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Nicolas Pignet (22.10.19) PhD Defense: Hybrid High-Order methods for nonlinear solid mechanics 1 / 51



Outline

1 Industrial context

2 Introduction to Hybrid High-Order methods (HHO)

3 Contact and Tresca friction

4 Plasticity in small and finite deformations

5 Conclusions and perspectives

Nicolas Pignet (22.10.19) PhD Defense: Hybrid High-Order methods for nonlinear solid mechanics 2 / 51



1 Industrial context

2 Introduction to Hybrid High-Order methods (HHO)

3 Contact and Tresca friction

4 Plasticity in small and finite deformations

5 Conclusions and perspectives

Nicolas Pignet (22.10.19) PhD Defense: Hybrid High-Order methods for nonlinear solid mechanics 3 / 51



Industrial context

Extend the lifetime of the nuclear power plants

Accurate and robust numerical simulations with code aster

Strongly nonlinear mechanical problems to solve

nonlinear measure of deformations (geometric nonlinearity)

nonlinear stress-strain constitutive relation (material nonlinearity)

contact and friction (boundary nonlinearity)

Industrial example : Notch plug
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Numerical locking

Presence of volumetric locking with primal H1-conforming formulation due to
plastic incompressibility

An alternative : using mixed methods but more unknowns, more expensive to
build, saddle-point problem to solve ...

Example : pinching of a cube

Trace of the stress tensor for (a) P1 (b) P2 (c) P2/P1/P1

or using a primal formulation without volumetric locking
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Locking-free primal formulations

discontinuous Galerkin (dG)

second order elliptic pb. [Arnold, Brezzi, Cockburn, Marini 01]

linear elasticity [Hansbo & Larson 03]

Hybridizable Discontinuous Galerkin (HDG)

second order elliptic pb. [Cockburn, Gopalakrishnan, Lozarov 09]

linear elasticity [Soon, Cockburn, Stolarski 09]

Hybrid High-Order (HHO) ⇐ this thesis

diffusion problem [Di Pietro, Ern, Lemaire 14]

linear elasticity [Di Pietro & Ern 15]

Virtual Element Method (VEM)

linear elasticity [Beirão da Veiga, Brezzi, Marini 13]

second order elliptic pb. [Beirão da Veiga, Brezzi, Marini, Russo 16]

Strong connection between HDG and HHO [Cockburn, Di Pietro, Ern 16]
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Main features of HHO for nonlinear solid mechanics

More advantageous than mixed methods

⇒ Primal formulation

More advantageous than FE methods

⇒ Absence of volumetric locking

More advantageous than dG methods

⇒ Integration of the behavior law only at cell-based quadrature nodes

⇒ Symmetric tangent matrix at each nonlinear solver iteration

Implementation in the open-source libraries disk++

https://github.com/wareHHOuse/diskpp (linear PDEs)

Pave the way to HDG methods
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Contributions

Publications

3 articles published

Hyperelasticity [Abbas, Ern, NP 18 (Comp. Mech.)]

Plasticity with small deformations [Abbas, Ern, NP 19 (CMAME)]

Plasticity in finite deformations [Abbas, Ern, NP 19 (IJNME)]

1 article submitted

Tresca friction with a Nitsche method [Chouly, Ern, NP (SISC)]

Softwares

Implementation from scratch in code aster (integrated in version 15.0.8)

Implementation of the nonlinear mechanical module in disk++
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Key ideas of Hybrid High-Order (HHO) methods

Discontinuous (non-conforming) method

Primal formulation with cell and face unknowns (poly. of order k ≥ 1)

cell unknowns are eliminated locally by static condensation

Local gradient/strain reconstruction (poly. of order k ≥ 1)

hk+1 convergence in energy-norm (linear elasticity)

Stabilization connecting cell and face unknowns

cell and face unknowns (2D) gradient/strain unknowns (2D, k=1)
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Linear elasticity problem

Ω0 ∈ Rd (d=2,3) : a bounded connected polyhedron

f and gN : given volumetric and surface (on ΓN) loads

uD : a given imposed displacement (on ΓD)

{
Find u ∈ VD :=

{
v ∈ H1(Ω0;Rd) : v = uD on ΓD

}
s.t. ∀v ∈ V 0

2µ(ε(u), ε(v))L2(Ω0) + λ(∇·u,∇·v)L2(Ω0) = (f , v)L2(Ω0) + (gN, v)L2(ΓN).
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Mesh notation

Th : set of cells ; Fh : set of (planar) faces

Mesh Mh := (Th,Fh)

Mesh Mh composed of 5 cells and 15 faces
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Local DOFs space

F∂T : set of mesh faces of cell T

Let a polynomial degree k ≥ 1 ; for all T ∈ Th, set

v̂T := (vT , v∂T ) ∈ Ûk
T := Pk

d(T ;Rd)︸ ︷︷ ︸
local cell dofs

× Pk
d−1(F∂T ;Rd)︸ ︷︷ ︸
local face dofs
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Symmetric strain reconstruction

E k
T : Pk

d(T ;Rd)× Pk
d−1(F∂T ;Rd)︸ ︷︷ ︸

=:Ûk
T

→ Pk
d(T ;Rd×d

sym )︸ ︷︷ ︸
local strain space

The reconstructed strain E k
T (v̂T ) ∈ Pk

d(T ;Rd×d
sym ) solves

(E k
T (v̂T ), τ )L2(T ) := −(vT ,∇ · τ )L2(T ) + (v∂T , τ nT )L2(∂T )

for all τ ∈ Pk
d(T ;Rd×d

sym )

mimic an integration by parts

local scalar mass-matrix of size
(
k+d
k

)
(ex : k = 2, d = 3 =⇒ size = 10)

Local interpolation operator : Î kT (v) = (Πk
T (v),Πk

∂T (v |∂T )) ∈ Ûk
T

Commuting property :

E k
T (Î kT (v)) = Πk

T (ε(v)), ∀v ∈ H1(T ;Rd)
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Stabilization operator

“Connect” the face unknowns to the trace of the cell unknowns

We penalize the quantity v∂T − vT |∂T in a least-squares sense

HHO-stabilization operator Sk
∂T (v̂T ) ∈ Pk

d−1(F∂T ;Rd) s.t.

Sk
∂T (v̂T ) := Πk

∂T (v∂T − vT |∂T︸ ︷︷ ︸
HDG term

− (I d − Πk
T )Rk+1

T (0, v∂T − vT |∂T )︸ ︷︷ ︸
HHO correction

)

Πk
∂T : L2-projector on Pk

d−1(F∂T ;Rd) ; Πk
T : L2-projector on Pk

d(T ;Rd)

Rk+1
T : higher-order reconstructed displacement field in Pk+1

d (T ;Rd)

The HHO correction ensures high-order error estimates O(hk+1) on
polyhedral meshes (instead of O(hk))

Stability :

‖ε(vT )‖2
L2(T ) + h−1

T ‖v∂T − vT |∂T‖
2
L2(∂T ) . ‖E

k
T (v̂T )‖2

L2(T ) + h−1
T ‖S

k
∂T (v̂T )‖2

L2(∂T )
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Local Galerkin contribution

Local stress reconstruction : For all v̂T ∈ Ûk
T ,

σ(v̂T ) := 2µE k
T (v̂T ) + λDk

T (v̂T )I d ∈ Pk
d(T ;Rd×d

sym )

Local Galerkin contribution

âGT (v̂T , ŵT ) :=2µ(E k
T (v̂T ),E k

T (ŵT ))L2(T ) + λ(Dk
T (v̂T ),Dk

T (ŵT ))L2(T )︸ ︷︷ ︸
FEM-like stiffness term

+ 2µh−1
T (Sk

∂T (v̂T ),Sk
∂T (ŵT ))L2(∂T )︸ ︷︷ ︸

stabilization term

with the discrete divergence Dk
T (v̂T ) := trace(E k

T (v̂T )) ∈ Pk
d(T ;R)

Local RHS
ˆ̀
T (v̂T ) := (f , vT )L2(T ) + (gN, v∂T )L2(∂T∩ΓN)
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Global DOFs space

Global DOFs : ûh := (uTh , uFh
) ∈ Ûk

h := Pk
d(Th;Rd)︸ ︷︷ ︸

global cells dofs

× Pk
d−1(Fh;Rd)︸ ︷︷ ︸

global faces dofs

Cellwise assembly (fully parallelizable)

Face unknowns are uniquely defined

Dirichlet boundary conditions are imposed strongly

Ûk
h,D :=

{
ûh ∈ Ûk

h : uF = Πk
F (uD) on ΓD

}
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Global discrete problem (linear elasticity)

{
Find ûh ∈ Ûk

h,D such that

âGh (ûh, v̂h) = ˆ̀
h(v̂h) ∀ v̂h ∈ Ûk

h,0

with

âGh (ûh, v̂h) :=
∑
T∈Th

âGT (ûT , v̂T ) and ˆ̀
h(v̂h) :=

∑
T∈Th

ˆ̀
T (v̂T )

Well-posed problem

Optimal convergence

hk+1-convergence in energy-norm

hk+2-convergence in L2-norm with elliptic regularity

Robustness in the incompressible limit (λ→ +∞)
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Unilateral contact with Tresca friction

Small strain elasticity

−∇ · σ(u) = f in Ω0

σ(u) = 2µ ε(u) + λ(∇·u)I d in Ω0

+BCs

Unilateral contact on ΓC

un ≤ 0

σn(u) ≤ 0

σn(u) un = 0

Tresca friction on ΓC (s > 0)
|σt(u)| ≤ s if ut = 0

σt(u) =− s
ut
|ut |

otherwise
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Reformulation of Curnier–Alart

Proposition

Let two penalty parameters γn > 0 and γt > 0. The contact with Tresca friction
conditions can be reformulated as follows :

σn(u)= [σn(u)− γn un]
R−

σt(u)= [σt(u)− γt ut ]s

where [·]
R−

and [·]s are projectors onto closed convex sets.

[x ]
R−

:= P(R−,0)(x)

[x ]s := PB(0,s)(x)
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Nitsche-FEM discretization

Nitsche-FEM method can be seen as a consistent penalty method

Contact and friction conditions imposed weakly (no Lagrange multiplier)

Conforming Nitsche-FEM discretization [Chouly & Hild 13]{
Find uh ∈ V h such that

ah(uh; vh) = `h(vh) ∀vh ∈ V h

with ah(vh;wh) := aGh (vh,wh) + aNh (vh;wh)

Galerkin contribution :

aGh (vh,wh) := 2µ(ε(vh), ε(wh))L2(Ω0) + λ(∇·vh,∇·wh)L2(Ω0)

Contact/friction contribution with single penalty parameter γ := γn = γt > 0 :

aNh (vh;wh) :=− ( θ
γ
σn(vh), σn(wh))L2(ΓC)

+ ( 1
γ

[τn(vh)]
R−
, (τn + (θ − 1)σn)(wh))L2(ΓC)

+ ( 1
γ

[τ t(vh)]s , (τ t + (θ − 1)σt)(wh))L2(ΓC)

with θ ∈ {−1, 0, 1} , τn(v) := σn(v)− γh−1vn and τ t(v) := σt(v)− γh−1v t
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Nitsche-HHO discretizations

Scalar contact problem with HHO discretization [Cascavita, Chouly, Ern 19]

Two variants :

Face-based vh|F → vF ∈ Pk
d−1(F ;Rd )

Cell-based vh|F → vT |F ∈ Pk+1
d (T ;Rd )

Sub-optimal convergence rates in H1-norm for the face-based variant

Analysis only for θ = 1

Here the face-based variant is considered

Local enrichment on face dofs on ΓC

face dofs of degree (k+1) on the contact faces

Increase slightly the total number of face dofs

Optimal convergence rates in H1-norm

Analysis for θ ∈ {−1, 0, 1}

Tracking of the dependencies w.r.t µ, λ
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Local DOFs space (contact modifications)

F∂T︸︷︷︸
faces of T

= F\∂T︸︷︷︸
other faces of T

∪ FC
∂T︸︷︷︸

contact faces of T

Let a polynomial degree k ≥ 1 ; for all T ∈ Th, set

v̂T := (vT , v∂T ) ∈ Pk
d(T ;Rd)︸ ︷︷ ︸

local cell dofs

× Pk/k+1
d−1 (F∂T ;Rd)︸ ︷︷ ︸

local face dofs

.

with Pk/k+1
d−1 (F∂T ;Rd) := Pk

d−1(F\∂T ;Rd)× Pk+1
d−1(FC

∂T ;Rd)

(a) Cell without contact face (b) Cell with contact face

Local DOFs for k = 1. Cell unknowns are eliminated by static condensation
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Local contact/friction contributions

Use face-based Nitsche-HHO method : vF ∈ Pk+1
d−1(F ;Rd) on ΓC

No change for the local Galerkin contribution (as in linear elasticity)

Two penalty parameters γn > 0 and γt > 0

Local contact/friction contribution on a contact cell

âNT (v̂T ; ŵT ) :=−θhT
γn

(σn(v̂T ), σn(ŵT ))L2(∂T∩ΓC)

+
hT
γn

(
[τn(v̂T )]

R−
, (τn + (θ − 1)σn)(ŵT )

)
L2(∂T∩ΓC)

−θhT
γt

(σt(v̂T ), σt(ŵT ))L2(∂T∩ΓC)

+
hT
γt

([τ t(v̂T )]s , (τ t + (θ − 1)σt)(ŵT ))L2(∂T∩ΓC)

with τn(v̂T ) := σn(v̂T )− γnh−1
T v∂T ,n and τ t(v̂T ) := σt(v̂T )− γth−1

T v∂T ,t
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Global discrete problem and well-posedness

Global discrete problem{
Find ûh ∈ Pk

d(Th;Rd)× Pk/k+1
d−1 (Fh;Rd) s.t.

âh(ûh; v̂h) = ˆ̀
h(v̂h) ∀v̂h ∈ Ûk

h,0

with âh(ûh; v̂h) :=
∑

T∈Th
[
âGT (ûT , v̂T ) + âNT (ûT ; v̂T )

]
Theorem (Well-posedness)

Let k ≥ 1. Assume that the penalty parameters are such that

min(κ−1γn, 2γt) ≥ 3(θ + 1)2C 2
dtµ,

where κ := max(1, λ2µ ) and Cdt from a discrete trace inequality.

Then, the global discrete problem is well-posed
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Theorem (H1-error estimate)

Let k ≥ 1. Assume that the penalty parameters are such that

min(κ−1γn, 2γt) ≥ 3
(
(θ + 1)2 + ε(4 + (θ − 1)2)

)
C 2
dtµ with ε ∈ (0, 1]

Assume u ∈ H1+r (Ω0;Rd) and ∇·u ∈ H r (Ω0;R), r ∈ ( 1
2
, k + 1]. Then,∑

T∈Th

(
2µ‖ε(u)− Ek

T (ûT )‖2
L2(T )

+ λ‖∇·u − Dk
T (ûT )‖2

L2(T )

)
+

ε

2(1 + ε)

∑
T∈T C

h

(hT
γn
‖[τn(u)]

R−
− [τn(ûT )]

R−
‖2
L2(∂TC)

+
hT

γt
‖ [τ t(u)]s − [τ t(ûT )]s ‖

2
L2(∂TC)

)

.
∑
T∈Th

([
2µ+

1

ε

(µ2κ2

γn
+
µ2

γt
+ γn

)]
h2r
T |u|

2
H1+r (T )

+
1

2µ
λ2h2r

T |∇·u|
2
Hr (T )

)
.

Robustness in the inco. limit for unilateral contact (only θ = −1)

∀θ and ε ≈ 1 : γt ≈ µ and γn ≈ µκ
θ = −1 and ε ≈ κ−1 : γt ≈ µ and γn ≈ µ (independent of κ i.e. λ)

Robustness in the inco. limit for bilateral contact un = 0 on ΓC (∀θ)

Smoothness assumption : u ∈ H
5
2−η, η > 0 (r = 3

2 − η)

Maximal convergence rate is O(h
3
2
−η) and is reached for k = 1
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Numerical examples

Nonlinear problem to solve (contact and friction nonlinearities)

Iterative resolution with a semi-smooth Newton’s method

Static condensation performed at each Newton’s iteration

Offline computations (gradient and stabilization operators precomputed)

Verification on analytical solution :

Optimal convergence rates in H1-norm

Absence of volumetric locking in the incompressible limit

Comparison to mixed methods [Bostan & Han 06]

Industrial application
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Manufactured solution

Manufactured solution

ux =

(
1 +

1

1 + λ

)
xex+y , uy =

(
−1 +

1

1 + λ

)
yex+y .

Friction coefficient s = µ
6
λ+2
λ+1x

2

Nicolas Pignet (22.10.19) PhD Defense: Hybrid High-Order methods for nonlinear solid mechanics 29 / 51



Manufactured solution : convergence rates

Mesh size k = 1 k = 2
h H1-error order H1-error order

3.33e-1 5.423e-3 - 4.406e-4 -
1.75e-1 1.380e-3 2.13 5.871e-5 3.13
9.06e-2 3.472e-4 2.08 7.620e-6 3.07
4.60e-2 8.694e-5 2.05 9.719e-7 3.04

H1-error and convergence order vs. h for θ = 1

Optimal hk+1-convergence rates in H1-norm
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Manufactured solution : robustness

100 101 102 103 104

10−6

10−5

10−4

HHO(1) θ = −1 HHO(1) θ = 0

HHO(1) θ = 1 HHO(2) θ = −1

HHO(2) θ = 0 HHO(2) θ = 1

(a) H1-error vs. λ (γn = γt = 2µ)

10−3 10−1 101 103 105 107

10−6

10−5

10−4

10−3

HHO(1) θ = −1 HHO(1) θ = 0

HHO(1) θ = 1 HHO(2) θ = −1

HHO(2) θ = 0 HHO(2) θ = 1

(b) H1-error vs. γn
2µ

(λ = 1000 and γt = 2µ)

Absence of volumetric locking in the incompressible limit

H1-error independent of γn if γn ≥ 2µ (and γt = 2µ)
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Industrial application : Notch plug

Mesh composed of 21,200 hexahedra and 510 prisms in the reference
configuration

Normal stress σn in the contact zone (in MPa) for k = 1 and θ = 1

Results in agreement with code aster and Coulomb friction
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Main difficulties for plasticity problems

Irreversibility of the plastic deformations

Plastic incompressibility

Volumetric locking for H1-conforming FEM

Strongly nonlinear problems

Constitutive law

Finite deformations

Loss of coercivity (softening materials)
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Bibliography overview

Some references on primal formulations for plasticity without volumetric locking

discontinuous Galerkin (dG)

[Mc Bride, Reddy 09]

[Liu, Wheeler, Dawson, Dean 13]

Hybrid discontinuous Galerkin with conforming traces (Hybrid dG)

[Wulfinghoff, Bayat, Alipour, Reese 17]

Hybrid weakly conforming method (Hybrid WCM)

[Krämer, Wieners, Wohlmuth, Wunderlich 16]

Virtual Element Method (VEM)

[Chi, Beirão da Veiga, Paulino 17]

[Hudobivnik, Aldakheel, Wriggers 19]

No HDG methods
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Plasticity model (small def.)

Framework of generalized standard materials [Halphen & Nguyen 75]

Linearized strain tensor
ε(v) ∈ Rd×d

sym

Plastic strain tensor and incompressibility

εp ∈ Rd×d
sym and trace(εp) = 0

Additive decomposition
εe := ε− εp

The internal state is described by ε, εp and a set of internal variables

α := (α1, · · · , αm) ∈ Rm

Generalized internal variables

χ := {εp, α}
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Plasticity problem (small def.)

Ω0 ∈ Rd (d=2,3) : bounded connected polyhedron

Pseudo-time stepping : n = 1, . . . ,N (history of the deformations)

Find un ∈ Vd := {v ∈ H1(Ω0;Rd) | v = unD on ΓD} s.t.∫
Ω0

σn : ε(v) dΩ0 = `(v) for all v ∈ V0

and
σn = SMALL PLASTICITY(χn−1, ε(un−1), ε(un))

where SMALL PLASTICITY is the given behavior integrator

Constitutive algorithm : radial return mapping

Many examples in code aster
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Global discrete problem (small def.)

No modification for HHO operators E k
T and Sk

∂T (as in linear elasticity)

For all 1 ≤ n ≤ N, find ûnh ∈ Ûk
h,D such that∑

T∈Th
(σn,E k

T (v̂T ))L2(T ) +
∑
T∈Th

βh−1
T (Sk

∂T (ûnT ),Sk
∂T (v̂T ))L2(∂T )

= ˆ̀
h(v̂h), ∀ v̂h ∈ Ûk

h,0

and for all the cell-quadrature points

σn = SMALL PLASTICITY(χn−1
T

,E k
T (ûn−1

T ),E k
T (ûnT ))

with β ' 2µ the user-dependent stabilization parameter
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Numerical examples (small def.)

Nonlinear problem to solve (material nonlinearity)

Iterative resolution with Newton’s method

Static condensation performed at each Newton’s iteration

Offline computations (gradient and stabilization operators precomputed)

Symmetric tangent matrix at each nonlinear solver iteration

Verification on analytical solution :

Absence of volumetric locking due to plastic incompressibility

Comparison to P2 and P2/P1/P1 (Displacement/Pressure/Dilatation) solutions
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Sphere under internal pressure I (small def.)

Perfect J2-plasticity

Increase the internal pressure until the limit load

Analytical solution available

(a) Mesh

0 50 100 150 200 250 300 350
0

5 · 10−2

0.1

0.15
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(b) Radial displ. vs. internal pressure
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Sphere under internal pressure II (small def.)
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Trace of the stress tensor at all the quadrature points at the limit load

Absence of volumetric locking for HHO and mixed methods
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Quasi-incompressible Cook’s membrane (small def.)

Linear isotropic hardening with J2-plasticity (ν = 0.4999)

(a) Geometry and BC.
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(b) Displacement of A vs. #dofs.

HHO(2) outperforms mixed methods (same displacement order)
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Perforated strip under uniaxial extension (small def.)

Combined linear kinematic and isotropic hardening with J2-plasticity

(a) Polygonal mesh (b) Equivalent plastic strain with HHO(2)

Excellent matching between triangle and polygonal meshes

Nicolas Pignet (22.10.19) PhD Defense: Hybrid High-Order methods for nonlinear solid mechanics 43 / 51



Extension to finite deformations

Extension to finite deformations using the logarithmic strain framework

Logarithmic strain tensor

E :=
1

2
ln FT F ∈ Rd×d

sym

Additive decomposition (elastic E e and plastic E p parts)

E e := E − E p ∈ Rd×d
sym

Algorithm 1 Given χn−1,F n−1,F n, Return Piola-Kirchhoff 1 tensor Pn

1: procedure FINITE PLASTICITY(χn−1,F n−1,F n)

2: Solve eigenvalue pb. Em := 1
2 ln(Fm,TFm), m ∈ {n − 1, n}

3: Compute Tn = SMALL PLASTICITY(χn−1,E n−1,E n).
4: return Pn = T n : (∂FE )n

5: end procedure

For HHO methods, the only modification is the gradient reconstruction
G k

T ∈ Pk
d(T ;Rd×d) (to replace E k

T ∈ Pk
d(T ;Rd×d

sym ))
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Global discrete problem (finite def.)

For all 1 ≤ n ≤ N, find ûnh ∈ Ûk
h,D such that∑

T∈Th
(Pn,G k

T (v̂T ))L2(T ) +
∑
T∈Th

βh−1
T (Sk

∂T (ûnT ),Sk
∂T (v̂T ))L2(∂T )

= ˆ̀
h(v̂h), ∀ v̂h ∈ Ûk

h,0

and for all the cell-quadrature points

Pn = FINITE PLASTICITY(χn−1
T

,F k
T (ûn−1

T ),F k
T (ûnT ))

with F k
T = G k

T + I d and β ' 2µ the stabilization parameter (no general theory)
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Quasi-incomp. sphere under internal forces I (finite def.)

Perfect J2-plasticity

ν = 0.499

Increase the internal radial force until the limit load

Analytical solution available for ν = 0.5

(a) 1580 tetrahedra (b) Equivalent plastic strain p - HHO(1)
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Quasi-incomp. sphere under internal forces II (finite def.)
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Trace of the stress tensor at all the quadrature points at the limit load

Absence of volumetric locking for HHO and mixed methods
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Torsion of a square-section bar (finite def.)

Nonlinear isotropic hardening with J2-plasticity

(a) Θ = 0◦ (b) Θ = 90◦ (c) Θ = 180◦ (d) Θ = 270◦ (e) Θ = 360◦

Equivalent plastic strain p for HHO(1) for different rotation angles Θ.
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Industrial application : pump under internal forces (fin. def)

Linear isotropic hardening with J2-plasticity

(a) Equivalent plastic strain p (in %) (b) von Mises stress (in MPa)

Mesh composed of 23,837 tetrahedra and results for HHO(1 ;2)
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Conclusions

HHO methods for finite plasticity, hyperelasticity and contact

Primal formulation without of volumetric locking

Numerous test-cases passed successfully

Implementation in code aster and disk++

Hyperelastic computations
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Perspectives

a priori error estimates

plasticity with small deformations [Djoko & al 07]

Nitsche-HHO with Coulomb friction [Hild & Renard 12] [Chouly & al 19]

Extension to dynamic problems [Hauret & Le Tallec 06] [Stanglmeier & al 16]

Non-local plasticity and damage models [McBride & Reddy 09] [Zhang & al 18]

Non-local damage model and mixed method [Chen 19 (PhD)]

Industrial applications with code aster

Thank you for your attention
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