A Hybrid High-Order method for finite elastoplastic deformations within a logarithmic strain framework

Mickaël Abbas, Alexandre Ern, Nicolas Pignet

EDF R&D - ENPC - INRIA

COMPLAS, Barcelona, 04.09.19

Context

- Finite plasticity within a logarithmic strain framework
 - non-linear measure of deformations (geometric nonlinearity)
 - non-linear stress-strain constitutive relation (material nonlinearity)
 - history of the deformations (irreversible phenomena)
- Presence of volumetric locking with primal *H*¹-conforming formulation due to plastic incompressibility
- An alternative : using mixed methods but more unknowns, more expensive to build, saddle-point problem to solve ...

FIGURE 1 – Trace of the stress tensor for (a) P1 (b) P2 (c) P2/P1/P1

- Primal formulation
 - \Rightarrow More advantageous than mixed methods
- Abscence of volumetric locking
 - \Rightarrow More advantageous than primal FE methods
- Integration of the behavior law only at cell-based quadrature nodes
 - \Rightarrow More advantageous than discontinuous Galerkin (dG) methods
- Symmetric tangent matrix at each nonlinear solver iteration
 - \Rightarrow More advantageous than discontinuous Galerkin (dG) methods
- Implementation in the open-source libraries disk++ and code_aster
 - https://github.com/wareHHOuse/diskpp
 - https://www.code-aster.org

Some references on primal formulations for finite plasticity without volumetric locking

- discontinuous Galerkin (dG)
 - [Liu, Wheeler, Dawson, Dean 13]
 - [Mc Bride, Reddy 09]
- Hybrid Methods
 - [Wulfinghoff, Bayat, Alipour, Reese 17]
 - [Krämer, Wieners, Wohlmuth, Wunderlich 16]
- Virtual Element Method (VEM)
 - [Chi, Beirão da Veiga, Paulino 17]
 - [Hudobivnik, Aldakheel, Wriggers 19]

Key ideas of Hybrid High-Order (HHO) methods

- Primal formulation with cells and faces unknowns (poly. of order $k \ge 1$)
- Local reconstruction and stabilization
 - Gradient tensor field reconstructed in $\mathbb{P}_d^k(T; \mathbb{R}^{d \times d})$
 - Stabilization connecting cell and faces unknowns
- References
 - diffusion problem [Di Pietro, Ern, Lemaire, CMAM 14]
 - quasi-incompressible linear elasticity [Di Pietro, Ern, CMAME 15]
 - hyperelasticity with large deformations [Abbas, Ern, NP, CM 18]
 - plasticity with small deformations [Abbas, Ern, NP, CMAME 19]

FIGURE 2 – face (green) and cell (blue) unknowns (2D)

- Support of polyhedral meshes (with possibly nonconforming interfaces)
- Arbitrary approximation order $k \ge 1$
 - *h*^{*k*+1} convergence in energy-norm (linear elasticity)
 - h^{k+2} convergence in L^2 -norm with elliptic regularity
- Attractive computational costs
 - cell unknowns are eliminated locally by static condensation
 - compact stencil for globally coupled face unknowns (only neighboring faces)
 - reduced size $N_{dofs}^{hho} \approx k^2 \# (\text{faces})$ vs. $N_{dofs}^{dG} \approx k^3 \# (\text{cells})$
- Local principle of virtual work (equilibrated tractions)
- HHO methods are closely related to HDG and ncVEM
 - [Cockburn, Di Pietro, AE 16]

Plasticity problem with small deformations

- Let $\Omega_0 \in \mathbb{R}^d$ (d=2,3), be a bounded connected polyhedron
- Let \underline{f} and \underline{t} be given volumetric and surface (on Γ_n) loads
- Let \underline{u}_d be a given imposed displacement (on Γ_d)
- $\bullet\,$ History of the deformations \to we introduce the internal state variables χ
- For all $1 \le n \le N$, find $\underline{u}^n \in V_d := \{ \underline{v} \in H^1(\Omega_0; \mathbb{R}^d) \, | \, \underline{v} = \underline{u}_d \text{ on } \Gamma_d \}$ s.t.

$$\int_{\Omega_0} \boldsymbol{\sigma}(\underline{\boldsymbol{u}}^n) : \boldsymbol{\varepsilon}(\underline{\boldsymbol{v}}) \, d\Omega_0 = \int_{\Omega_0} \underline{\boldsymbol{f}}^n \cdot \underline{\boldsymbol{v}} \, d\Omega_0 + \int_{\Gamma_n} \underline{\boldsymbol{t}}^n \cdot \underline{\boldsymbol{v}} \, d\Gamma \text{ for all } \underline{\boldsymbol{v}} \in V_0$$

and

 $\sigma(\underline{u}^n) = \text{SMALL}_{PLASTICITY}(\underline{\chi}^{n-1}, \varepsilon(\underline{u}^{n-1}), \varepsilon(\underline{u}^n))$ where SMALL_PLASTICITY is a generic behavior integrator

Local DOFs space

- Let M^h := (T^h, F^h) be a mesh of Ω₀ with T^h the set of cells and F^h the set of (planar) faces
- Let a polynomial degree $k \geq 1$; for all $T \in \mathcal{T}^h$, set

FIGURE 3 – Local DOFs for k = 1, 2. Cell unknowns are eliminated by static condensation

$$\boldsymbol{E}_{\mathcal{T}}^{k}: \mathbb{P}_{d}^{k}(\mathcal{T}; \mathbb{R}^{d}) \times \mathbb{P}_{d-1}^{k}(\mathcal{F}_{\partial \mathcal{T}}; \mathbb{R}^{d}) \rightarrow \underbrace{\mathbb{P}_{d}^{k}(\mathcal{T}; \mathbb{R}_{\text{sym}}^{d \times d})}_{\text{local strain space}}$$

• The reconstructed strain $\boldsymbol{E}_{T}^{k}(\underline{\boldsymbol{\nu}}_{T},\underline{\boldsymbol{\nu}}_{\partial T})$ solves

$$(\boldsymbol{E}_{T}^{k}(\underline{\boldsymbol{v}}_{T},\underline{\boldsymbol{v}}_{\partial T}),\boldsymbol{\tau})_{\boldsymbol{L}^{2}(T)} := -(\underline{\boldsymbol{v}}_{T},\nabla\cdot\boldsymbol{\tau})_{\boldsymbol{L}^{2}(T)} + (\underline{\boldsymbol{v}}_{\partial T},\boldsymbol{\tau}\,\underline{\boldsymbol{n}}_{T})_{\underline{\boldsymbol{L}}^{2}(\partial T)}$$

for all $au \in \mathbb{P}^k_d(T; \mathbb{R}^{d imes d}_{ ext{sym}})$

- mimic an integration by parts
- local scalar mass-matrix of size $\binom{k+d}{k}$ (ex : k = 2, $d = 3 \implies$ size = 10)
- \boldsymbol{E}_T^k depends only on the geometry of T (for k fixed)

Stabilization operator

However, *E*^k_T(<u>v</u>_T, <u>v</u>_{∂T}) = 0 ⇒ <u>v</u>_T = <u>v</u>_{∂T} = cst
 ⇒ We have to "connect" the traces of the cell unknowns to the face unknowns

• We penalize the quantity $\underline{S}_{\partial T}^{k}(\underbrace{\underline{v}_{\partial T} - \underline{v}_{T|\partial T}}_{:=\delta_{\partial T}}) \in \mathbb{P}_{d-1}^{k}(\mathcal{F}_{\partial T}; \mathbb{R}^{d})$ s.t.

$$\underline{S}_{\partial T}^{k}(\delta_{\partial T}) := \underline{\Pi}_{\partial T}^{k}(\underbrace{\delta_{\partial T}}_{\text{HDG term}} - \underbrace{(I_{d} - \underline{\Pi}_{T}^{k})\underline{D}_{T}^{k+1}(\underline{0}, \delta_{\partial T})}_{\text{high-order correction}})$$

 $\underline{\Pi}_{dT}^{k}: L^{2}\text{-projector on } \mathbb{P}_{d-1}^{k}(\mathcal{F}_{\partial \mathcal{T}}; \mathbb{R}^{d}); \underline{\Pi}_{T}^{k}: L^{2}\text{-projector on } \mathbb{P}_{d}^{k}(\mathcal{T}; \mathbb{R}^{d})$ $\underline{D}_{T}^{k+1}: \text{higher-order reconstructed displacement field}$

- Different from the HDG-stabilization operator
- The high-order correction is a distinctive feature of HHO methods ensuring high-order error estimates on polyhedral meshes and linear model problems

Global discrete problem (small deformations)

For all
$$1 \leq n \leq N$$
, find
 $(\underline{u}_{T^{h}}^{n}, \underline{u}_{F^{h}}^{n}) \in \left\{ \prod_{T \in \mathcal{T}^{h}} \mathbb{P}_{d}^{k}(T; \mathbb{R}^{d}) \right\} \times \left\{ \prod_{F \in \mathcal{F}^{h}} \mathbb{P}_{d-1}^{k}(F; \mathbb{R}^{d}) \right\}$ s.t.
 $\sum_{T \in \mathcal{T}^{h}} (\sigma(\underline{u}_{T}^{n}, \underline{u}_{\partial T}^{n}), E_{T}^{k}(\delta \underline{v}_{T}, \delta \underline{v}_{\partial T}))_{L^{2}(T)}$
 $+ \sum_{T \in \mathcal{T}^{h}} \beta h_{T}^{-1}(\underline{S}_{\partial T}^{k}(\underline{u}_{\partial T}^{n} - \underline{u}_{T}^{n}|_{\partial T}), \underline{S}_{\partial T}^{k}(\delta \underline{v}_{\partial T} - \delta \underline{v}_{T}|_{\partial T}))_{\underline{L}^{2}(\partial T)}$
 $= \sum_{T \in \mathcal{T}^{h}} (\underline{f}, \delta \underline{v}_{T})_{\underline{L}^{2}(T)} + \sum_{F \in \mathcal{F}_{b,n}^{h}} (\underline{t}, \delta \underline{v}_{F})_{\underline{L}^{2}(F)}, \quad \forall (\delta \underline{v}_{\mathcal{T}^{h}}, \delta \underline{v}_{\mathcal{F}^{h}})$

and for all the quadrature points

 $\boldsymbol{\sigma}(\underline{\boldsymbol{u}}_{T}^{n},\underline{\boldsymbol{u}}_{\partial T}^{n}) = \text{SMALL_PLASTICITY}(\underline{\boldsymbol{\chi}}_{T}^{n-1},\boldsymbol{\boldsymbol{\mathcal{E}}}_{T}^{k}(\underline{\boldsymbol{u}}_{T}^{n-1},\underline{\boldsymbol{u}}_{\partial T}^{n-1}), \boldsymbol{\boldsymbol{\mathcal{E}}}_{T}^{k}(\underline{\boldsymbol{u}}_{T}^{n},\underline{\boldsymbol{u}}_{\partial T}^{n}))$

with $\beta \simeq 2\mu$ the stabilization parameter

F

Numerical examples

- Nonlinear problem to solve (material nonlinearity)
- Iterative resolution with Newton's method
- Static condensation performed at each Newton's iteration
- Offline computations (gradient and stabilization operators precomputed)
- Implementation in the open-source libraries disk++ and code_aster
- Verification on analytical solution :
 - Absence of volumetric locking due to plastic incompressibility
- Comparison to P^2 and $P^2/P^1/P^1$ (UPG) solutions [Al Akhrass et al. 2014]

Sphere under internal pressure I (small def.)

- Perfect J₂-plasticity
- Increase the internal pressure until the limit load
- Analytical solution available

Sphere under internal pressure II (small def.)

FIGURE 4 - Trace of the stress tensor at the quadrature points at the limit load

• Absence of volumetric locking for HHO and mixed (UPG) methods

Extension to finite deformations

- Extension to finite deformations using the logarithmic strain framework
- Logarithmic strain tensor $\boldsymbol{E}^{\log} = \frac{1}{2} \ln \boldsymbol{F}^T \boldsymbol{F} \in \mathbb{R}^{d \times d}_{\mathrm{sym}}$
- Additive decomposition (elastic $\boldsymbol{E}^{\mathrm{log},\mathrm{e}}$ and plastic $\boldsymbol{E}^{\mathrm{log},\mathrm{p}}$ parts)

$$oldsymbol{E}^{
m log} = oldsymbol{E}^{
m log,e} + oldsymbol{E}^{
m log,p}$$

Algorithm 1 Computation of $\boldsymbol{P}^{\mathrm{new}}$ (given $\underline{\chi}, \boldsymbol{F}, \boldsymbol{F}^{\mathrm{new}}$)

- 1: procedure FINITE_PLASTICITY($\underline{\chi}, F, F^{new}$)
- 2: Set $\boldsymbol{E}^{\log} = \frac{1}{2} \ln(\boldsymbol{F}^T \boldsymbol{F})$ and $\boldsymbol{E}^{\log, new} = \frac{1}{2} \ln(\boldsymbol{F}^{new, T} \boldsymbol{F}^{new})$
- 3: Compute $\boldsymbol{T}^{\text{new}} = \text{SMALL_PLASTICITY}(\underline{\boldsymbol{\chi}}, \boldsymbol{E}^{\log}, \boldsymbol{E}^{\log, \text{new}}).$
- 4: return $\boldsymbol{P}^{\text{new}} = \boldsymbol{T}^{\text{new}} : (\partial_{\boldsymbol{F}} \boldsymbol{E}^{\log})^{\text{new}}$

5: end procedure

• For HHO methods, the only modification is the gradient reconstruction $\boldsymbol{G}_{T}^{k} \in \mathbb{P}_{d}^{k}(T; \mathbb{R}^{d \times d})$ (to replace $\boldsymbol{E}_{T}^{k} \in \mathbb{P}_{d}^{k}(T; \mathbb{R}_{sym}^{d \times d})$)

Global discrete problem (finite deformations)

For all
$$1 \leq n \leq N$$
, find
 $(\underline{u}_{\mathcal{T}^{h}}^{n}, \underline{u}_{\mathcal{F}^{h}}^{n}) \in \left\{ \prod_{T \in \mathcal{T}^{h}} \mathbb{P}_{d}^{k}(T; \mathbb{R}^{d}) \right\} \times \left\{ \prod_{F \in \mathcal{F}^{h}} \mathbb{P}_{d-1}^{k}(F; \mathbb{R}^{d}) \right\}$ s.t.
 $\sum_{T \in \mathcal{T}^{h}} (P(\underline{u}_{T}^{n}, \underline{u}_{\partial T}^{n}), G_{T}^{k}(\delta \underline{v}_{T}, \delta \underline{v}_{\partial T}))_{L^{2}(T)}$
 $+ \sum_{T \in \mathcal{T}^{h}} \beta h_{T}^{-1} (\underline{S}_{\partial T}^{k}(\underline{u}_{\partial T}^{n} - \underline{u}_{T}^{n}|_{\partial T}), \underline{S}_{\partial T}^{k}(\delta \underline{v}_{\partial T} - \delta \underline{v}_{T}|_{\partial T}))_{\underline{L}^{2}(\partial T)}$
 $= \sum_{T \in \mathcal{T}^{h}} (\underline{f}, \delta \underline{v}_{T})_{\underline{L}^{2}(T)} + \sum_{F \in \mathcal{F}_{b,n}^{h}} (\underline{t}, \delta \underline{v}_{F})_{\underline{L}^{2}(F)}, \quad \forall (\delta \underline{v}_{\mathcal{T}^{h}}, \delta \underline{v}_{\mathcal{F}^{h}})$

and for all the quadrature points

 $\boldsymbol{P}(\underline{\boldsymbol{u}}_{T}^{n},\underline{\boldsymbol{u}}_{\partial T}^{n}) = \text{FINITE_PLASTICITY}(\underline{\boldsymbol{\chi}}_{T}^{n-1},\boldsymbol{F}_{T}^{k}(\underline{\boldsymbol{u}}_{T}^{n-1},\underline{\boldsymbol{u}}_{\partial T}^{n-1}),\boldsymbol{F}_{T}^{k}(\underline{\boldsymbol{u}}_{T}^{n},\underline{\boldsymbol{u}}_{\partial T}^{n}))$

with $\beta \simeq 2\mu$ the stabilization parameter and ${m F}^k_T = {m G}^k_T + {m I}_d$

Quasi-incompressible sphere under internal pressure I

- Perfect J₂-plasticity ($\nu = 0.499$)
- Increase the internal pressure until the limit load
- Analytical solution available

FIGURE 5 – Trace of the stress tensor at the quadrature points at the limit load

 \Rightarrow Absence of volumetric locking for HHO and mixed (UPG) methods

Necking of a 2D rectangular bar I

• Nonlinear isotropic hardening with J_2 -plasticity

Necking of a 2D rectangular bar II

FIGURE 6 – Trace of the Cauchy stress tensor σ at the quadrature points on the final configuration.

\Rightarrow Absence of volumetric-locking for HHO and UPG methods

```
Nicolas Pignet
```

Perforated strip under uniaxial extension

• Combined linear kinematic and isotropic hardening with J_2 -plasticity

\Rightarrow HHO supports polyhedral meshes

Conclusions and perspectives

- Conclusions :
 - HHO methods for finite plasticity (easy extension from small deformations)
 - Primal formulation
 - Absence of volumetric locking
- Perspectives :
 - Introduction of contact and friction using Nitsche's method (with F. Chouly)
 - Industrial applications with code_aster
- <u>References</u> :
 - M. Abbas, A. Ern, NP "A Hybrid High-Order method for incremental associative plasticity with small deformations", CMAME : 346 (2019) 891–912;
 - M. Abbas, A. Ern, NP, "A Hybrid High-Order method for finite elastoplastic deformations within a logarithmic strain framework", IJNME (2019)

Thank you for your attention