

Fast Prediction of Solutions to an Integer Linear Program with Machine Learning

CERMICS 2018 - June 29, 2018, Fréjus

ERIC LARSEN, CIRRELT and Université de Montréal (UdeM) SÉBASTIEN LACHAPELLE, CIRRELT and UdeM YOSHUA BENGIO, Montreal Institute for Learning Algorithms EMMA FREJINGER, CIRRELT and UdeM SIMON LACOSTE JULIEN, Montreal Institute for Learning Algorithms ANDREA LODI, CERC & École Polytechnique de Montréal

OUTLINE

- Introduction
 - Background and motivating application
 - Brief literature review
- Methodology
- Numerical results
- Conclusions and future work

INTRODUCTION

- We consider applications for which a deterministic optimization model is available
 - Cannot be used due to a limit on computing time and imperfect knowledge about problem instances
 - Detailed solutions are not required

INTRODUCTION

- We propose a methodology to compute descriptions of solutions to discrete stochastic optimization problems in very short computing time
- Descriptions of solutions
 - ► Global: value of the objective function
 - Detailed: values of all decision variables
 - We concentrate on solution descriptions that lie between these two extremes

- Booking decisions of intermodal containers on double-stack railcars: accept/reject fully or partially a booking request in real time
- Similar to passengers needing a flight booking, containers need a train booking

- The assignment of containers to slots on railcars is a combinatorial optimization problem – the load planning problem (LPP)
- ► Mantovani et al. (2017) propose an integer linear programming formulation for the double-stack train LPP

- The LPP crucially depends on detailed characteristics of the containers and the railcars
- Container weights are not available at the time of the booking

PROBLEM INSTANCE AND DETAILED SOLUTION

Containers in gray are heavier than those in white.

THE METHODOLOGY IN BRIEF

- Predict descriptions of solutions using supervised learning
- Sample large number of instances under perfect information
- Solve the instances using the existing solver to create labeled data
- Train a ML algorithm using the labeled data
- Challenges: input/output structure and how to deal with features that are unknown at the time of prediction

LITERATURE REVIEW

- Application of ML to discrete optimization problems was the focus of an important research effort in the 1980's and 1990's (Smith, 1999) but with limited success
- Recently, growing interest and success in introducing ML techniques in solution methodologies to decision problems
- Similarly, in ML there is a growing interest in addressing problems typically solved by OR methods (Lodi, 2017)
- Two related studies on supervised learning
 - Fischetti and Fraccaro (2017) predict optimal objective function value
 - Vinyals et al. (2015) predict detailed solutions to deterministic
 problems (e.g., TSP)

METHODOLOGY

- Generate data by repeatedly
 - ► Sample feature vector $\widetilde{\mathbf{x}} = [\widetilde{\mathbf{x}}_{av}, \widetilde{\mathbf{x}}_{unav}]$ that represents an instance of the deterministic problem
 - Compute a detailed solution $\dot{\widetilde{\mathbf{y}}} = \widetilde{f}^*(\widetilde{\mathbf{x}})$ with $\widetilde{f}^*(\cdot)$
- $\blacktriangleright~\bar{y}$ denotes the synthesis of \widetilde{y} according to the desired description
- ► Find the best possible prediction $\mathbf{y} = f(\widetilde{\mathbf{x}}_{av}; \boldsymbol{\theta})$ of $\overline{\mathbf{y}} = \overline{f}^*(\widetilde{\mathbf{x}})$
- ▶ $f(\cdot; \cdot)$ is a particular ML model and θ is a vector of parameters

METHODOLOGY

- ► Aggregation: how to approximate the output description ȳ resulting from [x̃_{av}, x̃_{unav}] based on information on x̃_{av} only, for example:
 - ► Over output before training: data { (\$\tilde{x}_{av}^{(i)}, \$\tilde{y}_{i}^{(i)}\$) i = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$\$\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF\$ = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)g₂(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF = 1,...,m} where \$\tilde{y}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF = 1,...,m} where \$\tilde{x}_{unav}^{(i)} = ∫ \bar{f}^*(\$\tilde{x}_{av}^{(i)}, \$\tilde{x}_{unav}^{(i)}\$)dF = 1,...,m} where \$\tilde{x}_{unav}^{(i)} = 0,...,m} where \$\tide{x}_{unav}^{(i)} = 0,...,m} where \$\tide{x}_{unav}^{(i)}
 - Over output through training: data {(x̃_{av}⁽ⁱ⁾, ȳ⁽ⁱ⁾) i = 1,...,m} Minimize sample approximation of the expected discrepancy between the exact solution ȳ and approximate solution f(x̃_{av}, θ) based solely on knowledge of x̃_{av}

INPUT-OUTPUT STRUCTURE

- ► We consider two container types (40 ft and 53 ft) and 10 railcar types (10 most numerous ones in the North American fleet)
- Solution description encoded as fixed-size vector y
 (size 12) where each component corresponds to the number of railcars and containers used in the solution
- Feature vector $\tilde{\mathbf{x}}_{av}$ has the same fixed size as $\bar{\mathbf{y}}$ where each element corresponds to the number of **available** railcars and containers

DATA GENERATION

- ► Sample problem instances: sets of railcars and containers from predefined types, container weights x̃_{unav} are sampled from empirical distribution conditional on type
- Two sampling procedures
 - ▶ 1-stage (1S) random sampling
 - 2-stage (2S) random sampling: at the first stage sample railcar and container types, at the second stage sample container weights conditional on stage one (100 instances)
- The purpose of the different sampling procedures is to analyze the two aggregation methods, here we present results for implicit (through training) aggregation only

DATA GENERATION

Class name	Description	# of containers	# of platforms
A	Simple ILP instances	[1, 150]	[1, 50]
В	More containers than A (excess demand)	[151, 300]	[1, 50]
С	More platforms than A (excess supply)	[1, 150]	[51, 100]
D	Larger and harder instances	[151, 300]	[51, 100]

Sampling	Data	# instances	Percentiles time (s)		
procedure	class		P_5	P_{50}	P_{95}
1S	A	20M	0.007	0.48	1.67
2S	A	20M	0.011	0.64	2.87
2S	В	20M	0.02	1.26	3.43
2S	С	20M	0.72	2.59	6.03
2S	D	10M	2.64	5.44	20.89

ML ALGORITHM

- Multilayer perceptron (MLP): approximately 7 layers and 500 rectified linear units (ReLU) per layer Random hyperparameter search
- Classification (ClassMLP): softmax units in output layer Constraints on input-output in training, pseudo-likelihood maximization assuming outputs conditionally mutually independent given inputs
- Regression (RegMLP): linear units in output layer and rounding to the nearest integer
 Constraints on input-output at testing, minimization of sum of absolute errors

ML ALGORITHM – TRAINING

- Mini-batch stochastic gradient descent
- Learning rate adaptation by Adam (adaptive moment estimation) method
- Regularization by early stopping
- 2 to 10 hours on GPU

VALIDATION ERRORS

 Performance measure: sum of mean absolute prediction error (MAE) over slots and containers

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{12} |\widehat{y}_{j}^{(i)} - y_{j}^{(i)}| s_{j}$$

where s_j , j = 1, ..., 10, equals the number of slots on railcar type jand $s_{11} = s_{12} = 1$

VALIDATION ERRORS

 Average performance of both MLP models are very good, regression slightly better than classification

MAE of only 2.1 containers/slots for instances with up to 150 containers and 200 slots and small standard deviation

- MLP results are considerably better than the benchmarks
- The marginal value of using 100 times more observations is fairly small (modest increase in MAE from 0.985 to 1.304)
- Prediction times are negligible, milliseconds or less and with very little variation

VALIDATION ERRORS

Data	2S-Athr	1S-Athr	2S-ABCthr
# examples	200K	20M	600K
	1.481	0.965	2.312
CIOSSIVILF	(0.018)	(0.002)	(0.014)
LogPog	5.956	5.887	9.051
LUgreg	(0.029)	(0.003)	(0.027)
	1.304	0.985	2.109
RegiviLF	(0.017)	(0.002)	(0.014)
LinPog	18.306	18.372	39.907
Linteg	(0.094)	(0.009)	(0.084)
	14.733	14.753	27.24
neurv	(0.075)	(0.008)	(0.083)
Hours	17.841	17.842	31.448
rieurs	(0.083)	(0.008)	(0.089)

EXTRANEOUS ERRORS

- Do the models trained and validated on simpler instances (classes A, B, C) generalize to harder instances (class D: up to 300 containers and 200 slots) without specific training and validation?
 - Performance is still good

MAE of 2.85 (training on class A) MAE of 0.32 (training on classes A, B and C)

 Important variability across models with different hyperparameters when only trained on class A

MAE varies between 0.74 and 9.05

EXTRANEOUS ERRORS

Training-validation data	2S-Abef	2S-ABCbef	
# examples	200K	600K	
	NA	14.823 [9.532, 23.782]	
ClassiviEF		(0.061)	
LogPog	NA	28.171	
LUGINEG		(0.048)	
PogML D	2.852 [0.741, 9.052]	0.323 [0.323, 1.109]	
RegiviLF	(0.011)	(0.052)	
LinPog	22.94	71.322	
Linkeg	(0.047)	(0.054)	
	32.098	32.098	
Heurv	(0.069)	(0.069)	
Hours	41.792	41.792	
Tieurs	(0.077)	(0.077)	

CONCLUSION

- We proposed a supervised ML approach for predicting descriptions of solutions to discrete stochastic optimization problems
- The motivating application was the train load planning problem
- The ML algorithm was trained on a large number of deterministic problems
- Missing information in input was addressed with aggregation methods
- Results showed that solutions can be predicted with high accuracy in very short computing time – much shorter than solving the full deterministic problem

FUTURE WORK

- Compare the solutions with those to a stochastic program solved by sample average approximation
- Results for other aggregation methods
- Active learning
- Other input-output structures (more detailed solution descriptions)

