Sanjay Dominik Jena Andrea Lodi Hugo Palmer

Canada Excellence Research Chair, andrea.lodi@polymtl.ca

CERMICS 2018 - June 29, 2018, Fréjus

(ロ)、

Assortment planning: Context

- Process of identifying the set of products that should be offered to the customer
- Direct impact on profit
 - online ads: number of clicks on ads; sales by visiting links, etc.
 - retail: conversion rate of a product, i.e., frequency of sales

Examples:

Online advertising

Brick-and-mortar retail

Assortment planning: Objectives

- Find assortment that maximizes revenue
- Encourage the user to select the product(s) that has/have highest utility (e.g. profit)
- In retail: assortment changes can be quite costly

Examples:

Online advertising

Brick-and-mortar retail

Assortment Planning: Challenges

- Small assortments \implies less choice \implies less sales !
- More products \implies more choice \implies more sales ?
 - offering all products is known to be non-optimal
- Substitution effect
 - the presence of a product may jeopardize the sales of another
 - e.g. the Apple iPad reduced the sales of the Apple Powerbook
 - the absence of a preferred product may encourage the customer to "substitute" to a (more profitable) alternative
- Complexity of assortment constraints:
 - capacity: limited shelf size or space on website
 - product dependencies: subset constraints, balance between product categories (e.g. male and female shoe models) etc.

Assortment Planning: Challenges

Given historical data on assortments and transactions:

How to learn from historical transaction data to predict the performance of a future assortment?

 \rightarrow customer choice models

Parametric Choice Models

Multinomial Logit (MNL) models

- Attributes an utility to each product
- ► The probability that a customer selects product *i* from assortment S is: P(*i*|S) = (e^{u_i})/(e^{u₀} + ∑_{j∈S} e^{u_j})
- Independence of Irrelevant Alternatives (IIA) property
 - Cannot capture substitution effect

Nested Logit (NL) models

 capture certain substitution among categories, but each nest is subject to the IIA property

Mixed Multinomial Logit (MMNL) models

- Overcomes shortfalls of MNL and NL models
- Computationally expensive; overfitting issues

Rank-based choice models

Customer behavior σ_k : list of products ranked according to preferences of customer *k*, e.g. (2, 4, 0, 1, 3, 5, 6):

Customer selects highest ranked product in the assortment.

Choice model: composed of **behaviors** σ and corresponding **probabilities** λ_k that a random customer follows behavior σ_k .

Recent approaches using rank-based choice models

Challenge: an N-factorial large search space of customer behaviors

- ▶ Honhon et al. (2012), Vulcano and Van Ryzin (2017), ect.
 - require market knowledge, e.g. customer behaviors
- Jagabathula (2011) and Farias et al. (2013)
 - find the worst-case choice model for a given assortment
 - tractable approach to estimate probabilities for all behaviors
 - find the sparsest model
- Bertsimas and Misic (2016)
 - master problem minimizes estimation error for given behaviors
 - column generation to find new customer behaviors
 - pricing problem solved heuristically, since exact MIP intractable
 - limited to small number of products

Scope and Objectives of this work

Objectives:

- Develop an (efficient) data-driven approach to design optimized assortments
- Consider substitution effect (cannibalization)
- Integrate complex side constraints on the assortment (size, precedence, etc.)

Be easy to interpret and provide market insights to management: sparse and concise models

Scope and Objectives of this work

Objectives:

- Develop an (efficient) data-driven approach to design optimized assortments
- Consider substitution effect (cannibalization)
- Integrate complex side constraints on the assortment (size, precedence, etc.)
- Be easy to interpret and provide market insights to management: sparse and concise models

Industrial collaboration:

- JDA Labs (research lab of JDA Software)
- Data from a large North-American retail chain
 - clothes (shoes and shirts)
 - seasonal choice of products

Partially-Ranked Choice Models with Indifference Sets

A new choice model:

- The customer has a strict preference on certain products.
- If unavailable, the customer may buy any similar product, which is available, without preference.

<ロ> < 回> < 回> < 臣> < 臣> < 臣 > ○ < ○ 10

Partially-Ranked Choice Models with Indifference Sets

A new choice model:

- The customer has a strict preference on certain products.
- If unavailable, the customer may buy any similar product, which is available, without preference.

Consider a customer behavior $(P(\sigma), I(\sigma), 0)$, e.g. $(3, 4, 1, \{2, 5, 6\}, 0)$

- P(σ) = (3,4,1) ⊆ N is a strictly ranked list of preferred products
- I(σ) = {2,5,6} ⊆ N\P(σ) is the subset of *indifferent* products which will be chosen with uniform probability

A Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models: Properties

- (I) Equivalence of choice models:
 - Transformation from fully-ranked (σ_C, λ_C) to partially-ranked choice model (σ_P, λ_P), and vice versa.

◆□> < @> < E> < E> E のQC 11

 Partially-ranked behaviors more compact: factorially large number of fully-ranked behaviors required to represent the same buying behavior A Rank-based Choice-model with Indifference Sets

Partially-Ranked Choice Models: Properties

- (I) Equivalence of choice models:
 - ► Transformation from fully-ranked (σ_C, λ_C) to partially-ranked choice model (σ_P, λ_P), and vice versa.
 - Partially-ranked behaviors more compact: factorially large number of fully-ranked behaviors required to represent the same buying behavior
- (II) (Ir)relevance of low ranked products:
 - \blacktriangleright low ranked products \rightarrow less important & explain less sales
 - e.g. in assortment density 0.5, the probability that product at rank 10 is selected from an "average" assortment is 0.05%
 - explanatory power of indifference sets in "average" assortment is similarly low
 - ► → concise list of strictly ranked products → insights for managers

Simplified Partially-Ranked Choice Model

Given:

- equal transformation: partial to completely ranked behaviors
- irrelevance of low ranked products and the likely small impact of indifference set on explaining the sales

we consider a **simplified** variant:

$(P(\sigma), I(\sigma), 0)$, where:

- P(σ) = (3,4,1) ⊆ N is a strictly ranked list of preferred products
- $I(\sigma) = \mathcal{N} \setminus P(\sigma) = \{0, 2, 5, 6\}$ is the indifference set.

 \implies several computational advantages without compromising theoretical coherence

Training and Testing the Choice Models

Training set

- Set of M assortments: $\{S_m\}, m = 1, \dots, M$
- Probabilities of selling product *i* in assortment S_m to a random customer: (v_{i,m})

Training and Testing the Choice Models

Training set

- Set of M assortments: $\{S_m\}, m = 1, \dots, M$
- Probabilities of selling product *i* in assortment S_m to a random customer: (v_{i,m})

Test set

► Sales for each product *i* in each of the *M* other assortments

◆□ → < 同 → < 目 → < 目 → < 目 → ○ < 0 < 13</p>

Training the choice model: completeley ranked behaviors

- Given: a subset of customer behaviors and historical sales v
- Find: probability distribution (λ) that best explains the sales
- Define a choice matrix A, for each behavior k and product/assortment tuple (i, m) (BM, 2016):

 $A_{i,m}^{k} = \begin{cases} 1 \text{ if } i \text{ is chosen by customer } k \text{ in assortment } S_{m} \\ 0 \text{ if } i \text{ is not chosen by customer } k \text{ in assortment } S_{m} \end{cases}$

Training the choice model: completeley ranked behaviors

- Given: a subset of customer behaviors and historical sales v
- Find: probability distribution (λ) that best explains the sales
- Define a choice matrix A, for each behavior k and product/assortment tuple (i, m) (BM, 2016):

 $A_{i,m}^{k} = \begin{cases} 1 \text{ if } i \text{ is chosen by customer } k \text{ in assortment } S_{m} \\ 0 \text{ if } i \text{ is not chosen by customer } k \text{ in assortment } S_{m} \end{cases}$

Linear program to find λ that minimizes estimation error

$$\min_{\substack{\lambda, \epsilon^+, \epsilon^-}} \quad 1^T \epsilon^+ + 1^T \epsilon^-$$
s.t.
$$A\lambda + \epsilon^+ - \epsilon^- = \nu \quad (\alpha)$$

$$1^T \lambda = 1 \qquad (\nu)$$

$$\lambda, \epsilon^+, \epsilon^- \ge 0$$

Training the choice model: partially-ranked behaviors

Required: the total probability of buying a product sums to 1:

$$\forall (k,m), \sum_{i} A_{i,m}^{k} = 1$$

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q の 15

Training the choice model: partially-ranked behaviors

Required: the total probability of buying a product sums to 1:

$$\forall (k,m), \sum_{i} A_{i,m}^{k} = 1$$

For partially-ranked behaviors, a term $\frac{1}{|S_m|}$ is distributed on the products in the indifference set:

 $A_{i,m}^{k} = \begin{cases} 1, & \text{if } i \text{ is chosen by customer } k \text{ among assortment } S_{m} \\ 0, & \text{if } i \text{ is not chosen by customer } k \text{ among assortment } S_{m} \\ \frac{1}{|S_{m}|}, & \text{if } i \in S_{m}, i \in I(\sigma_{k}) \text{ and } P(\sigma_{k}) \cap S_{m} = \emptyset \end{cases}$

How to efficiently find important behaviors?

- BM (2016) use column generation to find columns k for the LP above
 - MIP pricing problem is intractable for large instances; local search converges slowly

4 日 > 4 団 > 4 豆 > 4 豆 > 豆 の 4 で 16

How to efficiently find important behaviors?

- BM (2016) use column generation to find columns k for the LP above
 - MIP pricing problem is intractable for large instances; local search converges slowly

Questions:

- How to exploit special structure of indifference sets?
- How to exploit the fact that high ranked products have much more impact?

4 日 > 4 団 > 4 豆 > 4 豆 > 豆 の 4 で 16

Iow-ranked products may eventually not be considered

How to efficiently find important behaviors?

- BM (2016) use column generation to find columns k for the LP above
 - MIP pricing problem is intractable for large instances; local search converges slowly

Questions:

- How to exploit special structure of indifference sets?
- How to exploit the fact that high ranked products have much more impact?
 - Iow-ranked products may eventually not be considered
- \implies expansion of a tree: each node represents a behavior.
- \implies Growing Decision Tree (GDT)

Expansion of the Growing Decision Tree (GDT)

Tree is initialized with N behaviors: one for each product:

•
$$P(\sigma_1) = (0), I(\sigma_1) = \emptyset$$

• $P(\sigma_2) = (1), I(\sigma_2) = \mathcal{N} \setminus 1 = \{0, 2, 3\}$
• $P(\sigma_3) = (2), I(\sigma_3) = \mathcal{N} \setminus 2 = \{0, 1, 3\}$
• $P(\sigma_4) = (3), I(\sigma_4) = \mathcal{N} \setminus 3 = \{0, 1, 2\}$

Master problem is solved.

For each of the relevant customer behaviors σ_k :

compute reduced costs (using dual values from Master problem)

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q @ 18

Expansion of the Growing Decision Tree (GDT)

 add customer behaviors with lowest (negative) reduced costs to the Master problem

resolve Master problem

<ロ > < 回 > < 目 > < 目 > < 目 > 20 20

<ロ> < @> < E> < E> E の < 21

Training the Choice Model

Computational results

Problem Instances

Randomly generated instances:

- Via Mixed Multinomial Logit model: K classes (one for each customer type)
- ▶ Uniformly [0,1] chosen utilities for all products
- Random selection of 4 products: 100 times higher utilities

• M (typically = 40) assortments (20 to train, 20 to test)

Training the Choice Model

Computational results

Problem Instances

Randomly generated instances:

- Via Mixed Multinomial Logit model: K classes (one for each customer type)
- ▶ Uniformly [0,1] chosen utilities for all products
- Random selection of 4 products: 100 times higher utilities
- ► *M* (typically = 40) assortments (20 to train, 20 to test)

Industrial data:

- From JDA Labs: Northamerican retail chain (shoes)
- ▶ 10 stores during 10 consecutive weeks \implies 100 assortments
- 192 products

Computational results

Generated data - Learning curves

n = 100 products

Learning curves: training and test error CG-GDT and CG-LS (BM)

Computational results

Real industrial data - Computational results

n = 192 products

Learning curves: training and test error CG-GDT and CG-LS (BM)

Computational results

Training phase: Scalability & Sparsity

Learning performance and generated choice models sizes K for:

- CG-GDT
- CG-LS

Averaged over 10 random instances $M = 20, \epsilon_0 = 0.01$ Assortment density = 0.3 (assortment size equals $0.3 \times N$) 24 hours time limit, 48 Gbyte memory limit

		CG-GI	DT		CG-LS					
	Train.	time	#		# inst.	Train.	time	#		
N	error	(sec)	iter	K	oom	error	(sec)	iter	K	
30	0.37	2.3	9.2	105.6	0	0.39	22.5	392.0	223.8	
50	0.38	6.0	10.3	104.7	0	0.40	57.3	603.2	370.1	
100	0.39	29.7	15.4	127.3	0	0.40	269.8	1,070.7	721.3	
250	0.39	321.8	21.0	213.3	0	0.40	5,204.8	2,492.9	1,788.7	
500	0.38	2,341.5	19.4	416.6	1	0.40	49,615.3	4,555.0	3,484.2	
1000	0.33	5,511.2	7.0	850.2	10	-	-	-	-	
all (avg)	0.38	1,368.7	13.7	303.0	11	0.40	10,459.6	1,795.6	1,295.3	

Results for assortment densities 0.1 and 0.5 show the same tendencies.

Computational results

Choice model: concision

Characteristics of the generated choice model

Averaged over 10 random instances

 $M = 20, \epsilon_0 = 0.01$

Assortment density = 0.3 (assortment size equals 0.3 \times N)

720 minutes time limit, 48 Gbyte memory limit

		#		# :	strictly	% explained by			
ϵ_0	N	iter	K	ranked products		indifference sets			
				avg	max	exact comp.	theor. est.		
0.01	30	10.2	105.6	2.24	4	20.28	21.22		
0.01	50	11.3	104.7	1.84	4	29.69	27.85		
0.01	100	16.4	127.3	1.55	3	36.35	34.17		
0.01	250	22.0	213.3	1.22	3	44.76	43.07		
0.01	500	20.4	416.6	1.07	3	47.78	47.69		
0.01	1000	8.8	836.2	1.03	2	48.54	48.98		
0.01	all	14.9	300.6	1.49	4	37.90	35.59		

Assortment optimization

Assortment optimization

Given a choice model, which subset of the products is likely to maximize the revenue?

Literature

- Problem NP-hard (2ⁿ revenues to compute by explicit enumeration).
- ► If all prices are equal: Mahajan & van Ryzin (1999) have proposed a linear-complexity algorithm.
- General case: only heuristics (see for example ADXOpt by Jagabathula (2011).
- Parametric choice models generally lead to difficult formulations for assortment optimization.

Assortment Optimization: Mixed Integer Programming

Completely ranked preference lists:

- Efficient MIP to find optimal assortment (BM, 2016)
- MIP requires completely ranked customer behaviors

Assortment Optimization: Mixed Integer Programming

Completely ranked preference lists:

- Efficient MIP to find optimal assortment (BM, 2016)
- MIP requires completely ranked customer behaviors

Partially-ranked lists from GDT:

- (a) boosting: remaining ranks can be completed at random
- (b) add "indifference constraints":
 - If strictly ranked products are not in the assortment: distribute sales flow (1 unit) uniformly on all products in the indifference set that are part of the assortment
 - forces all products with equal rank to take same values
 - $K \times N^2$ constraints \implies branch-and-cut

Assortment optimization

Computational results

Assortment optimization: Scalability

Scalablity of assortment optimization for:

- CG-GDT with AO B&C
- CG-GDT with AO-Boosting
- CG-LS with classical AO-MIP

Averaged over 10 random instances 720 minutes time limit, 48 Gbyte memory limit

	CG-GDT with AO B&C			CG-GDT with AO-Boosting				CG-LS with classical AO-MIP			
				#				#			
		time	GT	oot		time	GT	oot		time	GT
N	K	(min)	revenue	oom	K	(min)	revenue	oom	K	(min)	revenue
30	109.9	0.1	74.5	0	386.8	0.0	74.2	0	220.0	0.0	73.6
50	113.5	0.1	82.5	0	397.9	0.1	81.9	0	379.8	0.1	81.9
100	117.8	0.8	88.8	0	407.7	0.6	86.0	0	722.0	2.0	86.3
250	211.0	7.3	90.4	0	655.5	9.5	88.9	0	1,813.1	141.3	89.7
500	438.1	113.1	94.5	0	1,321.7	249.4	92.9	10	-	-	-
1000	897.4	669.9	95.0	10	-	-	-	10	-	-	-
all	314.6	131.9	87.6	10	633.9	51.9	84.8	20	783.7	35.8	82.9

Revenue: value based on ground-truth MMNL model Boosting: at least 3 randomly completed lists for each k

Summary

- New representation for rank-based choice models
 - Indifference sets
 - Implicitly equivalent to choice models with completely ranked behaviors

<ロ> < 回> < 回> < 臣> < 臣> < 臣> 臣 のへで 30

Summary

- New representation for rank-based choice models
 - Indifference sets
 - Implicitly equivalent to choice models with completely ranked behaviors
- Computational advantages
 - Fast training of choice model; good convergence after few iterations
 - Fast generation of new customer behaviors (products with high ranks have more impact)

<ロ> < 回> < 回> < 臣> < 臣> < 臣> 臣 のへで 30

Summary

- New representation for rank-based choice models
 - Indifference sets
 - Implicitly equivalent to choice models with completely ranked behaviors
- Computational advantages
 - Fast training of choice model; good convergence after few iterations
 - Fast generation of new customer behaviors (products with high ranks have more impact)
- Advantages from the managerial perspective
 - Model is sparse: less customer behaviors
 - Model is concise: low number strictly ranked products

Open research directions

Extensions:

- Learn the choice model by "classical" ML algorithms
- Generalization to new products: how can we learn the importance of products that have never been part of past assortments?

Q (?) & A (!)

(ロ) (個) (E) (E) E の(0 31)

References

- Bertsimas, D., & Misic, V. (2016). Data-Driven Assortment Optimization. Working Paper. Massachusetts Institute of Technology.
- Farias, V. F., Jagabathula, S., & Shah, D. (2013). A Nonparametric Approach to Modeling Choice with Limited Data. Management Science, 59, 44.
- Honhon, D., Jonnalagedda, S., & Pan, X. A. (2012). Optimal Algorithms for Assortment Selection Under Ranking-Based Consumer Choice Models. Manufacturing & Service Operations Management, 14(2), 279-289.
- Jagabathula, S. (2011). Nonparametric Choice Modeling: Applications to Operations Management. PhD thesis. Massachusetts Institute of Technology.
- Mahajan, S. & G. J. van Ryzin. (1999). Retail inventories and customer choice. Quantitative Models for Supply Chain Management. Springer, 491-551.
- Palmer, H. (2016). Large-Scale Assortment Optimization. Master thesis. École Polytechnique de Montréal.
- Vulcano, G., & Van Ryzin, G. (2017). Technical Note An expectation-maximization method to estimate a rank-based choice model of demand. Operations Research, 65(2), 396-407.