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Motivation

IBM Deep Blue

V.S.

Deep Mind AlphaGo
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Motivation

Traditional OR algorithms

Hard rules & constraints

Can have big complexity

Deep Learning

Perception: fast, intuitive
approximate

Integers & rules

Focuses on all possible cases Focuses on the cases shown
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Objectives

Sometimes in OR, we just don’t know.

−→ Build mixed algorithm where decisions are arbitrary learned.

Sometimes in OR, the complexity is just too big.

−→ Build a fast approximator using deep learning.

In this talk, we refer to both cases as estimation.
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A 3-class taxonomy

End-to-End learning

Build a machine learning model to directly output solutions.

Offline estimation

Build a machine learning model to parametrize your OR algorithm.

Online estimation

The machine learning model is used repeatedly by the OR
algorithm to assist it in its solving process.
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End-to-end learned algorithms

I Given a problem, learn the solution.
E.g. Given a weighted graph, learn a solution to the TSP.1

I Solutions may not be fully detailed.
E.g. Predict only aggregation of MILP solution2.

I Runtime: input the problem to the ML model, get the
solution.

1Bello et al. 2016; Dai et al. 2017; Emami and Ranka 2018; Kool and
Welling 2018; Nowak et al. 2017; Vinyals, Fortunato, and Jaitly 2015.

2Larsen et al. n.d.
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End-to-end learned algorithms

Advantages Disadvantages

Fast inference (Polynomial
complexity)

Based on data appropriate
to the task

Repurposed by retraining

Good default solution when
nothing else is available

Needs data (eventually
labels)

May need (very) expensive
training

Very heuristic:
I No optimality guarantee
I Little feasibility guarantee
→ Dedicated
architectures
→ Must not break
differentiability

Generalization with size?
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Offline estimation

I Predict a property of a problem instance that can get
exploited by an OR algorithm.
E.g. Learn when to linearize MIQP3, when to apply DW
decomposition4.

I May be seen as a more general case of the previous.

I Runtime: Run the prediction, then run the OR algorithm
accordingly.

3Bonami, Lodi, and Zarpellon 2018.
4Kruber, Lübbecke, and Parmentier 2017.
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Online estimation

I Throughout it progress, the OR algorithm repeatedly calls
the ML model.
E.g. Learning to branch5, where to run heuristics6 in MILP.
Learning to apply SGD updates7.
Learning to select cutting plane in convex SDP relaxation of
QP8.

I Can also build heuristics9.

I Runtime: The OR & the ML algorithms need to be deployed
and run together → more specific code.

5Lodi and Zarpellon 2017.
6Shao et al. 2017.
7Andrychowicz et al. 2016; Li and Malik 2016, 2017; Wichrowska et al.

2017.
8Baltean-Lugojan and Misener n.d.
9Dai et al. 2017.
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Representation challenge

Deep learning works well for natural signals (images, speech, etc).
Will it work well for OR problems?

I Are common architectures the best prior?

I Additional constraints: large sparse structured inputs/
outputs of variable sizes.

I Partial solutions: graph NN, attention, CNN, RNN and
other parameter reuse.
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Supervised vs reinforcement

Supervised

Straightforward

Expensive targets

Not well suited when
multiples targets are corrects
(E.g. multiple solutions)

Reinforcement

Natural formulation to the
online setting

Naturally maximizes sum of
expected future rewards

More complex to define and
train
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Supervised in the online setting?

I No apparent link between performance of ML and
performance of overall algorithm.

I When estimating a known quantity, it’s possible to link the
performance fo ML to the overall performance10

10Baltean-Lugojan and Misener n.d.; Shao et al. 2017.
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Data distributions

Easily fooled

# nodes

# edges

Valid space of
symetric graphs

Graphs generated

Especially if the test set is generated from the same distribution as
the training set
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Data distributions

Historical data?

“[S]ampling from historical data is appropriate when attempting to
mimic a behavior reflected in such data.”11

11Larsen et al. n.d.
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Other motivations

I ML to model uncertainty12.

I Extract knowledge out of learned models13

12Larsen et al. n.d.
13Bonami, Lodi, and Zarpellon 2018; Dai et al. 2017.
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Questions
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Kruber, Markus, Marco E. Lübbecke, and Axel Parmentier (2017). “Learning
When to Use a Decomposition”. In:
Integration of AI and OR Techniques in Constraint Programming.
International Conference on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. Lecture Notes in
Computer Science. Springer, Cham, pp. 202–210.

Larsen, Eric et al. (n.d.). “A Machine Learning Approximation Algorithm for
Fast Prediction of Solutions to Discrete Optimization Problems”. In: p. 22.

Li, Ke and Jitendra Malik (2016). “Learning to Optimize”. In: arXiv:
1606.01885 [cs, math, stat].

– (2017). “Learning to Optimize Neural Nets”. In: arXiv: 1703.00441 [cs,

math, stat].

Lodi, Andrea and Giulia Zarpellon (2017). “On Learning and Branching: A
Survey”. In: TOP 25.2, pp. 207–236.

Nowak, Alex et al. (2017). “A Note on Learning Algorithms for Quadratic
Assignment with Graph Neural Networks”. In: arXiv: 1706.07450 [cs,

stat].

Shao, Yufen et al. (2017). “Learning to Run Heuristics in Tree Search”. In:
pp. 659–666.

http://arxiv.org/abs/1606.01885
http://arxiv.org/abs/1703.00441
http://arxiv.org/abs/1703.00441
http://arxiv.org/abs/1706.07450
http://arxiv.org/abs/1706.07450


19/19

References III

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly (2015). “Pointer
Networks”. In: Advances in Neural Information Processing Systems 28.
Ed. by C. Cortes et al. Curran Associates, Inc., pp. 2692–2700.

Wichrowska, Olga et al. (2017). “Learned Optimizers That Scale and
Generalize”. In:

Emoji artwork provided by EmojiOne under free license.

http://emojione.com

