Summer Course Project III: Nonconvex Regulated Linear Regression

Yinyu Ye

June 2, 2018

1 Optimization over Convex Cones

We consider the following optimization problem in the non-nagative cone:

$$
\begin{array}{cc}
\text { Minimize } & f(\mathbf{x}) \tag{1}\\
\text { Subject To } & \mathbf{x} \geq 0 \text { (or free). }
\end{array}
$$

where we have $f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}$ for some given data matrix $A \in R^{m \times n}$ and $\mathbf{b} \in R^{m}$. When $n>m$, the optimal solution may not unique so that we aim to find the sparsest optimal solution.

One approach is called LASSO [8]:

$$
\begin{array}{cc}
\text { Minimize } & f(\mathbf{x})+\mu\|\mathbf{x}\|_{1} \\
\text { Subject To } & \mathbf{x} \geq 0 \text { (or free). } \tag{2}
\end{array}
$$

This remains a convex optimization for any given μ.
Recently, a class of "Folded Nonconvex Regularization/Penalty" functions have been introduced to replace $P(\mathbf{x})=\|\mathbf{x}\|_{1}$. For example, the L_{p} quasi norm function with $p=1 / 2$, that is, $P(\mathbf{x})=\|\mathbf{x}\|_{1 / 2}^{1 / 2}=$ $\sum_{j}\left|x_{j}\right|^{1 / 2}$, and many others in $([6,1,3,5]$ and references therein).

2 KKT Solution Structures

Question 1: Write down the first-order KKT conditions. Note that the function is not differentiable when $x_{j}=0$, but it must satisfy the classical first-order KKT conditions at $x_{j} \neq 0$.

Question 2: Write down the second-order KKT conditions. Note that the function is not differentiable when $x_{j}=0$, but it must satisfy the classical second-order KKT conditions at $x_{j} \neq 0$.

Compare your results to those in [2].

3 Computational Experiments

Question 3: Implement any first-order and/or second-order algorithms on solving randomly generated test data, or other benchmark problems that you may find, and compare results among LASSO and different concave penalty functions.

4 Theoretical and Statistical Analyses

Question 4: There are some analyses on the performance and solution qualities of using the concave penalties, see $[7,5]$. Read the two papers and understanding their findings. Furthermore, any improved results and new findings could be made?

5 Extensions over SDP Cone

We consider the regression problems over SDP cone:

$$
\begin{array}{cc}
\text { Minimize } & \frac{1}{2}\|\mathcal{A} X-\mathbf{b}\|^{2} \tag{3}\\
\text { Subject To } & X \succeq 0,
\end{array}
$$

where

$$
\mathcal{A} X=\left(\begin{array}{c}
A_{1} \bullet X \\
\ldots \\
A_{m} \bullet X
\end{array}\right)
$$

for given data matrices $A_{i} \in S^{n}, i=1, \ldots, m$, and $\mathbf{b} \in R^{m}$. In many applications, we like to find a lowest rank solution matrix for the SDP regression, similar to find a sparsest solution to the linear regression. There has been a analog concave penalty $P(X)$, called matrix Schatten quasi-norm (see, e.g., [4]), was introduced and analyzed:

$$
\begin{array}{cc}
\text { Minimize } & \frac{1}{2}\|\mathcal{A} X-\mathbf{b}\|^{2}+\mu P(X) \\
\text { Subject To } & X \succeq 0,
\end{array}
$$

Question 5: Do computational tests with few anchors and a few sensor points for solving Sensor Network Localization. Does the addition of the penalty help? Can you find other more effective concave penalty functions?

References

[1] R. Chartrand, Exact reconstructions of sparse signals via nonconvex minimization, IEEE Signal Process. Lett., 14 (2007), pp. 707-710.
[2] Chen, X., Xu, F., Y, Lower bound theory of non-zero entries in solutions of L2-Lp minimization. SIAM J. Sci. Comput. 32(5), 28322852 (2010).
[3] J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 96 (2001), pp. 1348-1360.
[4] Senshan Ji, Kam-Fung Sze, Zirui Zhou, Anthony Man-Cho So, Y, Beyond convex relaxation: A polynomial-time non-convex optimization approach to network localization. INFOCOM, 2013 Proceedings IEEE p. 2499-2507, 2013.
[5] Liu, Yao, Li, Y, .Folded concave penalized sparse linear regression: sparsity, statistical performance, and algorithmic theory for local solutions, Math. Programming (2017) 1-34.
http://http://link.springer.com/article/10.1007\%2Fs10107-017-1114-y
[6] A. E. Hoerl and R. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12 (1970), pp. 55-67.
[7] Loh, P.-L., Wainwright, M.J. Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima. J. Mach. Learn. Res. 16, 559616 (2015).
[8] Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58(1), 267288 (1996).

