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Introduction to Assortment Planning

Assortment planning: Context

I Process of identifying the set of products that should be
offered to the customer

I Direct impact on profit
I online ads: number of clicks on ads; sales by visiting links, etc.
I retail: conversion rate of a product, i.e., frequency of sales

Examples:

I Online advertising I Brick-and-mortar retail
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Introduction to Assortment Planning

Assortment planning: Objectives

I Find assortment that maximizes revenue

I Encourage the user to select the product(s) that has/have
highest utility (e.g. profit)

I In retail: assortment changes can be quite costly

Examples:

I Online advertising I Brick-and-mortar retail
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Introduction to Assortment Planning

Assortment Planning: Challenges

I Small assortments =⇒ less choice =⇒ less sales !
I More products =⇒ more choice =⇒ more sales ?

I offering all products is known to be non-optimal

I Substitution effect
I the presence of a product may jeopardize the sales of another
I e.g. the Apple iPad reduced the sales of the Apple Powerbook
I the absence of a preferred product may encourage the

customer to “substitute” to a (more profitable) alternative

I Complexity of assortment constraints:
I capacity: limited shelf size or space on website
I product dependencies: subset constraints, balance between

product categories (e.g. male and female shoe models) etc.
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Introduction to Assortment Planning

Assortment Planning: Challenges

Given historical data on assortments and transactions:

How to learn from historical transaction data to predict the
performance of a future assortment?

→ customer choice models
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Customer Choice Models

Parametric Choice Models

Multinomial Logit (MNL) models

I Attributes an utility to each product

I The probability that a customer selects product i from
assortment S is: P(i |S) = (eui )/(eu0 +

∑
j∈S euj )

I Independence of Irrelevant Alternatives (IIA) property
I Cannot capture substitution effect

Nested Logit (NL) models

I capture certain substitution among categories, but each nest
is subject to the IIA property

Mixed Multinomial Logit (MMNL) models

I Overcomes shortfalls of MNL and NL models

I Computationally expensive; overfitting issues
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Customer Choice Models

Rank-based choice models
Customer behavior σk : list of products ranked according to
preferences of customer k, e.g. (2, 4, 0, 1, 3, 5, 6):

Customer selects highest ranked product in the assortment.

Choice model: composed of behaviors σσσ and corresponding
probabilities λk that a random customer follows behavior σk .
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Customer Choice Models

Recent approaches using rank-based choice models

Challenge: an N-factorial large search space of customer behaviors

I Honhon et al. (2012), Vulcano and Van Ryzin (2017), ect.
I require market knowledge, e.g. customer behaviors

I Jagabathula (2011) and Farias et al. (2013)
I find the worst-case choice model for a given assortment
I tractable approach to estimate probabilities for all behaviors
I find the sparsest model

I Bertsimas and Misic (2016)
I master problem minimizes estimation error for given behaviors
I column generation to find new customer behaviors
I pricing problem solved heuristically, since exact MIP intractable
I limited to small number of products
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Customer Choice Models

Scope and Objectives of this work

Objectives:

I Develop an (efficient) data-driven approach to design
optimized assortments

I Consider substitution effect (cannibalization)

I Integrate complex side constraints on the assortment (size,
precedence, etc.)

I Be easy to interpret and provide market insights to
management: sparse and concise models

Industrial collaboration:

I JDA Labs (research lab of JDA Software)
I Data from a large North-American retail chain

I clothes (shoes and shirts)
I seasonal choice of products
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A Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models with Indifference Sets

A new choice model:

I The customer has a strict preference on certain products.

I If unavailable, the customer may buy any similar product,
which is available, without preference.

Consider a customer behavior (P(σ), I (σ), 0), e.g.
(3, 4, 1, {2, 5, 6}, 0)

I P(σ) = (3, 4, 1) ⊆ N is a strictly ranked list of preferred
products

I I (σ) = {2, 5, 6} ⊆ N\P(σ) is the subset of indifferent
products which will be chosen with uniform probability
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A Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models: Properties

(I) Equivalence of choice models:

I Transformation from fully-ranked (σσσC ,λλλC ) to partially-ranked
choice model (σσσP ,λλλP), and vice versa.

I Partially-ranked behaviors more compact: factorially large
number of fully-ranked behaviors required to represent the
same buying behavior

(II) (Ir)relevance of low ranked products:
I low ranked products → less important & explain less sales

I e.g. in assortment density 0.5, the probability that product at
rank 10 is selected from an “average” assortment is 0.05%

I explanatory power of indifference sets in “average” assortment
is similarly low

I → concise list of strictly ranked products → insights for
managers
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A Rank-based Choice-model with Indifference Sets

Simplified Partially-Ranked Choice Model

Given:

I equal transformation: partial to completely ranked behaviors

I irrelevance of low ranked products and the likely small impact
of indifference set on explaining the sales

we consider a simplified variant:

(P(σ), I (σ), 0), where:

I P(σ) = (3, 4, 1) ⊆ N is a strictly ranked list of preferred
products

I I (σ) = N\P(σ) = {0, 2, 5, 6} is the indifference set.

=⇒ several computational advantages without compromising
theoretical coherence
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Training the Choice Model

Training and Testing the Choice Models

Training set

I Set of M assortments: {Sm},m = 1, . . . ,M

I Probabilities of selling product i in assortment Sm to a
random customer: (vi ,m)

Test set

I Sales for each product i in each of the M other assortments
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Training the Choice Model

Training the choice model: completeley ranked behaviors
I Given: a subset of customer behaviors and historical sales vvv
I Find: probability distribution (λλλ) that best explains the sales
I Define a choice matrix AAA, for each behavior k and

product/assortment tuple (i ,m) (BM, 2016):

Ak
i ,m =

{
1 if i is chosen by customer k in assortment Sm

0 if i is not chosen by customer k in assortment Sm

Linear program to find λλλ that minimizes estimation error

min
λ,ε+,ε−

1T ε+ + 1T ε−

s.t. Aλ+ ε+ − ε− = v (α)

1Tλ = 1 (ν)

λ, ε+, ε− ≥ 0
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Training the Choice Model

Training the choice model: partially-ranked behaviors

Required: the total probability of buying a product sums to 1:

∀(k,m),
∑
i

Ak
i ,m = 1

For partially-ranked behaviors, a term
1

|Sm|
is distributed on the

products in the indifference set:

Ak
i ,m =


1, if i is chosen by customer k among assortment Sm

0, if i is not chosen by customer k among assortment Sm

1

|Sm|
, if i ∈ Sm, i ∈ I (σk) and P(σk) ∩ Sm = ∅
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Training the Choice Model

How to efficiently find important behaviors?

I BM (2016) use column generation to find columns k for the
LP above

I MIP pricing problem is intractable for large instances; local
search converges slowly

Questions:

I How to exploit special structure of indifference sets?
I How to exploit the fact that high ranked products have much

more impact?
I low-ranked products may eventually not be considered

=⇒ expansion of a tree: each node represents a behavior.
=⇒ Growing Decision Tree (GDT)
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Training the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 1

0 1 2 3

root

λ1 λ2 λ4λ3

Tree is initialized with N behaviors: one for each product:

I P(σ1) = (0), I (σ1) = ∅
I P(σ2) = (1), I (σ2) = N\1 = {0, 2, 3}
I P(σ3) = (2), I (σ3) = N\2 = {0, 1, 3}
I P(σ4) = (3), I (σ4) = N\3 = {0, 1, 2}

Master problem is solved.
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Training the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 1

0 1 2 3

0 2 3 0 1 3 0 1 2

root

λ1 λ2 λ4λ3

rc2 rc3rc1 rc5 rc6 rc7 rc8 rc9rc4

For each of the relevant customer behaviors σk :

I compute reduced costs (using dual values from Master
problem)
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Training the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 2

0 1 2 3

0 0 1 2

root

λ1 λ2 λ4λ3

λ5 λ6 λ7 λ8

I add customer behaviors with lowest (negative) reduced costs
to the Master problem

I resolve Master problem
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Training the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 2

0 1 2 3

0 0 1 2

root

λ1 λ2 λ4λ3

rc2rc1 rc5rc4
λ5 λ6 λ7 λ82 3

rc3
3

rc7
3

rc6
0

rc9
3

rc8
0

0 1
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Training the Choice Model

Expansion of the Growing Decision Tree (GDT)

Iteration 3

0 1 2 3

0 0 1 2

root

λ1 λ2 λ4λ3

λ5 λ6 λ7 λ9

3 3

0

0λ13

λ8

λ10 λ11

0λ12
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Training the Choice Model

Computational results

Problem Instances

Randomly generated instances:

I Via Mixed Multinomial Logit model: K classes (one for each
customer type)

I Uniformly [0, 1] chosen utilities for all products

I Random selection of 4 products: 100 times higher utilities

I M (typically = 40) assortments (20 to train, 20 to test)

Industrial data:

I From JDA Labs: Northamerican retail chain (shoes)

I 10 stores during 10 consecutive weeks =⇒ 100 assortments

I 192 products
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Training the Choice Model

Computational results

Generated data - Learning curves
n = 100 products

Learning curves: training and test error CG-GDT and CG-LS (BM)
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Training the Choice Model

Computational results

Real industrial data - Computational results
n = 192 products

Learning curves: training and test error CG-GDT and CG-LS (BM)
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Training the Choice Model

Computational results

Training phase: Scalability & Sparsity

Learning performance and generated choice models sizes K for:

I CG-GDT

I CG-LS

Averaged over 10 random instances
M = 20, ε0 = 0.01
Assortment density = 0.3 (assortment size equals 0.3 × N)
24 hours time limit, 48 Gbyte memory limit

CG-GDT CG-LS
Train. time # # inst. Train. time #

N error (sec) iter K oom error (sec) iter K

30 0.37 2.3 9.2 105.6 0 0.39 22.5 392.0 223.8
50 0.38 6.0 10.3 104.7 0 0.40 57.3 603.2 370.1

100 0.39 29.7 15.4 127.3 0 0.40 269.8 1,070.7 721.3
250 0.39 321.8 21.0 213.3 0 0.40 5,204.8 2,492.9 1,788.7
500 0.38 2,341.5 19.4 416.6 1 0.40 49,615.3 4,555.0 3,484.2

1000 0.33 5,511.2 7.0 850.2 10 - - - -
all (avg) 0.38 1,368.7 13.7 303.0 11 0.40 10,459.6 1,795.6 1,295.3

Results for assortment densities 0.1 and 0.5 show the same tendencies.
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Training the Choice Model

Computational results

Choice model: concision

Characteristics of the generated choice model
Averaged over 10 random instances
M = 20, ε0 = 0.01
Assortment density = 0.3 (assortment size equals 0.3 × N)
720 minutes time limit, 48 Gbyte memory limit

# # strictly % explained by
ε0 N iter K ranked products indifference sets

avg max exact comp. theor. est.

0.01 30 10.2 105.6 2.24 4 20.28 21.22
0.01 50 11.3 104.7 1.84 4 29.69 27.85
0.01 100 16.4 127.3 1.55 3 36.35 34.17
0.01 250 22.0 213.3 1.22 3 44.76 43.07
0.01 500 20.4 416.6 1.07 3 47.78 47.69
0.01 1000 8.8 836.2 1.03 2 48.54 48.98
0.01 all 14.9 300.6 1.49 4 37.90 35.59
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Assortment optimization

Assortment optimization

Assortment optimization

Given a choice model, which subset of the products is likely to
maximize the revenue?

Literature

I Problem NP-hard (2n revenues to compute by explicit
enumeration).

I If all prices are equal : Mahajan & van Ryzin (1999) have
proposed a linear-complexity algorithm.

I General case: only heuristics (see for example ADXOpt by
Jagabathula (2011).

I Parametric choice models generally lead to difficult
formulations for assortment optimization.
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Assortment optimization

Assortment Optimization: Mixed Integer Programming

Completely ranked preference lists:

I Efficient MIP to find optimal assortment (BM, 2016)

I MIP requires completely ranked customer behaviors

Partially-ranked lists from GDT:

I (a) boosting: remaining ranks can be completed at random
I (b) add “indifference constraints”:

I If strictly ranked products are not in the assortment:
distribute sales flow (1 unit) uniformly on all products in the
indifference set that are part of the assortment

I forces all products with equal rank to take same values
I K × N2 constraints =⇒ branch-and-cut
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Assortment optimization

Computational results

Assortment optimization: Scalability

Scalablity of assortment optimization for:

I CG-GDT with AO B&C

I CG-GDT with AO-Boosting

I CG-LS with classical AO-MIP

Averaged over 10 random instances
720 minutes time limit, 48 Gbyte memory limit

CG-GDT with AO B&C CG-GDT with AO-Boosting CG-LS with classical AO-MIP
# #

time GT oot time GT oot time GT
N K (min) revenue oom K (min) revenue oom K (min) revenue
30 109.9 0.1 74.5 0 386.8 0.0 74.2 0 220.0 0.0 73.6
50 113.5 0.1 82.5 0 397.9 0.1 81.9 0 379.8 0.1 81.9

100 117.8 0.8 88.8 0 407.7 0.6 86.0 0 722.0 2.0 86.3
250 211.0 7.3 90.4 0 655.5 9.5 88.9 0 1,813.1 141.3 89.7
500 438.1 113.1 94.5 0 1,321.7 249.4 92.9 10 - - -

1000 897.4 669.9 95.0 10 - - - 10 - - -
all 314.6 131.9 87.6 10 633.9 51.9 84.8 20 783.7 35.8 82.9

Revenue: value based on ground-truth MMNL model
Boosting: at least 3 randomly completed lists for each k
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Conclusion

Summary

I New representation for rank-based choice models
I Indifference sets
I Implicitly equivalent to choice models with completely ranked

behaviors

I Computational advantages
I Fast training of choice model; good convergence after few

iterations
I Fast generation of new customer behaviors (products with high

ranks have more impact)

I Advantages from the managerial perspective
I Model is sparse: less customer behaviors
I Model is concise: low number strictly ranked products
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Conclusion

Open research directions

Extensions:

I Learn the choice model by “classical” ML algorithms

I Generalization to new products: how can we learn the
importance of products that have never been part of past
assortments?

Q (?) & A (!)
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Conclusion
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