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INTRODUCTION

I We consider applications for which a deterministic optimization
model is available

I Cannot be used due to a limit on computing time and
imperfect knowledge about problem instances

I Detailed solutions are not required
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INTRODUCTION

I We propose a methodology to compute descriptions of solutions to
discrete stochastic optimization problems in very short computing
time

I Descriptions of solutions

I Global: value of the objective function

I Detailed: values of all decision variables

I We concentrate on solution descriptions that lie between these
two extremes
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MOTIVATING APPLICATION

I Booking decisions of intermodal
containers on double-stack railcars:
accept/reject fully or partially a
booking request in real time

I Similar to passengers needing a flight
booking, containers need a train
booking

I The assignment of containers to slots on railcars is a combinatorial
optimization problem – the load planning problem (LPP)

I Mantovani et al. (2017) propose an integer linear programming
formulation for the double-stack train LPP
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MOTIVATING APPLICATION

I The LPP crucially depends on detailed
characteristics of the containers and
the railcars

I Container weights are not available
at the time of the booking
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MOTIVATING APPLICATION

PROBLEM INSTANCE AND DETAILED SOLUTION

Containers in gray are heavier than those in white.
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MOTIVATING APPLICATION

intermodal.iro.umontreal.ca |Page 8/24



THE METHODOLOGY IN BRIEF

I Predict descriptions of solutions using supervised learning

I Sample large number of instances under perfect information

I Solve the instances using the existing solver to create labeled data

I Train a ML algorithm using the labeled data

I Challenges: input/output structure and how to deal with features
that are unknown at the time of prediction
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LITERATURE REVIEW

I Application of ML to discrete optimization problems was the focus
of an important research effort in the 1980’s and 1990’s (Smith,
1999) but with limited success

I Recently, growing interest and success in introducing ML techniques
in solution methodologies to decision problems

I Similarly, in ML there is a growing interest in addressing problems
typically solved by OR methods (Lodi, 2017)

I Two related studies on supervised learning

I Fischetti and Fraccaro (2017) predict optimal objective
function value

I Vinyals et al. (2015) predict detailed solutions to deterministic
problems (e.g., TSP)
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METHODOLOGY

I Generate data by repeatedly

I Sample feature vector x̃ = [x̃av, x̃unav] that represents an
instance of the deterministic problem

I Compute a detailed solution ỹ = f̃ ∗(x̃) with f̃ ∗(·)
I ȳ denotes the synthesis of ỹ according to the desired description

I Find the best possible prediction y = f (x̃av;θ) of ȳ = f̄ ∗(x̃)

I f (·; ·) is a particular ML model and θ is a vector of parameters
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METHODOLOGY

I Aggregation: how to approximate the output description ȳ
resulting from [x̃av, x̃unav] based on information on x̃av only, for
example:

I Over output before training: data {(x̃(i)av , ŷ(i)) i = 1, . . . ,m}
where ŷ(i) =

∫
f̄ ∗(x̃(i)av , x̃

(i)
unav)g2(x̃

(i)
av , x̃

(i)
unav)dF̃

x(i)unav

Choose representative solution, e.g., achieving mean value of

objective function given x̃(i)av over the support of x̃(i)unav
I Over output through training: data {(x̃(i)av , ȳ(i)) i = 1, . . . ,m}

Minimize sample approximation of the expected discrepancy
between the exact solution ȳ and approximate solution
f (x̃av,θ) based solely on knowledge of x̃av
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NUMERICAL RESULTS

INPUT-OUTPUT STRUCTURE

I We consider two container types (40 ft and 53 ft) and 10 railcar
types (10 most numerous ones in the North American fleet)

I Solution description encoded as fixed-size vector ȳ (size 12) where
each component corresponds to the number of railcars and
containers used in the solution

I Feature vector x̃av has the same fixed size as ȳ where each element
corresponds to the number of available railcars and containers
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NUMERICAL RESULTS

DATA GENERATION

I Sample problem instances: sets of railcars and containers from
predefined types, container weights x̃unav are sampled from empirical
distribution conditional on type

I Two sampling procedures

I 1-stage (1S) random sampling
I 2-stage (2S) random sampling: at the first stage sample railcar

and container types, at the second stage sample container
weights conditional on stage one (100 instances)

I The purpose of the different sampling procedures is to analyze the
two aggregation methods, here we present results for implicit
(through training) aggregation only
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NUMERICAL RESULTS

DATA GENERATION

Class name Description # of containers # of platforms
A Simple ILP instances [1, 150] [1, 50]
B More containers than A (excess demand) [151, 300] [1, 50]
C More platforms than A (excess supply) [1, 150] [51, 100]
D Larger and harder instances [151, 300] [51, 100]

Sampling Data # instances Percentiles time (s)
procedure class P5 P50 P95

1S A 20M 0.007 0.48 1.67
2S A 20M 0.011 0.64 2.87
2S B 20M 0.02 1.26 3.43
2S C 20M 0.72 2.59 6.03

2S D 10M 2.64 5.44 20.89
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NUMERICAL RESULTS

ML ALGORITHM

I Multilayer perceptron (MLP): approximately 7 layers and 500
rectified linear units (ReLU) per layer
Random hyperparameter search

I Classification (ClassMLP): softmax units in output layer
Constraints on input-output in training, pseudo-likelihood
maximization assuming outputs conditionally mutually independent
given inputs

I Regression (RegMLP): linear units in output layer and rounding to
the nearest integer
Constraints on input-output at testing, minimization of sum of
absolute errors
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NUMERICAL RESULTS

ML ALGORITHM – TRAINING

I Mini-batch stochastic gradient descent

I Learning rate adaptation by Adam (adaptive moment estimation)
method

I Regularization by early stopping

I 2 to 10 hours on GPU
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VALIDATION ERRORS

I Performance measure: sum of mean absolute prediction error
(MAE) over slots and containers

MAE =
1
n

n

∑
i=1

12

∑
j=1
|ŷ(i)j − y(i)j |s j

where s j, j = 1, ...,10, equals the number of slots on railcar type j
and s11 = s12 = 1
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VALIDATION ERRORS

I Average performance of both MLP models are very good, regression
slightly better than classification

MAE of only 2.1 containers/slots for instances with up to 150
containers and 200 slots and small standard deviation

I MLP results are considerably better than the benchmarks

I The marginal value of using 100 times more observations is fairly
small (modest increase in MAE from 0.985 to 1.304)

I Prediction times are negligible, milliseconds or less and with very
little variation
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VALIDATION ERRORS

Data 2S-Athr 1S-Athr 2S-ABCthr
# examples 200K 20M 600K

ClassMLP
1.481 0.965 2.312

(0.018) (0.002) (0.014)

LogReg
5.956 5.887 9.051

(0.029) (0.003) (0.027)

RegMLP
1.304 0.985 2.109

(0.017) (0.002) (0.014)

LinReg
18.306 18.372 39.907
(0.094) (0.009) (0.084)

HeurV
14.733 14.753 27.24

(0.075) (0.008) (0.083)

HeurS
17.841 17.842 31.448
(0.083) (0.008) (0.089)
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EXTRANEOUS ERRORS

I Do the models trained and validated on simpler instances (classes
A, B, C) generalize to harder instances (class D: up to 300
containers and 200 slots) without specific training and validation?

I Performance is still good

MAE of 2.85 (training on class A)
MAE of 0.32 (training on classes A, B and C)

I Important variability across models with different
hyperparameters when only trained on class A

MAE varies between 0.74 and 9.05
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EXTRANEOUS ERRORS

Training-validation data 2S-Abef 2S-ABCbef
# examples 200K 600K

ClassMLP
NA 14.823 [9.532, 23.782]

(0.061)

LogReg
NA 28.171

(0.048)

RegMLP
2.852 [0.741, 9.052] 0.323 [0.323, 1.109]

(0.011) (0.052)

LinReg
22.94 71.322

(0.047) (0.054)

HeurV
32.098 32.098

(0.069) (0.069)

HeurS
41.792 41.792

(0.077) (0.077)
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CONCLUSION

I We proposed a supervised ML approach for predicting descriptions
of solutions to discrete stochastic optimization problems

I The motivating application was the train load planning problem

I The ML algorithm was trained on a large number of deterministic
problems

I Missing information in input was addressed with aggregation
methods

I Results showed that solutions can be predicted with high accuracy
in very short computing time – much shorter than solving the full
deterministic problem

intermodal.iro.umontreal.ca |Page 23/24



FUTURE WORK

I Compare the solutions with those to a stochastic program solved by
sample average approximation

I Results for other aggregation methods

I Active learning

I Other input-output structures (more detailed solution descriptions)
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