	References

A Reinforcement-Learning Framework for Symmetric Reordering in Sparse Cholesky Factorization

Maxime Gasse, Defeng Liu, Andrea Lodi, Mathieu Tanneau

CERC DS4DM, GERAD

June 28, 2018

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

0000	000		
0000			
	How I will attempt to s	olve a hard problem	
	now i will attempt to s		
	and then try to i	inderstand it	
	aka: Solve first,	then think	

Maxime Gasse, Defeng Liu, Andrea Lodi, Mathieu Tanneau

CERC DS4DM, GERAD

June 28, 2018

	References

1 Introduction

2 RL framework

3 Conclusion

э.

Introduction		

1 Introduction

2 RL framework

3 Conclusion

2

Introduction		
000		
Motivation		

From Interior-Point method [Wright, 1997]:

• Solve (sparse) symmetric linear system

 $\Phi \Delta y = \xi$, with $\Phi = (A \Theta A^T) \succ 0$

• Compute (sparse) Cholesky factorization

 $\Phi = L \times L^T$, with L lower triangular

• **BUT** even if Φ is sparse, *L* may not be!

 \Rightarrow re-order rows and columns of Φ before computing L

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Introduction		
0000		
Motivation		

Ordering matters

2

ヘロト ヘロト ヘヨト ヘヨト

Introduction		
0000		
Motivation		

Ordering matters

Figure: \times are non-zeros elements of Φ ; + are fill-in (zero in Φ but not in *L*)

2

Introduction		References
0000		
Problem description		

Finding a good ordering reduces to a Graph elimination problem:

- Input is undirected graph G
- Remove a vertex $v \in G$ and add edges so that neighbours of v form a clique. Repeat until G has no more vertices.
- Goal: find an elimination sequence that minimizes the total number of new edges.

・ロト ・回ト ・ヨト ・ヨト

Introduction		References
0000		
Problem description		

Elimination order:

・ロト ・四ト ・ヨト ・ヨト 三日

Introduction		References
0000		
Problem description		

Elimination order: 1,

Introduction		References
0000		
Problem description		

Elimination order: 1, 2,

Introduction		References
0000		
Problem description		

Elimination order: 1, 2, 3,

2

<ロ> <四> <ヨ> <ヨ>

Introduction	Conclusion	References
0000		
Problem description		

5

ヘロン 人間 とくほど 人間と

Elimination order: 1, 2, 3, 4,

э.

Introduction		References
0000		
Problem description		

Elimination order: 1, 2, 3, 4, 5

2

ヘロン 人間 とくほど 人間 とう

Introduction		References
0000		
Problem description		

Elimination order: $1, 2, 3, 4, 5 \Rightarrow 2$ edges added

Mathieu Tanneau

2

RL framework	

Introduction

2 RL framework

3 Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	RL framework	
	000	
RL in a nutshell		

Reinforcement Learning

Figure 3.1: The agent–environment interaction in reinforcement learning.

- Maximize long-term cumulative reward
- Learn a policy (i.e. which action do I take, given the current state)
- **Theorem:** there exists an optimal greedy policy

See Reinforcement Learning, Sutton, Barto 2017

・ 何 ト ・ ヨ ト ・ ヨ ト

	RL framework	
	000	
Methodology		

Goal: use RL to learn greedy heuristics

æ

	RL framework	
	000	
(hoped for) results		

Can we learn heuristics...

- ...at all? (likely, yes)
- ...that perform as good as existing ones? (likely, yes)
- ...that also run as fast as existing ones? (likely, no)
- ...for other objectives? (hopefully, yes)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

	RL framework	
	000	
(hoped for) results		

Can we learn heuristics...

- ...at all? (likely, yes)
- ...that perform as good as existing ones? (likely, yes)
- ...that also run as fast as existing ones? (likely, no)
- ...for other objectives? (hopefully, yes)

What can we learn from those (learned) heuristics?

- New heuristics
- Underlying problem structure (by looking at decision rules)

A (1) < A (1) < A (1) </p>

	Conclusion	

Introduction

2 RL framework

э.

	Conclusion	

Take away

- Consider a (combinatorial) optimization problem
- Attempt to solve it using an RL model
- Use that model to infer further knowledge, e.g.: decomposition? parallelism?

	References

Wright, S. (1997).

Primal-Dual Interior-Point Methods.

Society for Industrial and Applied Mathematics.

æ

・ロト ・回 ト ・ヨト ・ヨト