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Context

Finite plasticity within a logarithmic strain framework
non-linear measure of deformations (geometric nonlinearity)
non-linear stress-strain constitutive relation (material nonlinearity)
history of the deformations (irreversible phenomena)

Presence of volumetric locking with primal H1-conforming formulation due to
plastic incompressibility

An alternative : using mixed methods but more unknowns, more expensive to
build, saddle-point problem to solve ...

Figure 1 – Trace of the stress tensor for (a) P1 (b) P2 (c) P2/P1/P1

Nicolas Pignet HHO for finite plasticity 2 / 22



Main features of HHO methods

Primal formulation

⇒ More advantageous than mixed methods

Abscence of volumetric locking

⇒ More advantageous than primal FE methods

Integration of the behavior law only at cell-based quadrature nodes

⇒ More advantageous than discontinuous Galerkin (dG) methods

Symmetric tangent matrix at each nonlinear solver iteration

⇒ More advantageous than discontinuous Galerkin (dG) methods

Implementation in the open-source libraries disk++ and code aster

https://github.com/wareHHOuse/diskpp

https://www.code-aster.org
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Bibliography overview

Some references on primal formulations for finite plasticity without volumetric
locking

discontinuous Galerkin (dG)

[Liu, Wheeler, Dawson, Dean 13]
[Mc Bride, Reddy 09]

Hybrid Methods

[Wulfinghoff, Bayat, Alipour, Reese 17]
[Krämer, Wieners, Wohlmuth, Wunderlich 16]

Virtual Element Method (VEM)

[Chi, Beirão da Veiga, Paulino 17]
[Hudobivnik, Aldakheel, Wriggers 19]
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Key ideas of Hybrid High-Order (HHO) methods

Primal formulation with cells and faces unknowns (poly. of order k ≥ 1)

Local reconstruction and stabilization
Gradient tensor field reconstructed in Pk

d(T ;Rd×d)
Stabilization connecting cell and faces unknowns

References
diffusion problem [Di Pietro, Ern, Lemaire, CMAM 14]
quasi-incompressible linear elasticity [Di Pietro, Ern, CMAME 15]
hyperelasticity with large deformations [Abbas, Ern, NP, CM 18]
plasticity with small deformations [Abbas, Ern, NP, CMAME 19]

Figure 2 – face (green) and cell (blue) unknowns (2D)
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Features of HHO methods

Support of polyhedral meshes (with possibly nonconforming interfaces)

Arbitrary approximation order k ≥ 1

hk+1 convergence in energy-norm (linear elasticity)
hk+2 convergence in L2-norm with elliptic regularity

Attractive computational costs

cell unknowns are eliminated locally by static condensation
compact stencil for globally coupled face unknowns (only neighboring faces)
reduced size Nhho

dofs ≈ k2#(faces) vs. NdG
dofs ≈ k3#(cells)

Local principle of virtual work (equilibrated tractions)

HHO methods are closely related to HDG and ncVEM

[Cockburn, Di Pietro, AE 16]

Nicolas Pignet HHO for finite plasticity 6 / 22



Plasticity problem with small deformations

Let Ω0 ∈ Rd (d=2,3), be a bounded connected polyhedron

Let f and t be given volumetric and surface (on Γn) loads

Let ud be a given imposed displacement (on Γd)

History of the deformations → we introduce the internal state variables χ

For all 1 ≤ n ≤ N, find un ∈ Vd := {v ∈ H1(Ω0;Rd) | v = ud on Γd} s.t.∫
Ω0

σ(un) : ε(v) dΩ0 =

∫
Ω0

f n·v dΩ0 +

∫
Γn

tn·v dΓ for all v ∈ V0

and
σ(un) = SMALL PLASTICITY(χn−1, ε(un−1), ε(un))

where SMALL PLASTICITY is a generic behavior integrator
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Local DOFs space

Let Mh := (T h,Fh) be a mesh of Ω0 with T h the set of cells and Fh the set
of (planar) faces

Let a polynomial degree k ≥ 1 ; for all T ∈ T h, set

(vT , v∂T ) ∈ Pk
d(T ;Rd)︸ ︷︷ ︸

local cell dofs

× Pk
d−1(F∂T ;Rd)︸ ︷︷ ︸
local face dofs

.

Figure 3 – Local DOFs for k = 1, 2. Cell unknowns are eliminated by static
condensation
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Symmetric strain reconstruction

E k
T : Pk

d(T ;Rd)× Pk
d−1(F∂T ;Rd)→ Pk

d(T ;Rd×d
sym )︸ ︷︷ ︸

local strain space

The reconstructed strain E k
T (vT , v∂T ) solves

(E k
T (vT , v∂T ), τ )L2(T ) := −(vT ,∇ · τ )L2(T ) + (v∂T , τ nT )L2(∂T )

for all τ ∈ Pk
d(T ;Rd×d

sym )

mimic an integration by parts

local scalar mass-matrix of size
(
k+d
k

)
(ex : k = 2, d = 3 =⇒ size = 10)

E k
T depends only on the geometry of T (for k fixed)
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Stabilization operator

However, E k
T (vT , v∂T ) = 0 ; vT = v∂T = cst

⇒ We have to ”connect” the traces of the cell unknowns to the face unknowns

We penalize the quantity Sk
∂T (v∂T − vT |∂T︸ ︷︷ ︸

:=δ∂T

) ∈ Pk
d−1(F∂T ;Rd) s.t.

Sk
∂T (δ∂T ) := Πk

∂T ( δ∂T︸︷︷︸
HDG term

− (I d −Πk
T )Dk+1

T (0, δ∂T )︸ ︷︷ ︸
high-order correction

)

Πk
∂T : L2-projector on Pk

d−1(F∂T ;Rd) ; Πk
T : L2-projector on Pk

d(T ;Rd)

Dk+1
T : higher-order reconstructed displacement field

Different from the HDG-stabilization operator

The high-order correction is a distinctive feature of HHO methods ensuring
high-order error estimates on polyhedral meshes and linear model problems
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Global discrete problem (small deformations)

For all 1 ≤ n ≤ N, find

(un
T h ,un

Fh) ∈

 ∏
T∈T h

Pk
d(T ;Rd)

×
 ∏

F∈Fh

Pk
d−1(F ;Rd)

 s.t.

∑
T∈T h

(σ(un
T ,u

n
∂T ),E k

T (δvT , δv∂T ))L2(T )

+
∑
T∈T h

βh−1
T (Sk

∂T (un
∂T − un

T |∂T ),Sk
∂T (δv∂T − δvT |∂T ))L2(∂T )

=
∑
T∈T h

(f , δvT )L2(T ) +
∑

F∈Fh
b,n

(t, δvF )L2(F ), ∀ (δvT h , δvFh)

and for all the quadrature points

σ(un
T ,u

n
∂T ) = SMALL PLASTICITY(χn−1

T
,E k

T (un−1
T ,un−1

∂T ),E k
T (un

T ,u
n
∂T ))

with β ' 2µ the stabilization parameter
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Numerical examples

Nonlinear problem to solve (material nonlinearity)

Iterative resolution with Newton’s method

Static condensation performed at each Newton’s iteration

Offline computations (gradient and stabilization operators precomputed)

Implementation in the open-source libraries disk++ and code aster

Verification on analytical solution :

Absence of volumetric locking due to plastic incompressibility

Comparison to P2 and P2/P1/P1 (UPG) solutions [Al Akhrass et al. 2014]
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Sphere under internal pressure I (small def.)

Perfect J2-plasticity

Increase the internal pressure until the limit load

Analytical solution available

(a) Mesh
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(b) Radial displ. vs. internal pressure
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Sphere under internal pressure II (small def.)
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Figure 4 – Trace of the stress tensor at the quadrature points at the limit load

Absence of volumetric locking for HHO and mixed (UPG) methods
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Extension to finite deformations

Extension to finite deformations using the logarithmic strain framework

Logarithmic strain tensor E log = 1
2 ln FT F ∈ Rd×d

sym

Additive decomposition (elastic E log,e and plastic E log,p parts)

E log = E log,e + E log,p

Algorithm 1 Computation of Pnew (given χ,F ,Fnew)

1: procedure FINITE PLASTICITY(χ,F ,F new )

2: Set E log = 1
2 ln(FTF ) and E log,new = 1

2 ln(Fnew,TFnew)

3: Compute Tnew = SMALL PLASTICITY(χ,E log,E log,new).

4: return Pnew = Tnew : (∂FE log)new

5: end procedure

For HHO methods, the only modification is the gradient reconstruction
G k

T ∈ Pk
d(T ;Rd×d) (to replace E k

T ∈ Pk
d(T ;Rd×d

sym ))
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Global discrete problem (finite deformations)

For all 1 ≤ n ≤ N, find

(un
T h ,un

Fh) ∈

 ∏
T∈T h

Pk
d(T ;Rd)

×
 ∏

F∈Fh

Pk
d−1(F ;Rd)

 s.t.

∑
T∈T h

(P(un
T ,u

n
∂T ),G k

T (δvT , δv∂T ))L2(T )

+
∑
T∈T h

βh−1
T (Sk

∂T (un
∂T − un

T |∂T ),Sk
∂T (δv∂T − δvT |∂T ))L2(∂T )

=
∑
T∈T h

(f , δvT )L2(T ) +
∑

F∈Fh
b,n

(t, δvF )L2(F ), ∀ (δvT h , δvFh)

and for all the quadrature points

P(un
T ,u

n
∂T ) = FINITE PLASTICITY(χn−1

T
,F k

T (un−1
T ,un−1

∂T ),F k
T (un

T ,u
n
∂T ))

with β ' 2µ the stabilization parameter and F k
T = G k

T + I d
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Quasi-incompressible sphere under internal pressure I

Perfect J2-plasticity (ν = 0.499)

Increase the internal pressure until the limit load

Analytical solution available

(a) 1580 tetrahedra (b) Equivalent plastic strain p - HHO(1)
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Quasi-incompressible sphere under internal pressure II
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Figure 5 – Trace of the stress tensor at the quadrature points at the limit load

⇒ Absence of volumetric locking for HHO and mixed (UPG) methods
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Necking of a 2D rectangular bar I

Nonlinear isotropic hardening with J2-plasticity

(a) Geometry (b) Mesh
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(c) Reaction vs. displacement
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Necking of a 2D rectangular bar II

(d) Q2 (e) UPG (f) HHO(1) (g) HHO(2)

Figure 6 – Trace of the Cauchy stress tensor σ at the quadrature points on the final
configuration.

⇒ Absence of volumetric-locking for HHO and UPG methods
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Perforated strip under uniaxial extension

Combined linear kinematic and isotropic hardening with J2-plasticity

(a) Polygonal mesh (b) Equivalent plastic strain with HHO(2)

⇒ HHO supports polyhedral meshes
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Conclusions and perspectives

Conclusions :

HHO methods for finite plasticity (easy extension from small deformations)
Primal formulation
Absence of volumetric locking

Perspectives :

Introduction of contact and friction using Nitsche’s method (with F. Chouly)
Industrial applications with code aster

References :

M. Abbas, A. Ern, NP ”A Hybrid High-Order method for incremental
associative plasticity with small deformations”, CMAME : 346 (2019)
891–912 ;
M. Abbas, A. Ern, NP, ”A Hybrid High-Order method for finite elastoplastic
deformations within a logarithmic strain framework”, IJNME (2019)

Thank you for your attention
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