Learning a classification of Mixed-Integer Quadratic Programming problems

CERMICS 2018 - June 29, 2018, Fréjus

Pierre Bonami¹, Andrea Lodi², Giulia Zarpellon²

¹ CPLEX Optimization, IBM Spain

² Polytechnique Montréal, CERC Data Science for real-time Decision Making

- 1. About Mixed-Integer Quadratic Programming problems
- 2. Data and experiments
- 3. Ongoing questions

About Mixed-Integer Quadratic Programming problems

Mixed-Integer Quadratic Programming problems

We consider *Mixed-Integer Quadratic Programming* (MIQP) pbs.

min
$$\frac{1}{2}x^{T}Qx + c^{T}x$$
$$Ax = b$$
$$x_{i} \in \{0, 1\} \quad \forall i \in I$$
$$I \leq x \leq u$$
$$(1)$$

- Modeling of practical applications (e.g., portfolio optimization)
- First extension of linear algorithms into nonlinear ones

Mixed-Integer Quadratic Programming problems

We consider *Mixed-Integer Quadratic Programming* (MIQP) pbs.

min
$$\frac{1}{2}x^{T}Qx + c^{T}x$$

$$Ax = b$$

$$x_{i} \in \{0, 1\} \quad \forall i \in I$$

$$I \leq x \leq u$$

$$(1)$$

- Modeling of practical applications (e.g., portfolio optimization)
- First extension of linear algorithms into nonlinear ones

We say an MIQP is *convex* (resp. *nonconvex*) if and only if the matrix Q is positive semi-definite, $Q \succeq 0$ (resp. indefinite, $Q \not\succeq 0$).

---> IBM-CPLEX solver can solve both convex and nonconvex MIQPs to proven optimality

Convexification: **augment diagonal** of Q, using $x_i = x_i^2$ for $x_i \in \{0, 1\}$: $x^T Q x \rightarrow x^T (Q + \rho \mathbb{I}_n) x - \rho e^T x$, where $Q + \rho \mathbb{I}_n \succeq 0$ for some $\rho > 0$

Convexification: **augment diagonal** of Q, using $x_i = x_i^2$ for $x_i \in \{0, 1\}$: $x^T Qx \rightarrow x^T (Q + \rho \mathbb{I}_n) x - \rho e^T x$, where $Q + \rho \mathbb{I}_n \succeq 0$ for some $\rho > 0$ **Linearization**: replace $q_{ij}x_ix_j$ where $x_i \in \{0, 1\}$ and $l_j \le x_j \le u_j$ with a new variable y_{ij} and **McCormick inequalities** \longrightarrow Linearization is always <u>full in 0-1 case</u>

Convexification: **augment diagonal** of Q, using $x_i = x_i^2$ for $x_i \in \{0, 1\}$: $x^T Q x \rightarrow x^T (Q + \rho \mathbb{I}_n) x - \rho e^T x$, where $Q + \rho \mathbb{I}_n \succeq 0$ for some $\rho > 0$ **Linearization**: replace $q_{ij} x_i x_j$ where $x_i \in \{0, 1\}$ and $l_j \le x_j \le u_j$ with a new variable y_{ij} and **McCormick inequalities** \longrightarrow Linearization is always <u>full in 0-1 case</u>

Convexification: **augment diagonal** of Q, using $x_i = x_i^2$ for $x_i \in \{0, 1\}$: $x^T Q x \rightarrow x^T (Q + \rho \mathbb{I}_n) x - \rho e^T x$, where $Q + \rho \mathbb{I}_n \succeq 0$ for some $\rho > 0$

Linearization: replace $q_{ij}x_ix_j$ where $x_i \in \{0, 1\}$ and $l_j \le x_j \le u_j$ with a new variable y_{ij} and **McCormick inequalities** —> Linearization is always full in 0-1 MIQP (may not for mixed ones)

Linearize vs. not linearize

The linearization approach seems beneficial also for the convex case, but is linearizing always the best choice?

Linearize vs. not linearize

The linearization approach seems beneficial also for the convex case, but **is linearizing always the best choice?**

Example ¹ : convex 0-1 MIQP, $n = 200$					
Linearize	Not linearize				
Total (root+branch&cut) = 2112.63 sec.	Total (root+branch&cut) = 0.42 sec.				
CPLEX 12.6.0.0: optimal integer solution; objective 29576.27517 474330 MIP simplex iterations 294 branch-and-bound nodes	CPLEX 12.5.0.1: optimal integer solution; objective 29576.27517 286 MIP simplex iterations 102 branch-and-bound nodes				

The linearization approach seems beneficial also for the convex case, but is linearizing always the best choice?

Example ¹ : convex 0-1 MIQP, $n = 200$					
Linearize	Not linearize				
Total (root+branch&cut) = 2112.63 sec.	Total (root+branch&cut) = 0.42 sec.				
CPLEX 12.6.0.0: optimal integer solution; objective 29576.27517 474330 MIP simplex iterations 294 branch-and-bound nodes	CPLEX 12.5.0.1: optimal integer solution; objective 29576.27517 286 MIP simplex iterations 102 branch-and-bound nodes				
MIP Presolve added 39800 rows and 19900 columns. Reduced MIP has 39801 rows, 20100 columns, and 79800 nonzeros. Reduced MIP has 20100 binaries, 0 general, and 0 indicators.					

"[...] when one looks at a broader variety of test problems the decision to linearize (vs. not linearize) does not appear so clear-cut.²"

Fourer R. Quadratic Optimization Mysteries, Part 1: Two Versions.
 Fourer R. Quadratic Optimization Mysteries, Part 2: Two Formulations.

http://bob4er.blogspot.com/2015/03/quadratic-optimization-mysteries-part-2.html

Goal

Exploit ML predictive machinery to understand whether it is favorable to linearize the quadratic part of an MIQP or not.

• Learn an offline classifier predicting the most suited resolution approach within CPLEX framework, in an instance-specific way

Goal

Exploit ML predictive machinery to understand whether it is favorable to linearize the quadratic part of an MIQP or not.

- Learn an offline classifier predicting the most suited resolution approach within CPLEX framework, in an instance-specific way
- Restrict to three types of problems 0-1 convex, mixed convex, 0-1 nonconvex

Goal

Exploit ML predictive machinery to understand whether it is favorable to linearize the quadratic part of an MIQP or not.

- Learn an offline classifier predicting the most suited resolution approach within CPLEX framework, in an instance-specific way
- Restrict to three types of problems 0-1 convex, mixed convex, 0-1 nonconvex
- Parameter qtolin controls the linearization switch

L	on	CPLEX linearizes (all?) quadratic terms
NL	off	CPLEX does not linearize quadratic terms
DEF	auto	l et CPLEX decide (default)

Data and experiments

Dataset generation

- Generator of MIQPs, spanning over various parameters
- Q = sprandsym(size, density, eigenvalues)

Dataset generation

- Generator of MIQPs, spanning over various parameters
- Q = sprandsym(size, density, eigenvalues)

Features design

• Static features (21) • Mathematical characteristics

(variables, constraints, objective, spectrum, ...)

• Dynamic features (2) · Early behavior in optimization process (bounds and times at root node)

Dataset generation

- Generator of MIQPs, spanning over various parameters
- Q = sprandsym(size, density, eigenvalues)

Features design

- Static features (21) \cdot Mathematical characteristics

(variables, constraints, objective, spectrum, ...)

• Dynamic features (2) · Early behavior in optimization process (bounds and times at root node)

Labeling procedure

- Consider tie cases \cdot Labels in $\{L, NL, T\}$
- 1h, 5 seeds · Solvability and consistency checks
- Look at runtimes to assign a label

Dataset generation

- Generator of MIQPs, spanning over various parameters
- Q = sprandsym(size, density, eigenvalues)

Features design

• Static features (21) \cdot Mathematical characteristics

(variables, constraints, objective, spectrum, ...)

• Dynamic features (2) · Early behavior in optimization process (bounds and times at root node)

Labeling procedure

- Consider tie cases \cdot Labels in $\{\textbf{L}, \textbf{NL}, \textbf{T}\}$
- 1h, 5 seeds · Solvability and consistency checks
- Look at runtimes to assign a label

$$\{(\mathbf{x}^k, \mathbf{y}^k)\}_{k=1..N}$$
 where $\mathbf{x}^k \in \mathbb{R}^d, \mathbf{y}^k \in \{\mathsf{L}, \mathsf{NL}, \mathsf{T}\}$ for N MIQPs

Dataset \mathcal{D} (nutshell) analysis

• **2300** instances, $n \in \{25, 50, \dots, 200\}$, density $d \in \{0.2, 0.4, \dots, 1\}$

Dataset \mathcal{D} (nutshell) analysis

• **2300** instances, $n \in \{25, 50, \dots, 200\}$, density $d \in \{0.2, 0.4, \dots, 1\}$

- Multiclass classifiers: SVM and Decision Tree based methods (Random Forests (RF) · Extremely Randomized Trees (EXT) · Gradient Tree Boosting (GTB))
- Avoid overfitting with ML best practices
- Tool: scikit-learn library

Learning results on \mathcal{D}_{test}

Classifiers perform well with respect to **traditional classification** measures:

	SVM	RF	EXT	GTB
Accuracy	0.85	0.89	0.84	0.87
Precision	0.82	0.85	0.81	0.85
Recall	0.85	0.89	0.84	0.87
F1 score	0.83	0.87	0.82	0.86

 $\mathcal{D}_{\textit{test}}$ - Multiclass - All features

 A major difficulty is posed by the <u>T class</u>, (almost) always <u>misclassified</u>

Learning results on \mathcal{D}_{test}

Classifiers perform well with respect to **traditional classification** measures:

	SVM	RF	EXT	GTB
Accuracy	0.85	0.89	0.84	0.87
Precision	0.82	0.85	0.81	0.85
Recall	0.85	0.89	0.84	0.87
F1 score	0.83	0.87	0.82	0.86

 $\mathcal{D}_{\textit{test}}$ - Multiclass - All features

- A major difficulty is posed by the <u>T class</u>, (almost) always <u>misclassified</u>
- --> **Binary setting**: remove all tie cases · performance improved How relevant are ties with respect to the question L vs. NL?

Ensemble methods based on Decision Trees provide an **importance score** for each feature.

Top scoring ones are dynamic ft.s and those about eigenvalues:

(dyn. ft.) • Difference of lower bounds for L and NL at root node

- (dyn. ft.) Difference of resolution times of the root node, for L and NL
 - Value of smallest nonzero eigenvalue
 - Spectral norm of Q, i.e., $\|Q\| = \max_i |\lambda_i|$
 - ...

Ensemble methods based on Decision Trees provide an **importance score** for each feature.

Top scoring ones are dynamic ft.s and those about eigenvalues:

(dyn. ft.) • Difference of lower bounds for L and NL at root node

- (dyn. ft.) Difference of resolution times of the root node, for L and NL
 - Value of smallest nonzero eigenvalue
 - Spectral norm of Q, i.e., $||Q|| = \max_i |\lambda_i|$
 - ...

Static features setting: remove dynamic features · performance slightly deteriorated

How does the prediction change without information at root node?

Measure the optimization gain

Need

Evaluate classifiers' performance in optimization terms, and quantify the gain with respect to CPLEX default strategy.

Need

Evaluate classifiers' performance in optimization terms, and quantify the gain with respect to CPLEX default strategy.

• Run each test example once more, for all configurations of qtolin (on/L, off/NL, DEF) and collect resolution times

Need

Evaluate classifiers' performance in optimization terms, and quantify the gain with respect to CPLEX default strategy.

- Run each test example once more, for all configurations of qtolin (on/L, off/NL, DEF) and collect resolution times
- For each classifier *clf* and DEF, build a **times vector** t_{clf} : for every test example, select the runtime corresponding to its label $\in \{L, NL, T\}$, as predicted by *clf*

Average L and NL times in case of T being predicted

Need

Evaluate classifiers' performance in optimization terms, and quantify the gain with respect to CPLEX default strategy.

- Run each test example once more, for all configurations of qtolin (on/L, off/NL, DEF) and collect resolution times
- For each classifier *clf* and DEF, build a times vector t_{clf}: for every test example, select the runtime corresponding to its label ∈ {L, NL, T}, as predicted by *clf* Average L and NL times in case of T being predicted
- Build also t_{best} (t_{worst}) containing times corresponding to the correct (wrong) labels

Using times vectors \boldsymbol{t}_{clf} define

 $\begin{array}{l} \sigma_{\mathsf{clf}} \;\; \mathbf{Sum of predicted runtimes: sum over times in } t_{clf} \\ \mathbf{N}\sigma_{\mathsf{clf}} \;\; \in [0,1] \; \mathbf{Normalized time score: shifted geometric mean of } \\ \mathrm{times in } t_{clf}, \; \mathrm{normalized between best and worst cases} \end{array}$

Using times vectors \boldsymbol{t}_{clf} define

 $\begin{array}{l} \sigma_{\mathsf{clf}} \;\; \mathbf{Sum of predicted runtimes: sum over times in } t_{clf} \\ \mathbf{N}\sigma_{\mathsf{clf}} \;\; \in [0,1] \; \mathbf{Normalized time score: shifted geometric mean of } \\ \text{times in } t_{clf}, \; \text{normalized between best and worst cases} \end{array}$

	SVM	RF	EXT	GTB	DEF
$\sigma_{ t DEF}/\sigma_{clf}$	3.88	4.40	4.04	4.26	_
$N\sigma_{clf}$	0.98	0.99	0.98	0.99	0.42

Using times vectors \boldsymbol{t}_{clf} define

 $\begin{array}{l} \sigma_{\mathsf{clf}} \;\; \mathbf{Sum of predicted runtimes: \ sum over times in } t_{clf} \\ \mathbf{N}\sigma_{\mathsf{clf}} \;\; \in [0,1] \; \mathbf{Normalized \ time \ score: \ shifted \ geometric \ mean \ of \\ times \ in \; t_{clf}, \ normalized \ between \ best \ and \ worst \ cases \end{array}$

	SVM	RF	EXT	GTB	DEF
$\sigma_{ t DEF}/\sigma_{clf}$	3.88	4.40	4.04	4.26	_
$N\sigma_{clf}$	0.98	0.99	0.98	0.99	0.42

- <u>DEF could take up to 4x more time</u> to run MIQPs of \mathcal{D}_{test} , compared to a trained classifier
- Measures are better for classifiers hitting **timelimit** less frequently (and both L and NL reach timelimit multiple times!)

Ongoing questions

What about other datasets?

• Selection from QPLIB · 24 instances

What about other datasets?

- Selection from QPLIB · 24 instances
- Part of CPLEX internal testbed · 175 instances, used as new test set C_{test} for classifiers trained on the synthetic data.
 Again unbalanced, but with majority of ties and few NL.

- + $\mathcal{C}_{\textit{test}}$ is dominated by few structured combinatorial instances
- Very different distribution of features

All <u>classifiers perform very poorly</u> in terms of classification measures (most often T is predicted as NL), **but** ...

- \mathcal{C}_{test} is dominated by few structured combinatorial instances
- Very different distribution of features

All classifiers perform very poorly in terms of classification measures (most often T is predicted as NL), **but** ...

... performance is not bad in optimization terms:

	SVM	RF	EXT	GTB	DEF
$\sigma_{ t DEF}/\sigma_{clf}$	0.48	0.53	0.71	0.42	_
$N\sigma_{clf}$	0.75	0.90	0.91	0.74	0.96

Given the high **presence of ties**, runtimes for L and NL are most often comparable, so **the loss in performance is not dramatic**.

Why those predictions?

Why those predictions?

- The **bound at the root** node seems to decide the label!
- Convexification and linearization clearly affect
 - formulation size
 formulation strength
 implementation efficacy
 ...

 \ldots each problem type might have its own decision function for the question $L\ vs.\ NL$

Why those predictions?

- The **bound at the root** node seems to decide the label!
- Convexification and linearization clearly affect
 - formulation size
 formulation strength
 implementation efficacy
 ...

 \ldots each problem type might have its own decision function for the question $L\ vs.\ NL$

More experiments to come:

- Employ a larger and heterogeneous dataset
- Go beyond preliminary features evaluation
- Define a custom loss/scoring function

Thanks! Questions?