Hybrid High-Order methods for nonlinear solid mechanics

Nicolas Pignet

EDF R&D - ENPC - IMSIA - INRIA

22.10.19

PhD advisor : Alexandre Ern, CERMICS (ENPC) - INRIA Industrial supervisor : Mickaël Abbas, EDF R&D - IMSIA

Industrial context

- 2 Introduction to Hybrid High-Order methods (HHO)
- 3 Contact and Tresca friction
- Plasticity in small and finite deformations
- 5 Conclusions and perspectives

Introduction to Hybrid High-Order methods (HHO)

3 Contact and Tresca friction

Plasticity in small and finite deformations

5 Conclusions and perspectives

Industrial context

- Extend the lifetime of the nuclear power plants
- Accurate and robust numerical simulations with code_aster
- Strongly nonlinear mechanical problems to solve
 - nonlinear measure of deformations (geometric nonlinearity)
 - nonlinear stress-strain constitutive relation (material nonlinearity)
 - contact and friction (boundary nonlinearity)
- Industrial example : Notch plug

Numerical locking

- Presence of volumetric locking with primal *H*¹-conforming formulation due to plastic incompressibility
- An alternative : using mixed methods but more unknowns, more expensive to build, saddle-point problem to solve ...
- Example : pinching of a cube

Trace of the stress tensor for (a) P1 (b) P2 (c) P2/P1/P1

• or using a primal formulation without volumetric locking

Locking-free primal formulations

• discontinuous Galerkin (dG)

- second order elliptic pb. [Arnold, Brezzi, Cockburn, Marini 01]
- linear elasticity [Hansbo & Larson 03]
- Hybridizable Discontinuous Galerkin (HDG)
 - second order elliptic pb. [Cockburn, Gopalakrishnan, Lozarov 09]
 - linear elasticity [Soon, Cockburn, Stolarski 09]
- Hybrid High-Order (HHO) \leftarrow this thesis
 - diffusion problem [Di Pietro, Ern, Lemaire 14]
 - linear elasticity [Di Pietro & Ern 15]
- Virtual Element Method (VEM)
 - linear elasticity [Beirão da Veiga, Brezzi, Marini 13]
 - second order elliptic pb. [Beirão da Veiga, Brezzi, Marini, Russo 16]
- Strong connection between HDG and HHO [Cockburn, Di Pietro, Ern 16]

- More advantageous than mixed methods
 - \Rightarrow Primal formulation
- More advantageous than FE methods
 - \Rightarrow Absence of volumetric locking
- More advantageous than dG methods
 - \Rightarrow Integration of the behavior law only at cell-based quadrature nodes
 - \Rightarrow Symmetric tangent matrix at each nonlinear solver iteration
- Implementation in the open-source libraries disk++
 - https://github.com/wareHHOuse/diskpp (linear PDEs)
- Pave the way to HDG methods

Publications

- 3 articles published
 - Hyperelasticity [Abbas, Ern, NP 18 (Comp. Mech.)]
 - Plasticity with small deformations [Abbas, Ern, NP 19 (CMAME)]
 - Plasticity in finite deformations [Abbas, Ern, NP 19 (IJNME)]
- 1 article submitted
 - Tresca friction with a Nitsche method [Chouly, Ern, NP (SISC)]

Softwares

- Implementation from scratch in code_aster (integrated in version 15.0.8)
- Implementation of the nonlinear mechanical module in disk++

2 Introduction to Hybrid High-Order methods (HHO)

3 Contact and Tresca friction

Plasticity in small and finite deformations

5 Conclusions and perspectives

Key ideas of Hybrid High-Order (HHO) methods

- Discontinuous (non-conforming) method
- Primal formulation with cell and face unknowns (poly. of order $k \ge 1$)
 - cell unknowns are eliminated locally by static condensation
- Local gradient/strain reconstruction (poly. of order $k \ge 1$)
 - h^{k+1} convergence in energy-norm (linear elasticity)
- Stabilization connecting cell and face unknowns

Linear elasticity problem

- $\Omega_0 \in \mathbb{R}^d$ (d=2,3) : a bounded connected polyhedron
- \underline{f} and g_{N} : given volumetric and surface (on Γ_{N}) loads
- $\underline{u}_{\mathrm{D}}$: a given imposed displacement (on Γ_{D})

$$\{ \mathsf{Find} \ \underline{u} \in \underline{V}_{\mathrm{D}} := \left\{ \underline{v} \in H^{1}(\Omega_{0}; \mathbb{R}^{d}) : \underline{v} = \underline{u}_{\mathrm{D}} \text{ on } \mathsf{\Gamma}_{\mathrm{D}} \right\} \mathsf{s.t.} \ \forall \underline{v} \in \underline{V}_{0}$$
$$\{ 2\mu(\varepsilon(\underline{u}), \varepsilon(\underline{v}))_{L^{2}(\Omega_{0})} + \lambda(\nabla \cdot \underline{u}, \nabla \cdot \underline{v})_{L^{2}(\Omega_{0})} = (\underline{f}, \underline{v})_{\underline{L}^{2}(\Omega_{0})} + (\underline{g}_{\mathrm{N}}, \underline{v})_{\underline{L}^{2}(\Gamma_{\mathrm{N}})}.$$

Mesh notation

- \mathcal{T}_h : set of cells; \mathcal{F}_h : set of (planar) faces
- Mesh $\mathcal{M}_h := (\mathcal{T}_h, \mathcal{F}_h)$

Mesh \mathcal{M}_h composed of 5 cells and 15 faces

Local DOFs space

- $\mathcal{F}_{\partial T}$: set of mesh faces of cell T
- Let a polynomial degree $k \geq 1$; for all $T \in \mathcal{T}_h$, set

$$\underline{\hat{\nu}}_{\mathcal{T}} := (\underline{\nu}_{\mathcal{T}}, \underline{\nu}_{\partial \mathcal{T}}) \in \underline{\hat{U}}_{\mathcal{T}}^k := \underbrace{\mathbb{P}_d^k(\mathcal{T}; \mathbb{R}^d)}_{\text{local cell dofs}} \times \underbrace{\mathbb{P}_{d-1}^k(\mathcal{F}_{\partial \mathcal{T}}; \mathbb{R}^d)}_{\text{local face dofs}}$$

 F_{2} $F_{3} T$ $F_{4} F_{5}$ $F_{4} F_{5}$ $F_{3}T = \{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\}$ $\underline{\hat{U}}_{T}^{k}$

Symmetric strain reconstruction

$$\boldsymbol{E}_{T}^{k}:\underbrace{\mathbb{P}_{d}^{k}(T;\mathbb{R}^{d})\times\mathbb{P}_{d-1}^{k}(\mathcal{F}_{\partial T};\mathbb{R}^{d})}_{=:\underline{\hat{U}}_{T}^{k}}\rightarrow\underbrace{\mathbb{P}_{d}^{k}(T;\mathbb{R}_{\text{sym}}^{d\times d})}_{\text{local strain space}}$$

• The reconstructed strain $\boldsymbol{E}^k_T(\hat{\underline{v}}_T) \in \mathbb{P}^k_d(T; \mathbb{R}^{d imes d}_{ ext{sym}})$ solves

$$(\boldsymbol{E}_{T}^{k}(\hat{\underline{v}}_{T}), \boldsymbol{\tau})_{\boldsymbol{L}^{2}(T)} := -(\underline{\underline{v}}_{T}, \underline{\nabla} \cdot \boldsymbol{\tau})_{\boldsymbol{L}^{2}(T)} + (\underline{\underline{v}}_{\partial T}, \boldsymbol{\tau} \underline{\underline{n}}_{T})_{\underline{\underline{L}}^{2}(\partial T)}$$

for all $au \in \mathbb{P}_d^k(T; \mathbb{R}_{\mathrm{sym}}^{d imes d})$

- mimic an integration by parts
- local scalar mass-matrix of size $\binom{k+d}{k}$ (ex : $k = 2, d = 3 \Longrightarrow$ size = 10)
- Local interpolation operator : $\underline{\hat{I}}_{T}^{k}(\underline{\nu}) = (\underline{\Pi}_{T}^{k}(\underline{\nu}), \underline{\Pi}_{\partial T}^{k}(\underline{\nu}|_{\partial T})) \in \underline{\hat{U}}_{T}^{k}$
- Commuting property :

$$\boldsymbol{E}^k_T(\hat{\underline{l}}^k_T(\underline{v})) = \boldsymbol{\mathsf{\Pi}}^k_T(\boldsymbol{\varepsilon}(\underline{v})), \quad \forall \underline{v} \in H^1(T; \mathbb{R}^d)$$

Stabilization operator

- "Connect" the face unknowns to the trace of the cell unknowns
- We penalize the quantity $\underline{v}_{\partial T} \underline{v}_{T|\partial T}$ in a least-squares sense
- HHO-stabilization operator $\underline{S}_{\partial T}^{k}(\underline{\hat{\nu}}_{T}) \in \mathbb{P}_{d-1}^{k}(\mathcal{F}_{\partial T}; \mathbb{R}^{d})$ s.t.

$$\underline{S}_{\partial T}^{k}(\underline{\hat{\nu}}_{T}) := \underline{\Pi}_{\partial T}^{k}(\underbrace{\underline{\nu}_{\partial T} - \underline{\nu}_{T|\partial T}}_{\text{HDG term}} - \underbrace{(I_{d} - \underline{\Pi}_{T}^{k})\underline{R}_{T}^{k+1}(\underline{0}, \underline{\nu}_{\partial T} - \underline{\nu}_{T|\partial T})}_{\text{HHO correction}})$$

 $\frac{\prod_{\partial T}^{k}: L^{2}\text{-projector on } \mathbb{P}_{d-1}^{k}(\mathcal{F}_{\partial T}; \mathbb{R}^{d}); \underline{\Pi}_{T}^{k}: L^{2}\text{-projector on } \mathbb{P}_{d}^{k}(T; \mathbb{R}^{d}) \\ \underline{R}_{T}^{k+1}: \text{higher-order reconstructed displacement field in } \mathbb{P}_{d}^{k+1}(T; \mathbb{R}^{d})$

- The HHO correction ensures high-order error estimates $\mathcal{O}(h^{k+1})$ on polyhedral meshes (instead of $\mathcal{O}(h^k)$)
- Stability :

$$\|\boldsymbol{\varepsilon}(\underline{\boldsymbol{v}}_{\mathcal{T}})\|_{\boldsymbol{L}^{2}(\mathcal{T})}^{2} + \boldsymbol{h}_{\mathcal{T}}^{-1} \|\underline{\boldsymbol{v}}_{\partial \mathcal{T}} - \underline{\boldsymbol{v}}_{\mathcal{T}}|_{\partial \mathcal{T}}\|_{\underline{L}^{2}(\partial \mathcal{T})}^{2} \lesssim \|\boldsymbol{E}_{\mathcal{T}}^{k}(\hat{\underline{\boldsymbol{v}}}_{\mathcal{T}})\|_{\boldsymbol{L}^{2}(\mathcal{T})}^{2} + \boldsymbol{h}_{\mathcal{T}}^{-1} \|\underline{\boldsymbol{S}}_{\partial \mathcal{T}}^{k}(\hat{\underline{\boldsymbol{v}}}_{\mathcal{T}})\|_{\underline{L}^{2}(\partial \mathcal{T})}^{2}$$

• Local stress reconstruction : For all $\underline{\hat{v}}_T \in \underline{\hat{U}}_T^k$,

$$\boldsymbol{\sigma}(\underline{\hat{v}}_{\mathcal{T}}) := 2\mu \boldsymbol{\mathcal{E}}_{\mathcal{T}}^{k}(\underline{\hat{v}}_{\mathcal{T}}) + \lambda D_{\mathcal{T}}^{k}(\underline{\hat{v}}_{\mathcal{T}}) \boldsymbol{\mathcal{I}}_{d} \in \mathbb{P}_{d}^{k}(\mathcal{T}; \mathbb{R}_{\mathrm{sym}}^{d \times d})$$

• Local Galerkin contribution

$$\hat{s}_{T}^{G}(\underline{\hat{v}}_{T},\underline{\hat{w}}_{T}) := \underbrace{2\mu(\boldsymbol{E}_{T}^{k}(\underline{\hat{v}}_{T}),\boldsymbol{E}_{T}^{k}(\underline{\hat{w}}_{T}))_{\boldsymbol{L}^{2}(T)} + \lambda(D_{T}^{k}(\underline{\hat{v}}_{T}),D_{T}^{k}(\underline{\hat{w}}_{T}))_{\boldsymbol{L}^{2}(T)}}_{\text{FEM-like stiffness term}} + \underbrace{2\mu h_{T}^{-1}(\underline{S}_{\partial T}^{k}(\underline{\hat{v}}_{T}),\underline{S}_{\partial T}^{k}(\underline{\hat{w}}_{T}))_{\underline{L}^{2}(\partial T)}}_{\text{stabilization term}}$$

with the discrete divergence $D^k_T(\underline{\hat{v}}_T) := \operatorname{trace}(\boldsymbol{E}^k_T(\underline{\hat{v}}_T)) \in \mathbb{P}^k_d(T; \mathbb{R})$

Local RHS

$$\hat{\ell}_{\mathcal{T}}(\underline{\hat{\nu}}_{\mathcal{T}}) := (\underline{f}, \underline{\underline{\nu}}_{\mathcal{T}})_{\underline{L}^{2}(\mathcal{T})} + (\underline{g}_{\mathrm{N}}, \underline{\underline{\nu}}_{\partial \mathcal{T}})_{\underline{L}^{2}(\partial \mathcal{T} \cap \Gamma_{\mathrm{N}})}$$

Global DOFs space

• Global DOFs : $\underline{\hat{u}}_h := (\underline{u}_{\mathcal{T}_h}, \underline{u}_{\mathcal{F}_h}) \in \underline{\hat{U}}_h^k := \mathbb{P}_d^k(\mathcal{T}_h; \mathbb{R}^d) \times \mathbb{P}_{d-1}^k(\mathcal{F}_h; \mathbb{R}^d)$

- Cellwise assembly (fully parallelizable)
- Face unknowns are uniquely defined
- Dirichlet boundary conditions are imposed strongly

$$\underline{\hat{U}}_{h,\mathrm{D}}^{k} := \left\{ \underline{\hat{u}}_{h} \in \underline{\hat{U}}_{h}^{k} : \underline{u}_{F} = \underline{\Pi}_{F}^{k}(\underline{u}_{\mathrm{D}}) \text{ on } \Gamma_{\mathrm{D}} \right\}$$

Global discrete problem (linear elasticity)

$$\begin{cases} \mathsf{Find} \ \underline{\hat{u}}_h \in \underline{\hat{U}}_{h,\mathrm{D}}^k \text{ such that} \\ \hat{a}_h^G(\underline{\hat{u}}_h, \underline{\hat{v}}_h) = \hat{\ell}_h(\underline{\hat{v}}_h) \quad \forall \, \underline{\hat{v}}_h \in \underline{\hat{U}}_{h,0}^k \end{cases}$$

with

$$\hat{a}_h^G(\underline{\hat{u}}_h,\underline{\hat{v}}_h) := \sum_{T \in \mathcal{T}_h} \hat{a}_T^G(\underline{\hat{u}}_T,\underline{\hat{v}}_T) \text{ and } \hat{\ell}_h(\underline{\hat{v}}_h) := \sum_{T \in \mathcal{T}_h} \hat{\ell}_T(\underline{\hat{v}}_T)$$

- Well-posed problem
- Optimal convergence
 - *h*^{*k*+1}-convergence in energy-norm
 - h^{k+2} -convergence in L^2 -norm with elliptic regularity
- Robustness in the incompressible limit $(\lambda \to +\infty)$

Introduction to Hybrid High-Order methods (HHO)

3 Contact and Tresca friction

Plasticity in small and finite deformations

5 Conclusions and perspectives

Unilateral contact with Tresca friction

• Small strain elasticity

$$-\underline{\nabla} \cdot \boldsymbol{\sigma}(\underline{u}) = \underline{f} \quad \text{in } \Omega_0$$
$$\boldsymbol{\sigma}(\underline{u}) = 2\mu \, \boldsymbol{\varepsilon}(\underline{u}) + \lambda (\nabla \cdot \underline{u}) \boldsymbol{I}_d \quad \text{in } \Omega_0$$
$$+\text{BCs}$$

• Unilateral contact on $\Gamma_{\rm C}$ • Tresc

• Tresca friction on $\Gamma_{\rm C}~(s>0)$

 $u_n \le 0$ $\sigma_n(\underline{u}) \le 0$ $\sigma_n(u) u_n = 0$

 Ω_0

 $\sim \Gamma_{\rm C}$

 u_{t}

Proposition

Let two penalty parameters $\gamma_n > 0$ and $\gamma_t > 0$. The contact with Tresca friction conditions can be reformulated as follows :

 $\sigma_n(\underline{u}) = \left[\sigma_n(\underline{u}) - \gamma_n u_n\right]_{\mathbb{R}^-}$ $\underline{\sigma}_t(\underline{u}) = \left[\underline{\sigma}_t(\underline{u}) - \gamma_t \underline{u}_t\right]_s$

where $\left[\cdot\right]_{n-}$ and $\left[\cdot\right]_{s}$ are projectors onto closed convex sets.

 $[x]_{\mathbb{R}^{-}} := P_{(\mathbb{R}^{-},0)}(x)$ $[\underline{x}]_{s} := P_{\mathcal{B}(\underline{0},s)}(\underline{x})$

- Nitsche-FEM method can be seen as a consistent penalty method
 - Contact and friction conditions imposed weakly (no Lagrange multiplier)
- Conforming Nitsche-FEM discretization [Chouly & Hild 13]

 $\begin{cases} \mathsf{Find} \ \underline{u}_h \in \underline{V}_h \text{ such that} \\ \mathsf{a}_h(\underline{u}_h; \underline{v}_h) = \ell_h(\underline{v}_h) \quad \forall \underline{v}_h \in \underline{V}_h \end{cases}$

with $a_h(\underline{v}_h; \underline{w}_h) := a_h^G(\underline{v}_h, \underline{w}_h) + a_h^N(\underline{v}_h; \underline{w}_h)$

• Galerkin contribution :

$$a_h^{\mathcal{G}}(\underline{v}_h,\underline{w}_h) := 2\mu(\varepsilon(\underline{v}_h),\varepsilon(\underline{w}_h))_{L^2(\Omega_0)} + \lambda(\nabla \cdot \underline{v}_h,\nabla \cdot \underline{w}_h)_{L^2(\Omega_0)}$$

• Contact/friction contribution with single penalty parameter $\gamma := \gamma_n = \gamma_t > 0$:

$$\begin{aligned} \mathbf{a}_{h}^{N}(\underline{\mathbf{v}}_{h};\underline{\mathbf{w}}_{h}) &:= -\left(\frac{\theta}{\gamma}\underline{\sigma}_{n}(\underline{\mathbf{v}}_{h}),\underline{\sigma}_{n}(\underline{\mathbf{w}}_{h})\right)_{L^{2}(\Gamma_{\mathrm{C}})} \\ &+ \left(\frac{1}{\gamma}[\tau_{n}(\underline{\mathbf{v}}_{h})]_{\mathbb{R}^{-}}, (\tau_{n}+(\theta-1)\sigma_{n})(\underline{\mathbf{w}}_{h})\right)_{L^{2}(\Gamma_{\mathrm{C}})} \\ &+ \left(\frac{1}{\gamma}\left[\underline{\tau}_{t}(\underline{\mathbf{v}}_{h})\right]_{s}, (\underline{\tau}_{t}+(\theta-1)\underline{\sigma}_{t})(\underline{\mathbf{w}}_{h})\right)_{\underline{L}^{2}(\Gamma_{\mathrm{C}})} \end{aligned}$$
with $\theta \in \{-1, 0, 1\}$, $\tau_{n}(\underline{\mathbf{v}}) := \sigma_{n}(\underline{\mathbf{v}}) - \gamma h^{-1}v_{n}$ and $\underline{\tau}_{t}(\underline{\mathbf{v}}) := \underline{\sigma}_{t}(\underline{\mathbf{v}}) - \gamma h^{-1}\underline{\mathbf{v}}_{t}$

- Scalar contact problem with HHO discretization [Cascavita, Chouly, Ern 19]
 - Two variants :
 - Face-based $\underline{v}_{h|F} \rightarrow \underline{v}_F \in \mathbb{P}^k_{d-1}(F; \mathbb{R}^d)$
 - Cell-based $\underline{v}_{h|F} \rightarrow \underline{v}_{T|F} \in \mathbb{P}_d^{k+1}(T; \mathbb{R}^d)$
 - Sub-optimal convergence rates in H¹-norm for the face-based variant
 - Analysis only for $\theta = 1$
- Here the face-based variant is considered
 - \bullet Local enrichment on face dofs on $\Gamma_{\rm C}$
 - face dofs of degree (k+1) on the contact faces
 - Increase slightly the total number of face dofs
 - Optimal convergence rates in H¹-norm
 - Analysis for $heta \in \{-1,0,1\}$
 - Tracking of the dependencies w.r.t μ, λ

Local DOFs space (contact modifications)

Local DOFs for k = 1. Cell unknowns are eliminated by static condensation

Local contact/friction contributions

- Use face-based Nitsche-HHO method : $\underline{v}_F \in \mathbb{P}^{k+1}_{d-1}(F; \mathbb{R}^d)$ on Γ_{C}
- No change for the local Galerkin contribution (as in linear elasticity)
- Two penalty parameters $\gamma_n > 0$ and $\gamma_t > 0$
- Local contact/friction contribution on a contact cell

$$\begin{split} \hat{\boldsymbol{\delta}}_{T}^{N}(\underline{\hat{\boldsymbol{v}}}_{T};\underline{\hat{\boldsymbol{w}}}_{T}) &:= -\theta \frac{h_{T}}{\gamma_{n}} \left(\sigma_{n}(\underline{\hat{\boldsymbol{v}}}_{T}), \sigma_{n}(\underline{\hat{\boldsymbol{w}}}_{T}) \right)_{L^{2}(\partial T \cap \Gamma_{C})} \\ &+ \frac{h_{T}}{\gamma_{n}} \left(\left[\tau_{n}(\underline{\hat{\boldsymbol{v}}}_{T}) \right]_{\mathbb{R}^{-}}, \left(\tau_{n} + (\theta - 1)\sigma_{n} \right)(\underline{\hat{\boldsymbol{w}}}_{T}) \right)_{L^{2}(\partial T \cap \Gamma_{C})} \\ &- \theta \frac{h_{T}}{\gamma_{t}} \left(\underline{\sigma}_{t}(\underline{\hat{\boldsymbol{v}}}_{T}), \underline{\sigma}_{t}(\underline{\hat{\boldsymbol{w}}}_{T}) \right)_{\underline{L}^{2}(\partial T \cap \Gamma_{C})} \\ &+ \frac{h_{T}}{\gamma_{t}} \left(\left[\underline{\tau}_{t}(\underline{\hat{\boldsymbol{v}}}_{T}) \right]_{s}, \left(\underline{\tau}_{t} + (\theta - 1)\underline{\sigma}_{t} \right)(\underline{\hat{\boldsymbol{w}}}_{T}) \right)_{\underline{L}^{2}(\partial T \cap \Gamma_{C})} \end{split}$$

with $\tau_n(\underline{\hat{\nu}}_T) := \sigma_n(\underline{\hat{\nu}}_T) - \gamma_n h_T^{-1} v_{\partial T,n}$ and $\underline{\tau}_t(\underline{\hat{\nu}}_T) := \underline{\sigma}_t(\underline{\hat{\nu}}_T) - \gamma_t h_T^{-1} \underline{v}_{\partial T,t}$

Global discrete problem and well-posedness

• Global discrete problem

$$\begin{cases} \mathsf{Find} \ \underline{\hat{\mu}}_h \in \mathbb{P}_d^k(\mathcal{T}_h; \mathbb{R}^d) \times \mathbb{P}_{d-1}^{k/k+1}(\mathcal{F}_h; \mathbb{R}^d) \text{ s.t.} \\ \\ \hat{a}_h(\underline{\hat{\mu}}_h; \underline{\hat{\nu}}_h) = \hat{\ell}_h(\underline{\hat{\nu}}_h) \quad \forall \underline{\hat{\nu}}_h \in \underline{\hat{U}}_{h,0}^k \\ \end{cases} \\ \mathsf{th} \ \hat{a}_h(\underline{\hat{\mu}}_h; \underline{\hat{\nu}}_h) := \sum_{T \in \mathcal{T}_h} \left[\hat{a}_T^G(\underline{\hat{\mu}}_T, \underline{\hat{\nu}}_T) + \hat{a}_T^N(\underline{\hat{\mu}}_T; \underline{\hat{\nu}}_T) \right] \end{cases}$$

Theorem (Well-posedness)

Let $k \ge 1$. Assume that the penalty parameters are such that

$$\min(\kappa^{-1}\gamma_n, 2\gamma_t) \geq 3(\theta+1)^2 C_{\rm dt}^2 \mu,$$

where $\kappa := \max(1, \frac{\lambda}{2\mu})$ and C_{dt} from a discrete trace inequality. Then, the global discrete problem is well-posed

wi

Theorem (H^1 -error estimate)

Let $k \ge 1$. Assume that the penalty parameters are such that

$$\begin{split} \min(\kappa^{-1}\gamma_n, 2\gamma_t) &\geq 3\big((\theta+1)^2 + \epsilon(4+(\theta-1)^2)\big)C_{\mathrm{dt}}^2\mu \quad \text{with } \epsilon \in (0,1]\\ \text{Assume } \underline{u} \in H^{1+r}(\Omega_0; \mathbb{R}^d) \text{ and } \nabla \cdot \underline{u} \in H^r(\Omega_0; \mathbb{R}), \ r \in (\frac{1}{2}, k+1]. \text{ Then,} \end{split}$$

$$\begin{split} &\sum_{T\in\mathcal{T}_{h}}\left(2\mu\|\boldsymbol{\varepsilon}(\underline{u})-\boldsymbol{E}_{T}^{k}(\underline{\hat{u}}_{T})\|_{\boldsymbol{L}^{2}(T)}^{2}+\lambda\|\nabla\cdot\underline{u}-\boldsymbol{D}_{T}^{k}(\underline{\hat{u}}_{T})\|_{\boldsymbol{L}^{2}(T)}^{2}\right)\\ &+\frac{\epsilon}{2(1+\epsilon)}\sum_{T\in\mathcal{T}_{h}^{C}}\left(\frac{h_{T}}{\gamma_{n}}\|[\tau_{n}(\underline{u})]_{\mathbb{R}^{-}}-[\tau_{n}(\underline{\hat{u}}_{T})]_{\mathbb{R}^{-}}\|_{\boldsymbol{L}^{2}(\partial\mathcal{T}^{C})}^{2}+\frac{h_{T}}{\gamma_{t}}\|[\underline{\tau}_{t}(\underline{u})]_{s}-[\underline{\tau}_{t}(\underline{\hat{u}}_{T})]_{s}\|_{\underline{L}^{2}(\partial\mathcal{T}^{C})}^{2}\right)\\ &\lesssim\sum_{T\in\mathcal{T}_{h}}\left(\left[2\mu+\frac{1}{\epsilon}\left(\frac{\mu^{2}\kappa^{2}}{\gamma_{n}}+\frac{\mu^{2}}{\gamma_{t}}+\gamma_{n}\right)\right]h_{T}^{2r}|\underline{u}|_{\underline{H}^{1+r}(\mathcal{T})}^{2}+\frac{1}{2\mu}\lambda^{2}h_{T}^{2r}|\nabla\cdot\underline{u}|_{\mathcal{H}^{r}(\mathcal{T})}^{2}\right). \end{split}$$

• Robustness in the inco. limit for unilateral contact (only $\theta = -1$)

• $\forall \theta$ and $\epsilon \approx 1$: $\gamma_t \approx \mu$ and $\gamma_n \approx \mu \kappa$

• $\theta = -1$ and $\epsilon \approx \kappa^{-1}$: $\gamma_t \approx \mu$ and $\gamma_n \approx \mu$ (independent of κ i.e. λ)

- Robustness in the inco. limit for bilateral contact $u_n = 0$ on $\Gamma_{\rm C}$ ($\forall \theta$)
- Smoothness assumption : $\underline{u} \in H^{\frac{5}{2}-\eta}, \eta > 0 \ (r = \frac{3}{2} \eta)$
 - Maximal convergence rate is $\mathcal{O}(h^{\frac{3}{2}-\eta})$ and is reached for k = 1

- Nonlinear problem to solve (contact and friction nonlinearities)
- Iterative resolution with a semi-smooth Newton's method
- Static condensation performed at each Newton's iteration
- Offline computations (gradient and stabilization operators precomputed)
- Verification on analytical solution :
 - Optimal convergence rates in H¹-norm
 - Absence of volumetric locking in the incompressible limit
- Comparison to mixed methods [Bostan & Han 06]
- Industrial application

Manufactured solution

Manufactured solution

$$u_x = \left(1 + \frac{1}{1+\lambda}\right) x e^{x+y}, \quad u_y = \left(-1 + \frac{1}{1+\lambda}\right) y e^{x+y}.$$

• Friction coefficient $s = \frac{\mu}{6} \frac{\lambda+2}{\lambda+1} x^2$

Manufactured solution : convergence rates

Mesh size	k = 1		<i>k</i> = 2	
h	H ¹ -error	order	H ¹ -error	order
3.33e-1	5.423e-3	-	4.406e-4	-
1.75e-1	1.380e-3	2.13	5.871e-5	3.13
9.06e-2	3.472e-4	2.08	7.620e-6	3.07
4.60e-2	8.694e-5	2.05	9.719e-7	3.04

 H^1 -error and convergence order vs. h for $\theta = 1$

• Optimal h^{k+1} -convergence rates in H^1 -norm

Manufactured solution : robustness

- Absence of volumetric locking in the incompressible limit
- H^1 -error independent of γ_n if $\gamma_n \ge 2\mu$ (and $\gamma_t = 2\mu$)

Nicolas Pignet (22.10.19)

Industrial application : Notch plug

Mesh composed of 21,200 hexahedra and 510 prisms in the reference configuration

Normal stress σ_n in the contact zone (in MPa) for k = 1 and $\theta = 1$

• Results in agreement with code_aster and Coulomb friction

2 Introduction to Hybrid High-Order methods (HHO)

3 Contact and Tresca friction

Plasticity in small and finite deformations

5 Conclusions and perspectives

- Irreversibility of the plastic deformations
- Plastic incompressibility
 - Volumetric locking for H¹-conforming FEM
- Strongly nonlinear problems
 - Constitutive law
 - Finite deformations
- Loss of coercivity (softening materials)

Bibliography overview

Some references on primal formulations for plasticity without volumetric locking

- discontinuous Galerkin (dG)
 - [Mc Bride, Reddy 09]
 - [Liu, Wheeler, Dawson, Dean 13]
- Hybrid discontinuous Galerkin with conforming traces (Hybrid dG)
 - [Wulfinghoff, Bayat, Alipour, Reese 17]
- Hybrid weakly conforming method (Hybrid WCM)
 - [Krämer, Wieners, Wohlmuth, Wunderlich 16]
- Virtual Element Method (VEM)
 - [Chi, Beirão da Veiga, Paulino 17]
 - [Hudobivnik, Aldakheel, Wriggers 19]
- No HDG methods

Plasticity model (small def.)

- Framework of generalized standard materials [Halphen & Nguyen 75]
- Linearized strain tensor

$$\varepsilon(\underline{v}) \in \mathbb{R}^{d imes d}_{\mathrm{sym}}$$

• Plastic strain tensor and incompressibility

$$arepsilon^{
ho} \in \mathbb{R}^{d imes d}_{ ext{sym}} ext{ and } ext{trace}(arepsilon^{
ho}) = 0$$

Additive decomposition

$$arepsilon^e:=arepsilon-arepsilon^p$$

• The internal state is described by $\varepsilon, \varepsilon^p$ and a set of internal variables

$$\underline{\alpha} := (\alpha_1, \cdots, \alpha_m) \in \mathbb{R}^m$$

• Generalized internal variables

$$\underline{\chi} := \{ \boldsymbol{\varepsilon}^{\boldsymbol{p}}, \underline{\alpha} \}$$

Plasticity problem (small def.)

- $\Omega_0 \in \mathbb{R}^d$ (d=2,3) : bounded connected polyhedron
- Pseudo-time stepping : n = 1, ..., N (history of the deformations)
- Find $\underline{u}^n \in V_d := \{ \underline{v} \in H^1(\Omega_0; \mathbb{R}^d) \, | \, \underline{v} = \underline{u}_{\mathrm{D}}^n \text{ on } \Gamma_{\mathrm{D}} \}$ s.t.

$$\int_{\Omega_0} \boldsymbol{\sigma}^n : \boldsymbol{\varepsilon}(\underline{v}) \, d\Omega_0 = \ell(\underline{v}) \text{ for all } \underline{v} \in V_0$$

and

 $\boldsymbol{\sigma}^{n} = \text{SMALL}_{\text{PLASTICITY}}(\underline{\chi}^{n-1}, \boldsymbol{\varepsilon}(\underline{u}^{n-1}), \boldsymbol{\varepsilon}(\underline{u}^{n}))$

where $\mathrm{SMALL_PLASTICITY}$ is the given behavior integrator

- Constitutive algorithm : radial return mapping
- Many examples in code_aster

Global discrete problem (small def.)

- No modification for HHO operators \boldsymbol{E}_{T}^{k} and $\underline{S}_{\partial T}^{k}$ (as in linear elasticity)
- For all $1 \le n \le N$, find $\underline{\hat{u}}_h^n \in \underline{\hat{U}}_{h,\mathrm{D}}^k$ such that

$$\begin{split} &\sum_{T\in\mathcal{T}_{h}}(\boldsymbol{\sigma}^{n},\boldsymbol{E}_{T}^{k}(\hat{\underline{v}}_{T}))_{\boldsymbol{L}^{2}(T)}+\sum_{T\in\mathcal{T}_{h}}\beta h_{T}^{-1}(\underline{S}_{\partial T}^{k}(\hat{\underline{u}}_{T}^{n}),\underline{S}_{\partial T}^{k}(\hat{\underline{v}}_{T}))_{\underline{L}^{2}(\partial T)}\\ &=\hat{\ell}_{h}(\hat{\underline{v}}_{h}), \quad \forall \, \hat{\underline{v}}_{h}\in \underline{\hat{U}}_{h,0}^{k} \end{split}$$

and for all the cell-quadrature points

$$\boldsymbol{\sigma}^{n} = \text{SMALL_PLASTICITY}(\underline{\chi}_{T}^{n-1}, \boldsymbol{E}_{T}^{k}(\underline{\hat{u}}_{T}^{n-1}), \boldsymbol{E}_{T}^{k}(\underline{\hat{u}}_{T}^{n}))$$

with $\beta \simeq 2\mu$ the user-dependent stabilization parameter

- Nonlinear problem to solve (material nonlinearity)
- Iterative resolution with Newton's method
- Static condensation performed at each Newton's iteration
- Offline computations (gradient and stabilization operators precomputed)
- Symmetric tangent matrix at each nonlinear solver iteration
- Verification on analytical solution :
 - Absence of volumetric locking due to plastic incompressibility
- Comparison to P^2 and $P^2/P^1/P^1$ (Displacement/Pressure/Dilatation) solutions

Sphere under internal pressure I (small def.)

- Perfect J₂-plasticity
- Increase the internal pressure until the limit load
- Analytical solution available

Sphere under internal pressure II (small def.)

Trace of the stress tensor at all the quadrature points at the limit load

• Absence of volumetric locking for HHO and mixed methods

Quasi-incompressible Cook's membrane (small def.)

• Linear isotropic hardening with J_2 -plasticity ($\nu = 0.4999$)

• HHO(2) outperforms mixed methods (same displacement order)

Perforated strip under uniaxial extension (small def.)

• Combined linear kinematic and isotropic hardening with J_2 -plasticity

(a) Polygonal mesh (b)

(b) Equivalent plastic strain with HHO(2)

• Excellent matching between triangle and polygonal meshes

Nicolas Pignet (22.10.19)

Extension to finite deformations

- Extension to finite deformations using the logarithmic strain framework
- Logarithmic strain tensor

$$oldsymbol{E} := rac{1}{2} \ln oldsymbol{F}^{ op} oldsymbol{F} \in \mathbb{R}^{d imes d}_{ ext{sym}}$$

• Additive decomposition (elastic \boldsymbol{E}^{e} and plastic \boldsymbol{E}^{p} parts)

$$\boldsymbol{E}^{e} := \boldsymbol{E} - \boldsymbol{E}^{p} \in \mathbb{R}^{d imes d}_{ ext{sym}}$$

Algorithm 1 Given χ^{n-1} , F^{n-1} , F^n , Return Piola-Kirchhoff 1 tensor P^n

- 1: procedure FINITE_PLASTICITY($\chi^{n-1}, \boldsymbol{F}^{n-1}, \boldsymbol{F}^n$)
- 2: Solve eigenvalue pb. $\boldsymbol{E}^m := \frac{1}{2} \ln(\boldsymbol{F}^{m,T} \boldsymbol{F}^m), m \in \{n-1, n\}$
- 3: Compute $\mathbf{T}^n =$ SMALL_PLASTICITY $(\chi^{n-1}, \mathbf{E}^{n-1}, \mathbf{E}^n)$.
- 4: return $\boldsymbol{P}^n = \boldsymbol{T}^n : (\partial_{\boldsymbol{F}} \boldsymbol{E})^n$
- 5: end procedure
- For HHO methods, the only modification is the gradient reconstruction $\boldsymbol{G}_{T}^{k} \in \mathbb{P}_{d}^{k}(T; \mathbb{R}^{d \times d})$ (to replace $\boldsymbol{E}_{T}^{k} \in \mathbb{P}_{d}^{k}(T; \mathbb{R}_{sym}^{d \times d})$)

For all $1 \le n \le N$, find $\underline{\hat{u}}_h^n \in \underline{\hat{U}}_{h,D}^k$ such that

$$\begin{split} &\sum_{T \in \mathcal{T}_h} (\boldsymbol{P}^n, \boldsymbol{G}_T^k(\underline{\hat{v}}_T))_{\boldsymbol{L}^2(T)} + \sum_{T \in \mathcal{T}_h} \beta h_T^{-1}(\underline{S}_{\partial T}^k(\underline{\hat{u}}_T^n), \underline{S}_{\partial T}^k(\underline{\hat{v}}_T))_{\underline{L}^2(\partial T)} \\ &= \hat{\ell}_h(\underline{\hat{v}}_h), \quad \forall \, \underline{\hat{v}}_h \in \underline{\hat{U}}_{h,0}^k \end{split}$$

and for all the cell-quadrature points

$$\boldsymbol{P}^{n} = \text{FINITE_PLASTICITY}(\underline{\chi}_{T}^{n-1}, \boldsymbol{F}_{T}^{k}(\underline{\hat{u}}_{T}^{n-1}), \boldsymbol{F}_{T}^{k}(\underline{\hat{u}}_{T}^{n}))$$

with $\boldsymbol{F}_{T}^{k} = \boldsymbol{G}_{T}^{k} + \boldsymbol{I}_{d}$ and $\beta \simeq 2\mu$ the stabilization parameter (no general theory)

Quasi-incomp. sphere under internal forces I (finite def.)

- Perfect J₂-plasticity
- ν = 0.499
- Increase the internal radial force until the limit load
- Analytical solution available for $\nu = 0.5$

(b) Equivalent plastic strain p - HHO(1)

Trace of the stress tensor at all the quadrature points at the limit load

• Absence of volumetric locking for HHO and mixed methods

Torsion of a square-section bar (finite def.)

• Nonlinear isotropic hardening with J_2 -plasticity

Equivalent plastic strain p for HHO(1) for different rotation angles Θ .

Industrial application : pump under internal forces (fin. def)

• Linear isotropic hardening with J_2 -plasticity

Conclusions

- HHO methods for finite plasticity, hyperelasticity and contact
- Primal formulation without of volumetric locking
- Numerous test-cases passed successfully
- Implementation in code_aster and disk++

Hyperelastic computations

Perspectives

- a priori error estimates
 - plasticity with small deformations [Djoko & al 07]
 - Nitsche-HHO with Coulomb friction [Hild & Renard 12] [Chouly & al 19]
- Extension to dynamic problems [Hauret & Le Tallec 06] [Stanglmeier & al 16]
- Non-local plasticity and damage models [McBride & Reddy 09] [Zhang & al 18]

Non-local damage model and mixed method [Chen 19 (PhD)]

• Industrial applications with code_aster

Perspectives

- a priori error estimates
 - plasticity with small deformations [Djoko & al 07]
 - Nitsche-HHO with Coulomb friction [Hild & Renard 12] [Chouly & al 19]
- Extension to dynamic problems [Hauret & Le Tallec 06] [Stanglmeier & al 16]
- Non-local plasticity and damage models [McBride & Reddy 09] [Zhang & al 18]

Non-local damage model and mixed method [Chen 19 (PhD)]

• Industrial applications with code_aster

Thank you for your attention