Summer Course Project II: Sensor Network Localization

Yinyu Ye

May 28, 2018

Sensor Network Localization (SNL), also closely related to Data Dimension Reduction, Molecular Confirmation, Graph Realization, is one of major topics in Data Science. The SNL problem is: Given possible anchors $\mathbf{a}_k \in \mathbb{R}^d$, distance information $d_{ij} \in N_x$, and $\hat{d}_{kj} \in N_a$, find $\mathbf{x}_i \in \mathbb{R}^d$ for all *i* such that

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = d_{ij}^{2}, \ \forall \ (i, j) \in N_{x}, \ i < j,$$

$$\|\mathbf{a}_{k} - \mathbf{x}_{j}\|^{2} = d_{kj}^{2}, \ \forall \ (k, j) \in N_{a},$$
(1)

where $(ij) \in N_x$ $((kj) \in N_a)$ connects points \mathbf{x}_i and \mathbf{x}_j $(\mathbf{a}_k \text{ and } \mathbf{x}_j)$ with an edge whose Euclidean length is d_{ij} (\hat{d}_{kj}) .

We establishes in class an SOCP relaxation for solving solve (1):: Find a symmetric matrix \mathbf{x}_i s such that

$$\min \sum_{i} \mathbf{0}^{T} \mathbf{x}_{i}$$
s.t. $\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} \leq d_{ij}^{2}, \forall (i, j) \in N_{x}, i < j,$

$$\|\mathbf{a}_{k} - \mathbf{x}_{j}\|^{2} \leq \hat{d}_{kj}^{2}, \forall (k, j) \in N_{a}.$$

$$(2)$$

We also establishes in class an SDP relaxation for solving solve (1):: Find a symmetric matrix $Z \in S^{d+n}$ such that

min
$$\mathbf{0} \bullet Z$$

s.t. $Z_{1:d,1:d} = I$,
 $(\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j)(\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j)^T \bullet Z = d_{ij}^2, \forall i, j \in N_x, i < j$,
 $(\mathbf{a}_k; -\mathbf{e}_j)(\mathbf{a}_k; -\mathbf{e}_j)^T \bullet Z = \hat{d}_{kj}^2, \forall k, j \in N_a,$
 $Z \succeq \mathbf{0}$.
(3)

Note that $Z_{1:d,1:d} = I \in S^d$ can be realized through d(d+1)/2 linear equations.

There is a simple nonlinear least squares approach to solve (1):

min
$$\sum_{(ij)\in N_x} \left(\|\mathbf{x}_i - \mathbf{x}_j\|^2 - d_{ij}^2 \right)^2 + \sum_{(kj)\in N_a} \left(\|\mathbf{a}_k - \mathbf{x}_j\|^2 - d_{kj}^2 \right)^2$$
 (4)

which is an unconstrained nonlinear minimization problem.

Question 1: Consider the problem on plane R^2 with one sensor and three anchors $\mathbf{a}_1 = (1;0)$, $\mathbf{a}_2 = (-1;0)$ and $\mathbf{a}_3 = (0;2)$. Suppose the Euclidean distances from the sensor to the three anchors are d_1 , d_2 and d_3 respectively and known to us. Then, from the anchor and distance information, we can locate the sensor by finding $\mathbf{x} \in R^2$ such that

$$\|\mathbf{x} - \mathbf{a}_i\|^2 = d_i^2, \ i = 1, 2, 3.$$

Do the following numerical experimentations:

• Generate any sensor point in the convex hull of the three anchors, compute its distances to three anchors d_i , i = 1, 2, 3, respectively. Then solve the SOCP relaxation problem, that is,

$$\|\mathbf{x} - \mathbf{a}_i\|^2 \le d_i^2, \ i = 1, 2, 3.$$

Did you find the correct location? What happen if the sensor point is outside of the convex hull?

• Now try the SDP relaxation, that is, let

$$Z := \begin{pmatrix} I & \mathbf{x} \\ \mathbf{x}^T & Y \end{pmatrix} \in S^3,$$

and solve

$$\begin{array}{rl} (1;0;0)(1;0;0)^T \bullet Z &= 1, \\ (0;1;0)(0;1;0)^T \bullet Z &= 1, \\ (1;1;0)(1;1;0)^T \bullet Z &= 2, \\ (\mathbf{a}_i;-1)(\mathbf{a}_i;-1)^T \bullet Z &= d_i^2, \ i=1,2,3 \\ & Z &\succeq \mathbf{0} \in S^3. \end{array}$$

Did you find the correct location everywhere on the plane?

You can download CVX or MOSEK directly to solve these numerical problems.

Question 2: Furthermore, run some randomly generated problems (in 1D and 2D) with (2 and 3) anchors with a few sensors, where we assume that the Euclidean distance is exactly known when any two points is closer than a given range.

- Compare the three approaches for localization quality?
- Use the SOCP or SDP solution $\bar{X} = [\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2, ..., \bar{\mathbf{x}}_n]$ as the initial solution for approach (4) and apply the Steepest Descent Method for a number of steps.

In practical problems, there are often noises in the distance information. To deal with possible noises, the SDP relaxation approach (3) can be modified to minimize the L_1 norm of the errors:

$$\min \sum_{ij \in N_x} (\delta'_{ij} + \delta''_{ij}) + \sum_{kj \in N_a} (\hat{\delta}'_{kj} + \hat{\delta}''_{kj})$$
s.t. $Z_{1:d,1:d} = I,$

$$(\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j) (\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j)^T \bullet Z + \delta'_{ij} - \delta''_{ij} = d^2_{ij}, \ \forall \ i, j \in N_x, \ i < j,$$

$$(\mathbf{a}_k; -\mathbf{e}_j) (\mathbf{a}_k; -\mathbf{e}_j)^T \bullet Z + \hat{\delta}'_{kj} - \hat{\delta}''_{kj} = \hat{d}^2_{kj}, \ \forall \ k, j \in N_a,$$

$$Z \succeq \mathbf{0}.$$

$$(5)$$

The SDP solution from the relaxation

$$\bar{Z} = \left(\begin{array}{cc} I & \bar{X} \\ \\ \bar{X}^T & \bar{Y} \end{array} \right)$$

often may not be rank d so that $\bar{X} \in \mathbb{R}^{d \times n}$ cannot be the best possible localization of the n sensors.

Question 3: Generate noise distance data and use the SDP solution $\bar{X} = [\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2, ..., \bar{\mathbf{x}}_n]$ as the initial solution for approach (4) and apply the Steepest Descent Method for a number of steps.

- How is the final solution come out after steepest descent?
- What about if you start the Steepest Descent with a random initial solution?

References

- P. Biswas and Y. Ye, "Semidefinite programming for ad hoc wireless sensor network localization," in *Proceedings of the third international symposium on Information processing in sensor networks*, ACM Press, 2004, pp. 46–54.
- [2] Pratik Biswas, T-C Liang, K-C Toh, Y. Ye, T-C Wang, "Semidefinite programming approaches for sensor network localization with noisy distance measurements," IEEE transactions on automation science and engineering, 3(4), 2006, pp. 360-371.
- [3] Pratik Biswas, Hamid Aghajan, Y. Ye, "Integration of angle of arrival information for multimodal sensor network localization using semidefinite programming," 39th Asilomar Conference on Signals, Systems and Computers, 2005.
- [4] L. Doherty, L. E. Ghaoui, and K. S. J. Pister, "Convex position estimation in wireless sensor networks." in *Proceedings of IEEE Infocom*, Anchorage, Alaska, April 2001, pp. 1655 –1663.
- [5] Mingjie Gao, Ka-Fai Cedric Yiu, Sven Nordholm, Y. Ye, "On a New SDP-SOCP Method for Acoustic Source Localization Problem," ACM Transactions on Sensor Networks (TOSN), 12(4), 2016.

[6] A. So. A Semidefinite Programming Approach to the graph realization problem: Theory, Applications and Extensions *Phd Thesis, Stanford University*, 2007.