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Mixed-Integer Quadratic Programming problems

We consider Mixed-Integer Quadratic Programming (MIQP) pbs.

min 1
2xT Qx + cT x

Ax = b
xi ∈ {0, 1} ∀ i ∈ I
l ≤ x ≤ u

(1)

• Modeling of practical applications (e.g., portfolio optimization)
• First extension of linear algorithms into nonlinear ones

We say an MIQP is convex (resp. nonconvex ) if and only if the
matrix Q is positive semi-definite, Q � 0 (resp. indefinite, Q � 0).

IBM-CPLEX solver can solve both convex and nonconvex
MIQPs to proven optimality
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Solving MIQPs with CPLEX

Convex 0-1

NLP B&B

Convex mixed

NLP B&B

Nonconvex 0-1

convexify + NLP B&B

linearize + MILP B&B

Nonconvex mixed

Convexification is
relaxation - Spatial B&B

Convexification: augment diagonal of Q, using xi = x2
i for xi ∈ {0, 1}:

xT Qx → xT (Q + ρIn)x − ρeT x , where Q + ρIn � 0 for some ρ > 0

Linearization: replace qijxi xj where xi ∈ {0, 1} and lj ≤ xj ≤ uj with a
new variable yij and McCormick inequalities

Linearization is always full in 0-1 case
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Solving MIQPs with CPLEX

Convex 0-1

NL: NLP B&B
L: linearize + MILP B&B

Convex mixed

NL: NLP B&B
L: linearize + MILP B&B

linearize + NLP B&B

Nonconvex 0-1

NL: convexify + NLP B&B
L: linearize + MILP B&B

Convexification: augment diagonal of Q, using xi = x2
i for xi ∈ {0, 1}:

xT Qx → xT (Q + ρIn)x − ρeT x , where Q + ρIn � 0 for some ρ > 0

Linearization: replace qijxi xj where xi ∈ {0, 1} and lj ≤ xj ≤ uj with a
new variable yij and McCormick inequalities

Linearization is always full in 0-1 MIQP (may not for mixed ones)
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Linearize vs. not linearize

The linearization approach seems beneficial also for the convex
case, but is linearizing always the best choice?

Example1: convex 0-1 MIQP, n = 200
Linearize Not linearize

“[. . . ] when one looks at a broader variety of test problems the decision
to linearize (vs. not linearize) does not appear so clear-cut.2”

1 Fourer R. Quadratic Optimization Mysteries, Part 1: Two Versions.

2 Fourer R. Quadratic Optimization Mysteries, Part 2: Two Formulations.
http://bob4er.blogspot.com/2015/03/quadratic-optimization-mysteries-part-2.html
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Linearize vs. not linearize - Goal

Goal
Exploit ML predictive machinery to understand whether it is
favorable to linearize the quadratic part of an MIQP or not.

• Learn an offline classifier predicting the most suited resolution
approach within CPLEX framework, in an instance-specific way

• Restrict to three types of problems
0-1 convex, mixed convex, 0-1 nonconvex

• Parameter qtolin controls the linearization switch

L on CPLEX linearizes (all?) quadratic terms
NL off CPLEX does not linearize quadratic terms

DEF auto Let CPLEX decide (default)
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Data and experiments



Steps to apply supervised learning

Dataset generation
• Generator of MIQPs, spanning over various parameters
• Q = sprandsym(size, density, eigenvalues)

Features design
• Static features (21) · Mathematical characteristics

(variables, constraints, objective, spectrum, . . . )
• Dynamic features (2) · Early behavior in optimization process

(bounds and times at root node)

Labeling procedure
• Consider tie cases · Labels in {L,NL,T}
• 1h, 5 seeds · Solvability and consistency checks
• Look at runtimes to assign a label

{(xk , yk)}k=1..N where xk ∈ Rd , yk ∈ {L,NL,T} for N MIQPs

6



Steps to apply supervised learning

Dataset generation
• Generator of MIQPs, spanning over various parameters
• Q = sprandsym(size, density, eigenvalues)

Features design
• Static features (21) · Mathematical characteristics

(variables, constraints, objective, spectrum, . . . )
• Dynamic features (2) · Early behavior in optimization process

(bounds and times at root node)

Labeling procedure
• Consider tie cases · Labels in {L,NL,T}
• 1h, 5 seeds · Solvability and consistency checks
• Look at runtimes to assign a label

{(xk , yk)}k=1..N where xk ∈ Rd , yk ∈ {L,NL,T} for N MIQPs

6



Steps to apply supervised learning

Dataset generation
• Generator of MIQPs, spanning over various parameters
• Q = sprandsym(size, density, eigenvalues)

Features design
• Static features (21) · Mathematical characteristics

(variables, constraints, objective, spectrum, . . . )
• Dynamic features (2) · Early behavior in optimization process

(bounds and times at root node)

Labeling procedure
• Consider tie cases · Labels in {L,NL,T}
• 1h, 5 seeds · Solvability and consistency checks
• Look at runtimes to assign a label

{(xk , yk)}k=1..N where xk ∈ Rd , yk ∈ {L,NL,T} for N MIQPs

6



Steps to apply supervised learning

Dataset generation
• Generator of MIQPs, spanning over various parameters
• Q = sprandsym(size, density, eigenvalues)

Features design
• Static features (21) · Mathematical characteristics

(variables, constraints, objective, spectrum, . . . )
• Dynamic features (2) · Early behavior in optimization process

(bounds and times at root node)

Labeling procedure
• Consider tie cases · Labels in {L,NL,T}
• 1h, 5 seeds · Solvability and consistency checks
• Look at runtimes to assign a label

{(xk , yk)}k=1..N where xk ∈ Rd , yk ∈ {L,NL,T} for N MIQPs
6



Dataset D (nutshell) analysis

• 2300 instances, n ∈ {25, 50, . . . , 200}, density d ∈ {0.2, 0.4, . . . , 1}

• Multiclass classifiers: SVM and Decision Tree based
methods (Random Forests (RF) · Extremely Randomized Trees
(EXT) · Gradient Tree Boosting (GTB))

• Avoid overfitting with ML best practices
• Tool: scikit-learn library
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Learning results on Dtest

Classifiers perform well with respect to traditional classification
measures:

Dtest - Multiclass - All features

SVM RF EXT GTB

Accuracy 0.85 0.89 0.84 0.87
Precision 0.82 0.85 0.81 0.85
Recall 0.85 0.89 0.84 0.87
F1 score 0.83 0.87 0.82 0.86

• A major difficulty is posed by the T class, (almost) always
misclassified

Binary setting: remove all tie cases · performance improved
How relevant are ties with respect to the question L vs. NL?
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Hints of features importance

Ensemble methods based on Decision Trees provide an
importance score for each feature.

Top scoring ones are dynamic ft.s and those about eigenvalues:

(dyn. ft.) • Difference of lower bounds for L and NL at root node
(dyn. ft.) • Difference of resolution times of the root node, for L and NL

• Value of smallest nonzero eigenvalue
• Spectral norm of Q, i.e., ‖Q‖ = maxi |λi |
• . . .

Static features setting: remove dynamic features ·
performance slightly deteriorated
How does the prediction change without information at root node?
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Measure the optimization gain

Need
Evaluate classifiers’ performance in optimization terms, and
quantify the gain with respect to CPLEX default strategy.

• Run each test example once more, for all configurations of
qtolin (on/L, off/NL, DEF) and collect resolution times

• For each classifier clf and DEF, build a times vector tclf :
for every test example, select the runtime corresponding to its
label ∈ {L, NL, T}, as predicted by clf

Average L and NL times in case of T being predicted

• Build also tbest (tworst) containing times corresponding to the
correct (wrong) labels
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Complementary optimization measures

Using times vectors tclf define

σclf Sum of predicted runtimes: sum over times in tclf
Nσclf ∈ [0, 1] Normalized time score: shifted geometric mean of

times in tclf , normalized between best and worst cases

SVM RF EXT GTB DEF

σDEF/σclf 3.88 4.40 4.04 4.26 −
Nσclf 0.98 0.99 0.98 0.99 0.42

• DEF could take up to 4x more time to run MIQPs of Dtest ,
compared to a trained classifier

• Measures are better for classifiers hitting timelimit less
frequently (and both L and NL reach timelimit multiple times!)
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Ongoing questions



What about other datasets?

• Selection from QPLIB · 24 instances

• Part of CPLEX internal testbed · 175 instances, used as new
test set Ctest for classifiers trained on the synthetic data.
Again unbalanced, but with majority of ties and few NL.
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Results on Ctest

• Ctest is dominated by few structured combinatorial instances
• Very different distribution of features

All classifiers perform very poorly in terms of classification
measures (most often T is predicted as NL), but . . .

. . . performance is not bad in optimization terms:

SVM RF EXT GTB DEF

σDEF/σclf 0.48 0.53 0.71 0.42 −
Nσclf 0.75 0.90 0.91 0.74 0.96

Given the high presence of ties, runtimes for L and NL are most
often comparable, so the loss in performance is not dramatic.

13



Results on Ctest

• Ctest is dominated by few structured combinatorial instances
• Very different distribution of features

All classifiers perform very poorly in terms of classification
measures (most often T is predicted as NL), but . . .

. . . performance is not bad in optimization terms:

SVM RF EXT GTB DEF

σDEF/σclf 0.48 0.53 0.71 0.42 −
Nσclf 0.75 0.90 0.91 0.74 0.96

Given the high presence of ties, runtimes for L and NL are most
often comparable, so the loss in performance is not dramatic.

13



Why those predictions?

• The bound at the root node seems to decide the label!
• Convexification and linearization clearly affect

• formulation size • formulation strength •
implementation efficacy • . . .

. . . each problem type might have its own decision function for
the question L vs. NL

More experiments to come:

• Employ a larger and heterogeneous dataset
• Go beyond preliminary features evaluation
• Define a custom loss/scoring function
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Thanks! Questions?
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