.1	74.5	0	386.8	0.0	74.2	0	220.0	0.0	73.6
50	113.5	0.1	82.5	0	397.9	0.1	81.9	0	379.8	0.1	81.9
100	117.8	0.8	88.8	0	407.7	0.6	86.0	0	722.0	2.0	86.3
250	211.0	7.3	90.4	0	655.5	9.5	88.9	0	1,813.1	141.3	89.7
500	438.1	113.1	94.5	0	1,321.7	249.4	92.9	10	-	-	-
1000	897.4	669.9	95.0	10	-	-	-	10	-	-	-
all	314.6	131.9	87.6	10	633.9	51.9	84.8	20	783.7	35.8	82.9

Revenue: value based on ground-truth MMNL model
Boosting: at least 3 randomly completed lists for each k

Summary

- New representation for rank-based choice models
- Indifference sets
- Implicitly equivalent to choice models with completely ranked behaviors

Summary

- New representation for rank-based choice models
- Indifference sets
- Implicitly equivalent to choice models with completely ranked behaviors
- Computational advantages
- Fast training of choice model; good convergence after few iterations
- Fast generation of new customer behaviors (products with high ranks have more impact)

Summary

- New representation for rank-based choice models
- Indifference sets
- Implicitly equivalent to choice models with completely ranked behaviors
- Computational advantages
- Fast training of choice model; good convergence after few iterations
- Fast generation of new customer behaviors (products with high ranks have more impact)
- Advantages from the managerial perspective
- Model is sparse: less customer behaviors
- Model is concise: low number strictly ranked products

Open research directions

Extensions:

- Learn the choice model by "classical" ML algorithms
- Generalization to new products: how can we learn the importance of products that have never been part of past assortments?

Q (?) \& A (!

References

\rightarrow Bertsimas, D., \& Misic, V. (2016). Data-Driven Assortment Optimization. Working Paper. Massachusetts Institute of Technology.

- Farias, V. F., Jagabathula, S., \& Shah, D. (2013). A Nonparametric Approach to Modeling Choice with Limited Data. Management Science, 59, 44.
- Honhon, D., Jonnalagedda, S., \& Pan, X. A. (2012). Optimal Algorithms for Assortment Selection Under Ranking-Based Consumer Choice Models. Manufacturing \& Service Operations Management, 14(2), 279-289.
$>$ Jagabathula, S. (2011). Nonparametric Choice Modeling: Applications to Operations Management. PhD thesis. Massachusetts Institute of Technology.
\rightarrow Mahajan, S. \& G. J. van Ryzin. (1999). Retail inventories and customer choice. Quantitative Models for Supply Chain Management. Springer, 491-551.
\rightarrow Palmer, H. (2016). Large-Scale Assortment Optimization. Master thesis. École Polytechnique de Montréal.
\rightarrow Vulcano, G., \& Van Ryzin, G. (2017). Technical Note - An expectation-maximization method to estimate a rank-based choice model of demand. Operations Research, 65(2), 396-407.

