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1 Introduction

Consider solving the linear program

minimizex fp(x)

s.t. Ax = b,

x ≥ 0.

(1)

Or solve

minimizey,s fd(y)

s.t. ATy + s = c,

s ≥ 0;

(2)

The augmented Lagrangian function for problem (1) would be

Lp(x,y) = fp(x)− yT (Ax− b) +
β

2
‖Ax− b‖2, (3)

where β is a positive parameter. And the one for problem (2) is

Ld(y, s,x) = fd(y)− xT (ATy + s− c) +
β

2
‖ATy + s− c‖2. (4)

2 ADMM for solving Problem (1)

The Augmented Lagrangian Method (ALM) for the primal would be: starting from any x0 ≥ 0 and

y0, do the iterative update:

• Update variable x:

xk+1 = arg min
x≥0

Lp(x,yk);
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• Update multiplier y:

yk+1 = yk − β(Axk+1 − b).

However, the computation of new x is still too much work – it is minimization over the nonnegative cone.

We now reformulate problem (1) as

minimizex1,x2 fp(x1)

s.t. Ax1 = b

x1 − x2 = 0;

x2 ≥ 0,

(5)

and consider the split augmented Lagrangian function:

Lp(x1,x2,y) = fp(x1)− yT (Ax1 − b)− sT (x1 − x2) +
β

2

(
‖Ax1 − b‖2 + ‖x1 − x2‖2

)
. (6)

Then the Alternating Direction Method with Multipliers (ADMM) would be: starting from any

x0
1, x0

2 ≥ 0, and multiplier (y0, s0), do the iterative update:

• Update variable x1:

xk+1
1 = arg min

x1

Lp(x1,x
k
2 ,y

k);

• Update variable x2:

xk+1
2 = arg min

x2≥0
Lp(xk+1

1 ,x2,y
k);

• Update multipliers y and s:

yk+1 = yk − β(Axk+1
1 − b) and sk+1 = sk − β(xk+1

1 − xk+1
2 ).

You may now find out that the updates of x1 and x2 become much easy! The update of x1 is a unconstrained

minimization problem (often it has a close-form solution); and the update of x2, although still over the

nonnegative cone, has a simple close-form solution.

Question 1: Write out the explicit formula for updating of x1 and x2. Implement the spliting ADMM

in your favorite language or platform, and try it on some LP and/or convex QP problems. How does it

perform? Does the update order of x1 and x2 make a difference?

Let A′ = (AAT )−1/2A and b′ = (AAT )−1/2b, and consider

minimizex1,x2
f(x1)

s.t. A′x1 = b′

x1 − x2 = 0;

x2 ≥ 0,

(7)
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This problem is equivalent to the original problem but the constraint matrix is preconditioned. Apply the

same ADMM and try it on the preconditioned formulation (7), and compare its performance with that on

solving (5).

3 ADMM for solving Problem (2)

The ADMM for the dual is straightforward: starting from any y0, s0 ≥ 0, and multiplier x0, do the iterative

update:

• Update variable y:

yk+1 = arg min
y
Ld(y, sk,xk);

• Update slack variable s:

sk+1 = arg min
s≥0

Ld(yk+1, s,xk);

• Update multipliers x:

xk+1 = xk − β(ATyk+1 + sk+1 − c).

Note that the updates of y is a least-squares problem with a fixed matrix (which needs to be factorized

once), and the update of s has a simple close form. Also note that x would be eventually non-positive.

Question 2: Write out the explicit formula for updating of y and s. Implement the ADMM in your

favorite language or platform, and try it on some LP and/or convex QP problems. How does it perform?

Does the update order of y and s make a difference?

4 Interior-Point ADMM

Now solving the linear program with the logarithmic barrier function

minimizex fp(x)− µ
∑
j ln(xj)

s.t. Ax = b,

x > 0;

(8)

or problem in the format

minimizey,s fd(y) + µ
∑
j ln(sj)

s.t. ATy + s = c, s > 0

x ≥ 0;

(9)

where µ is a fixed positive constant.
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The augmented Lagrangian function for problem (8) would be

Lpµ(x,y) = fp(x)− µ
∑
j

ln(xj)− yT (Ax− b) +
β

2
‖Ax− b‖2; (10)

and the one for problem (9) would be

Ldµ(y, s,x) = f (y)y − µ
∑
j

ln(sj)− xT (ATy + s− c) +
β

2
‖ATy + s− c‖2, (11)

Question 3: Apply ADMM for problems (8) and (9). Again, you may split x in problem (8) into

x1 and x2 to simplify the update. How do they perform? Again try your implementation on solving the

preconditioned formulation (7) with barrier.

Now, we gradually reduced µ as an outer iteration. That is, we start some µ = µ0 and apply the

ADMM to compute an approximate optimizer, with its multiplier, for problem (8) or problem (9). Now set

µ = µ1 = γµ0 where 0 < γ < 1. Then we use the approximate optimizer and multiplier as the initial point

to start ADMM for (8) and (9) with the new µ.

Question 4: Implement the Outer-Iteration process described above, and try different β and γ to see

how it performs.

5 Multi-Block ADMM

Question 5: What about to further split variables x in the primal and/or y in the dual, and apply the

fixed order or random permutation order in each update cycle.

More precisely, consider solving the dual and matrix A = [A1; A2], b = [b1;b2], and y = [y1;y2], then

the augmented Lagrangian function

Ld(y1,y2, s,x) = −bT1 y1 − bT2 y2 − xT (AT1 y1 +AT2 y2 + s− c) +
β

2
‖AT1 y1 +AT2 y2 + s− c‖2. (12)

Starting from any y0
1, y0

2, s0 ≥ 0, and multiplier x0, do the iterative update:

• Update variable y1:

yk+1
1 = arg min

y1

Ld(y1,y
k
2 , s

k,xk);

• Update variable y2:

yk+1
2 = arg min

y2

Ld(yk+1
1 ,y2, s

k,xk);

• Update slack variable s:

sk+1 = arg min
s≥0

Ld(yk+1
1 ,yk+1

2 , s,xk);
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• Update multipliers x:

xk+1 = xk − β(AT1 y
k+1
1 +AT2 y

k+1
2 + sk+1 − c).

Note that the least-squares problem for each individual block yi involves a smaller matrix (AiA
T
i ).

One can also consider to reformulate the dual as

maximizey,s,u1,u2 bTy

s.t. AT1 y1 − u1 = 0, (v1)

AT2 y2 − u2 = 0, (v2)

u1 + u2 + s = c, (x)

s ≥ 0;

(13)

with the multiplier v1, v2 and x for the three sets of the equality constraints. The augmented Lagrangian

function becomes

Ld(y1,y2,u1,u2, s,v1,v2,x) = −bT1 y1 − bT2 y2 − vT1 (AT1 y1 − u1)− vT2 (AT2 y2 − u2)− xT (u1 + u2 + s− c)

+β
2

(
‖AT1 y1 − u1‖2 + ‖AT2 y2 − u2‖2 + ‖u1 + u2 + s− c‖2

)
.

(14)

Note that yi, i = 1, 2, and s ≥ 0 can be independently and in parallel, and ui, i = 1, 2, can be updated

jointly with a close form(?). This is essentially a two-block ADMM and guaranteed to be convergent.

6 ADMM for SDP Cones

Consider solving the SDP problem

minimizex C •X

s.t. AX = b,

X � 0;

(15)

or its dual

maximizey,S bTy

s.t. ATy + S = C,

S � 0;

(16)

Repeat Questions 1-5 for SDP optimization, where the primal problem (15) is analog to (15), and the dual

problem (16) is analog to (2).
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