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FRANCOIS COSSERAT
ET LE SECRET DE LA THEORIE MATHEMATIQUE
DE L’ELASTICITE

Jean-Frangois Pommaret

IL. APPARAIT PARFOIS, TROP RAREMENT PEUT-
ETRE, DANS LES ARTS OU LES SCIENCES,
QUELQUE PERSONNALITE ISOLEE DONT L’(EUVRE,
SURGIE DE NULLE PART, N’EST ATTACHEE A
AUCUNE ECOLE DE PENSEE ET DEDAIGNE LES
HERITIERS LORS DE SA MISE AU TOMBEAU. LE
SPECTATEUR, TOUT D’ABORD SCEPTIQUE, PRES-
SENT UN SECRET QUI L INTRIGUE ET, BIEN PLUS
TARD, DEVENU LENTEMENT UN ADMIRATEUR FER-
VENT, COMPREND ENFIN QU’UN JOUR, UN DIEU
DE L’OLYMPE OU D’AILLEURS S’EST AMUSE A DES-
CENDRE SUR TERRE DANS LA PFAU D’UN MORTEL.

es rares sursauts de I’esprit, pour éton-

nants qu'’ils soient, sont souvent les vrais

moteurs du progrés, et, a ce titre, s'ils ont
leurs amis fidéles, ont aussi leurs ennemis jurés. En
effet, les spécialistes d’'un domaine cerné appré-
cient les résultats techniques nouveaux mais mépri-
sent volontiers I'idée géniale d’un instant qui réduit
en cendre les patientes et timides avancées
d’années de tradition.
Mon propos, a I'occasion de cet essai, est de réhabi-
Jiter la mémoire d'un « grand ancien » de I’Ecole
nationale des ponts et chaussées, Francois Cosserat
(1852-1914), injustement oublié par beaucoup de
mécaniciens de cette Ecole et d’ailleurs. Le lecteur
intéressé par plus de détails biographiques ou
mathématiques peut consulter & ce propos le
second livre de la référence [9] qui lui est dédié. Je
suis redevable a I'ingénieur général René Malcor
(X 26, ENPC 31) de nombreuses informations pri-
vées sur la vie et 'ceuvre de Francois Cosserat et de
son frére Eugéne (1866-1931).
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Il me parait cependant préférable de commencer
par une petite histoire qui, pour étre personnelle, a
néanmoins le mérite de montrer a I'évidence que
les voies du destin sont souvent tracées longtemps a
Pavance, de facon inattendue.

Un jour de 1962, alors jeune taupin du lycée Louis- )
le-Grand, j’ai acheté sur un coup de cceur, dans une
petite librairie d’occasion de la rue de la Sorbonne,
aujourd’hui disparue, le livre « Théorie des corps
déformables » publié¢ par les fréres Eugéne et
Francois Cosserat chez Hermann, un gage de
sérieux, en 1909 [4].

A ma sortie de I'Ecole des ponts en 1969, ayant tout
a fait oublié ce livre, je suis parti un an aux Etats-
Unis, a Princeton, suivre les cours du mathémati-
cien exceptionnel qu’était Donald C. Spencer et je
suis revenu en France pour étre attaché a la chaire
du Professeur André Lichnerowicz au Collége de
France, afin de préparer une thése de Doctorat. Un
livre, publié avec succeés en 1978 d’aprés cette thése
et rapidement traduit en russe, a marqué le début
de mon travail de recherche [9].

LE « SECRET » DES FRERES COSSERAT

Ne trouvant toujours pas les applications de ces
nouvelles méthodes formelles en mécanique et en
physique, j’ai donc continué dans la voie des mathé-
matiques pures en développant la théorie de Galois
pour les systémes d’équations aux dérivées partielles
[91. Dans un dernier chapitre qui présentait
quelques développements nouveaux sur la théorie
des groupes de transformations, j'avais en particu-
lier obtenu, pour la premiére fois, des formules
explicites pour décrire certains opérateurs liés a ces

groupes, qui avaient été introduits par D.C. Spencer
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en 1972 [6]. En corrigeant les épreuves de ce cha-
pitre, j’ai soudain reconnu que les formules (43) et
(44), décrivant sur la page 123 de leur livre ce que
les fréres Cosserat appelaient « paramétres différen-
tiels », était seulement Pexact analogue des formules

suivantes :

X () = gk (x)3; /7 (x) — 8% = Ak (x) — 8¢
X5, (%) = gk ()9, f] (x)

cas particulier des formules de la page 573 de (9,
1983) qui décrivent le premier opérateur de Spencer non-
linéaire mais sont absentes de [6]. Dans ces formules,
la transformation y L fk(x) est inversible, on a la
relation matricielle g "r (0) [T (x) = 5"1» symbole de
Kronecker (1si k=i et 0si k# i) etla matrice ¥, (x)
est orthogonale, c’est-a-dire que W (fx)) fkl- (x) fl]
(x) = @ (x) lorsque o est la métrique euclidienne
(0)1-]- =1sii=jet0si i# 7). On adopte la convention
d’Einstein de sommation implicite sur I'indice muet r
et tous les indices vont de 1 i n, dimension de
Pespace considéré. I est encore plus remarquable de
constater que les formules (4) et (5) de la page 392
de (5) sont alors un cas particulier des formules de
((9, 1983) p 573, (9, 1988) P 233, (9, 1994) p 215)
décrivant le second opérateur de Spercer non-linéaire.

Clest ainsi que j’ai découvert une partie du secret contenu
dans le livre des fréres Cosserat. Plus simplement, si en
1975 Spencer avait demandé i un de ses étudiants
de calculer les « opérateurs de Spencer » contenus dans
la référence (6) pour n’importe quel groupe de
transformations, en considérant le cas particulier de
I'espace ordinaire de dimension $ et du groupe
bien connu des déplacements rigides (3 translations
+ 3 rotations), cet étudiant aurait retrouvé ligne par
ligne, formule aprés formule, beaucoup des résul-
tats des références [1, 3, 4, 5].

Mais ce n’est pas tout; mon propos est de montrer
que le véritable secret des Cosserat est d’avoir
découvert le moyen de passer de la théorie des groupes
a la theorie de Udlasticité. Plus précisément, je voudrais
établir (avec le moins de mathématique possible
mais de fagon assez détaillée cependant pour que le
lecteur non-spécialiste puisse découvrir 4 quel point
il semble « miraculeux » que des calculs aussi compli-
qués aient pu étre faits 3 cette €poque sans une
erreur) le lien qui existe entre les formules précé-
dentes et les formules fondamentales de | Elastostatique

60

données par un équilibre de torseur en mécanique
des milieux continus :

do=f1 | QU+ 6i-ofi=mi
dans lesquelles les n2 quantités 67, non-nécessairement
Symétriques, représentent le tenseur de contrainte, les
n(n-1)/2 quantités U = — u7 représentent le ten-
seur de couple de contrainte, ff est la densité Volumique
de force et m¥ = — m/ est la densité volumique de
couple. Ces formules sont écrites pour la premiere fois
page 137 dans le livre des fréres Cosserat (voir enca-
dré p. 62) lorsque n =3, avec la mention :
« Les 18 auxiliaires ¢ et pt que nous venons d’intro-
duire et les équations qui les lient ne paraissent pas.
avoir €té jusqu'ici envisagées sous une forme aussi - -
générale ; i notre connaissance, elles n’ont été
considérées que dans le cas particulier ou les 9
quantités It sont nulles ».
En méme temps, je voudrais présenter les motiva-
tions qui ont conduit les fréres Cosserat a cette nou-
velle approche et qui sont résumées dés le début de
Pintroduction de leur Note ajoutée au tome 3 du
célebre « Traité de mécanique » de P. Appell [1] :
« La mécanique, comme toutes les sciences qui ont
pour objet les faits sensibles, est avant tout expéri-
mentale et inductive, et c’est ce caractére qu’elle
posséde naturellement dans un Traité classique.
Mais on peut aussi essayer de la rattacher a un
concept général unique et de lui donner une forme
déductive ; de cette maniére, on lui confére un pou-
voir nouveau de découverte et I’on trouve I'explica-
tion des notions déja acquises inductivement. Telle
a €t€ I'ceuvre de Lagrange, dans sa Mécanique analy-
tique, ily a un siécle »,
« A notre époque, une tentative de ce genre mérite
d’étre renouvelée, car le domaine des phénoménes
qui se trouvent dans une dépendance plus ou moins
compléte de la Mécanique s’est considérablement
€élargi. L’une des voies que l'on peut suivre a été
indiquée par Helmholtz ; il prend pour point de
départ la méthode de I'action variable d’Hamilton,

‘de sorte que la notion d’oul doivent se déduire tous

les principes inductifs de la Mécanique est celle de
Paction convenablement concue. Pour arriver i en
donner une définition tout i fait constructive, on
peut observer que Iaction, telle que Maupertuis I’a
introduite dans la Mécanique, est invariante dans le
groupe des déplacements euclidiens. Ce méme caractére
se retrouve dans la statique des corps déformables,
qui repose sur la considération du ds2 de Pespace ».
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« M. H. Poincaré a écrit que la notion de groupe
préexiste dans notre esprit au moins en puissance,
et s’impose a nous, non comme forme de notre sen-
sibilité, mais comme forme de notre entendement.
Suivant cette idée philosophique, toute la Méca-
nique classique et toute la physique théorique
paraissent pouvoir se déduire de Ia notion unique
d’action euclidienne. C’est ce que nous nous propo-
sons d’établir dans la présente Note, au moins en ce
qui concerne les questions qui rentrent dans le
cadre habituel de la Mécanique ».

NUL N'EST PROPHETE EN SON PAYS

Cependant, « nul n'est propheéte en son pays » et le travail
des fréres Cosserat a ét€ largement ignoré en France
avant d’étre réhabilité aux Etats-Unis lors de la décou-
verte des cristaux liquides... cinquante ans plus tard.
Malheureusement la situation n’a guére évolué
puisqu’il ressortira de cet essai que la théorie mathé-
matique de élasticité ne peut étre séparée de la theorie des
groupes et de la théorie formelle des systémes d’équations
aux dérivées partielles créée par D.C. Spencer pendant
la période 1965-1975, encore fort peu connue
aujourd’hui des mathématiciens et a fortiori des
mécaniciens.

D’un point de vue bibliographique, on notera que
I'approche des Cosserat n'est méme pas citée dans
une étude exhaustive sur le « développement histo-
rique des principes de I'énergétique en élastosta-
tique » [7].

D’un point de vue mathématique, on notera que les
équations de la contrainte et du couple de
contrainte déja écrites sont toujours présentées de
facon inductive (phénoménologique) par des €qui-
libres de forces et de couples agissant sur un petit
volume ou, par intégration, sur un volume fini (15).
Il n'existe aucune approche déductive moderne autre que
celle des références [9] puisque la suite de cet essai
montrera a ’évidence que le secrel du livre des freves
Cosseral lient en une seule phrase dans le théoréme sui-

vant et son corollaire :

Théoréeme
Les équations fondamentales de U'élastostatique sont
décrites par Uadjoint formel du premier opérateur de

Spencer linéaire.
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Corollaire

La structure de ces équations (nombre et forme) ne dépend
que de la structure du groupe des déplacements euclidiens
(translations et rotations).

Ce qui précede explique pourquoi ce résultat n'est
toujours pas connu des mécaniciens puisqu’il repose
essentiellement sur I'usage de I’opérateur de Spencer.

Un ingénieur-mathématicien

Francois-Nicolas Cosserat est né le 26 novembre
1852 a Douai. Il est éléve de I'Ecole polytechnique
en 1870 puis de I'Ecole nationale des ponts et
chaussées en 1872. Il se marie en 1878 et a une fille,
Amélie Adéle, qui se mariera avec Edouard Davaux,
le traducteur francais du monumental traité de phy-
sique de Chowlson [3]. Francois Cosserat suit
ensuite la carriére normale d’un Ingénieur des
ponts en construisant des ouvrages d’art liés au che-
min de fer et devient ingénieur en chef en 1895.
Pendant ce temps, il réfléchit avec son frére cadet
Eugéne, professeur de géométrie différentielle a
I’Université de Toulouse et directeur de
I’Observatoire de Toulouse, sur les fondements de
la mécanique. Il semble cependant que les idées
principales aient été données par Frangois
puisqu’apreés sa mort par maladie, le 22 mars 1914,
aucune autre étude, méme posthume, ne sera
publiée par son frére. Tous ces résultats sont ras-
semblés dans de longues Notes ajoutées a des traités
classiques [1, 3, 5], la plus importante étant publiée
séparément sous forme de livre [4]. Francois
Cosserat a aussi €té élu vice-président de la Société
mathématique de France en 1912 puis président en
1913. Cependant le discours de son successeur, le
normalien Ernest Vessiot, reste trés vague sur 'ori-

ginalité de ses travaux.

DES TRAVAUX PRECURSEURS

Une monographie tardive [10] ne fait que recopier
les formules importantes de (4) et I'usage du calcul
tensoriel n’a pas permis d’aller plus loin. Les méca-
niciens n’ont donc retenu que les formules fonda-
mentales de la page 137 de (4) en les retrouvant de
facon empirique.

Pour mieux comprendre le cheminement scienti-
fique des fréres Cosserat, il faut savoir que, dés la

moitié du siécle dernier, de nombreux savants et
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non des moindres ont révé d’unifier les théories
mathématiques de I'élasticité, de la chaleur et de
I'électromagnétisme, ainsi que leurs couplages res-
pectifs (thermoélasticité, thermoélectricité, piézo-
€lectricité, photoélasticité). Le schéma analogique est
celui qui, un siécle plus tard, servira de guide aux
méthodes d’éléments finis relatives, séparément, a
chacune des trois colonnes du diagramme suivant,
organis€ selon les chapitres successifs des traités sco-

laires correspondants :

Potentiel EM

Déplacement Température
Déformation Gradient Champ EM
Conditions de Rotationnel Equations
compatibilité des champs
Contrainte Flux de chaleur Induction EM
Equations de Equation de Equations des
la contrainte la chaleur inductions
Loi de Hooke Loi de Fourier Loi de Minkowski

Dans ce diagramme, seule la premiére colonne

semble liée a la géométrie et i la théorie des
groupes en particulier, puisqu’il est bien connu
qu'un corps déformé conserve la méme déforma-
tion par translation ou rotation. Le point de départ
des freres Cosserat a €té de comprendre I'impasse
dans laquelle se trouvait cette présentation classique
de I'élasticité datant de Cauchy et encore en usage
maintenant.

Soit x la position initiale et y la position finale d’un
point d'un corps déformable. La loi de déformation
y = fx) peut étre écrite y= x + §(x) en introduisant
le vecteur déplacement de composantes (§1(x),...,
£™(x)) dans un espace a n dimensions (le lecteur
peu averti peut prendre n = 2 dans tout ce qui suit).
En se limitant au cas habituel du génie civil, pour
lequel les déplacements sont petits devant les
dimensions du corps, on introduira le tenseur de
(petite) déformation, matrice symétrique d’élément :

e5(2) =5 (5 (RDE (3) + 3 ()9 87 ()
+ET ()9, 0, (x))

Dans le cas d’une métrique euclidienne avec ®_ = 1

.-
sii=jetOsii#j, posant §;= ®, £, on obtient :

& :%(aigj +9,€;)
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Un calcul sans difficulté conduit aux n2(n2 - 1)/12

conditions de compatibilité parmi lesquelles on a :
O118gp +0g9€11 = 2019819 = 0

Une approche énergétique introduira I'énergie

libre :

F=j<p(e,-j)dx

en sommant la densité volumique d’énergie libre
sur I’élément de volume dx = dx!... dx® du corps
i~ &
n(n + 1)/2 différents € en supposant i < j. Ainsi, si

non-déformé. Comme € on peut distinguer les
n =2, on a I'énergie de déformation locale ¢(g;,
€19, E9o). La variation de Fs’écrit alors :

SF = joif Be,dx

en posant 69 = 9g/ aeij pour ¢ £ j seulement. Utilisant

alors la relation 831»]» :-;—(ai&’;]- +818§i) pour une

variation 8§ du déplacement &, la contraction précé-
dente ne prend une forme simple que si 'on com-
pléte les o ainsi trouvés pour former une matrice
symétrique en supposant vérifiées a priori les rela-
tions 6% - 6/ = 0 pour toutes les valeurs de i et j
maintenant. On obtient :

OF = J'c"faiﬁgjdx = -J (0,098 jdx + .

en intégrant par partie et I’on reconnait dans 'inté-
grale le travail virtuel ffﬁij d'une force, ce qui
conduit alors aux équations de la contrainte.

On est donc placé devant la situation suivante :

* Si l'on part de la contrainte en 'introduisant de
facon purement phénoménologique (tétraédre de
Cauchy), on peut démontrer les relations de symétrie
6 - o7 = 0, mais en supposant I'absence de couple
de contrainte surfacique et de moment volumique,
puis en faisant appel a un équilibre de torseur érigé
comme un principe additionnel et empirique qui
ne peut étre décrit par un principe variationnel.

- * Sil'on part de la déformation comme précédem-

ment, il n’existe pas de principe variationnel justi-
fiant la symétrie de la contrainte ou 'introduction
du couple de contrainte.

* Sil'on ne garde que la partie dissymétrique 0 & ;dans la
définition de la déformation, on perd toute réfé-
rence au groupe des déplacements euclidiens et on
oublie que la déformation doit €tre un invariant dif-
férentiel de ce groupe.
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COMPLEXITE OPERATOIRE...
ET SIMPLICITE CONCEPTUELLE

I ne restait plus qu'une seule issue : changer le point
de départ géométrique tout en conservant le méme groupe
de transformations. Il est curieux de constater que
c’est exactement, mais pour des raisons tres diffé-
rentes, le méme point de vue qui a été adopté par
D.C. Spencer dans son étude des groupes de trans-
formations, vis-a-vis de P'usage systématique des
invariants différentiels par I'inventeur de ces
groupes en 1890, le mathématicien norvégien
Sophus Lie. De nouveaux outils mathématiques
(théorie des jets, algébre homologique) ont €té
nécessaires pour résoudre ce probléme [6, 9]. 1l
n’est pas dans mon intention de les détailler mais je
voudrais maintenant faire comprendre au lecteur, a
la fois la complexité opératoire (il lui suffira d’ouvrir au
hasard 'une quelconque des références précitées)
mais aussi la simplicité conceptuelle de la « machine »
qui, 4 partir de n’importe quel groupe de transfor-
mations d’un espace, produit une « théorie ». Le fait
que le groupe des déplacements euclidiens déter-
mine toute I’élastostatique (a I'exclusion de la
valeur numérique des coefficients d’élasticité) est
lié a la nature méme du monde physique et... Dieu
seul connait la raison de Son choix !

e le premier point clef du travail des Cosserat est
d’établir la prépondérance de V'action sur 1'énergie,
semblable a celle de I'énergie libre sur I énergie interne
en thermostatique selon les vues de Helmholtz qui
concluront cet essai. Ainsi, dans le cas de la vibra-
tion libre d’une barre de longueur /, de section S,
de masse volumique p et de module d’Young £, avec
un déplacement £(x,¢) maintenant fonction du
temps, on doit faire varier I'intégrale double :

(2] -Le(2)
= ol _iE| S d
W ”o QP(E)t o Elge ) |5t

pour obtenir les équations fondamentales de I'¢las-

todynamique : 2 pYs
pamique: 9% 0%
azZ ox
On remarque que le signe « — » dans 'action

devient un signe « + » dans 'énergie et le cas de
I'électromagnétisme est trés semblable [11].

e Le second point clef, lié comme je P'ai déja dit a la
théorie des groupes développée par Spencer, est de
choisir une action de 1a forme :
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W= Jwodh ok ) dx
Le lien avec la théorie classique résulte alors de la
relation ((4), formule (45)):
@,(x) AT (%) AS(x) = 0y ()0, f* (%) 8,1 (%)

o Le troisieme point clef, de loin le plus délicat, est de
varier correctement ’action précédente (voir
I’Appendice). On calcule d’abord la variation des
champs ¥ contenus dans Paction w a Paide des et
des variations des fonctions (f k (%), f ’f (x)) définis-
sant le repére mobile ainsi que de leurs dérivées.
On intégre alors par partic comme en mécanique
analytique, mais les équations d’Euler-Lagrange
obtenues sont beaucoup trop compliquées pour
pouvoir étre utilisées. Un changement de variables
« miraculeux », découvert par les fréres Cosserat (4,
p 131-136) et semblable au passage des coordon-
nées de Lagrange au coordonnées d’Euler en méca-
nique des milieux continus, permet alors de simpli-
fier tellement les formules qu’il ne reste plus qu'un
opérateur lin€aire de forme trés simple par rapport
aux nouvelles variations et a leurs dérivées que I'on
intégre par partie pour retrouver les équations de la
contrainte et du couple de contrainte déja décrites.
La raison conceptuelle d'une telle procédure ne
peut étre comprise sans des mathématiques tres
sophistiquées [9]. Les fréres Cosserat ont donc eu
quand méme beaucoup de chance de pouvoir arri-
ver au bout de leurs calculs sans une erreur, ceci
d’autant plus que, chaque fois qu'une matrice 3x3
antisymétrique intervient, ils 'ont toujours décrite
par le vecteur correspondant, ce qui leur interdisait
un passage a la dimension 4 (espace-temps) car cet
artifice n’est alors plus possible.

CURIEUX PARALLELES

Les fréres Cosserat ont aussi essayé d’étendre ces
méthodes 4 la chaleur et a I'électromagnétisme
dans le cadre d’une hypothétique « Théorie des
températures » ((4), p. 6, 147, 187, 211) dont il ne
reste apparemment plus de trace, en utilisant deux
analogies [2, 3, 8, 9] fort peu connues, méme
encore aujourd’hui, bien qu’elles aient été décou-
vertes par d’illustres savants.

L’analogie de Helmholtz établit un paralléle curieux
entre la mécanique analytique et la thermodyna-

mique en tentant de décrire la température absolue
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comme un « champ » classique, c’est-a-dire a partir
des dérivées d’un « potentiel », de facon i pouvoir
faire des intégrations par partic comme avec la
déformation en mécanique des milieux continus.

L’ analogie de Mach-Lippmann établit un autre paral-
lele aussi curieux entre la température absolue et le
potentiel électrique.

Analogie de Helmholtz

Si L4, ¢, §) est le Lagrangien d’un systéme méca-
nique de coordonnées généralisées ¢ et de vitesses
généralisées correspondantes §, on définit
I"Hamiltonien par la formule bien connue

H= q% — L. De méme, en thermostatique, si Fest
q
I énergie libre d’un systéme, on définit, en général,

I énergie interne par la formule U = F - Tg—f; ouT

est la température absolue. Par exemple, dans le cas
d’un gaz parfait (volume V, pression P, entropie S)
onadl=—- PdV+ TdS et dF = — PdV — SdT. Ainsi la
thermostatique et la mécanique analytique admet-
tent le méme schéma si, posant L = — F, on peut
trouver une variable gtelle que §= 7.

Analogie de Mach-Lippmann

Pour une machine thermique décrivant un cycle de
Carnot entre les températures absolues T, et
1y > Ty, échangeant le travail 8W et la chaleur §Q
avec I'extérieur, le premier principe de la thermosta-
tique donne dUU/=0W+ 8Qeton a:

f (8W+5Q)=J' AU=0=W +Q, +Qy =0
oycle cycle

Le second principe 3Q = TdS donne alors :
[ s %_,
oycle T

dS=0= L} + =
- T,
c’est-d-dire la formule de Clausius. On en déduit le

cycle Ty

rendement maximum théorique :

oMW _ e
2 @ o

T2 i ’l‘l >
Ty

0

De méme, dans une machine électrique décrivant un
cycle de charge et de décharge entre les potentiels
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électriques V; et V,, > V}, échangeant le travail méca-
nique Wet le travail électrique W’ avec I'extérieur
lorsque la charge électrique ¢ varie, le principe de
conservation de l'énergie donne dE=8W+8Wetona:

dE=0=W +W; +Wy =0

j GW +5W') =
oycle oycle

Le principe de conservation de Uélectricité 8W’ = Vdg
donne alors :

A A L L
ode V oycle i ¥
On en déduit le rendement maximum théorique :
W w _wiwm _ %-v S
W Tw T W W

0

et il existe ainsi une analogie formelle entre la tem-
pérature absolue T et le potentiel électrique V. Ce
résultat se retrouve au niveau de leurs gradients res-
pectifs dans le phénoméne de la thermoélectricité
découvert par Seebeck en 1821.

UNION ENTRE GEOMETRIE ET PHYSIQUE

Malheureusement, Francois Cosserat est mort avant
d’avoir achevé sa tiche et il ne semble pas que les
héritiers, séparés par des divorces, aient gardé des
papiers posthumes. La tentative de H. Weyl [12]
pour lier I’électromagnétisme a la théorie des
groupes et celle de L. de Broglie [2] pour utiliser
Panalogie de Helmholtz ont ensuite ouvert la voie a
des recherches récentes [9] essayant d’unifier les
théories mathématiques de I'élasticité, de la chaleur
et de I'électromagnétisme.

Les freres Cosserat ont découvert beaucoup plus
qu’une structure additionnelle ou « microstruc-
ture » de certains matériaux. Ils ont uni pour la pre-
miére fois géométrie et physique en fondant une théo-
rie physique sur un modéle mathématique issu de la
théorie des groupes. Le seul cheminement analogue
avait été réalisé par H. Poincaré et A. Einstein avec la
« relativité restreinte » et « Pélectrodynamique des
corps en mouvement » de 1905. I est certain que
cette coincidence a masqué I"aspect visionnaire du
travail des fréres Cosserat en détournant (peut-étre 2
Juste titre) Pattention des chercheurs sur la physique
microscopique au détriment de la physique macro-

scopique dont elle n’est cependant pas séparable.
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APPENDICE

Nous explicitons les calculs en utilisant des notations

condensées modernes et retrouvons, une a une,

toutes les formules de (4). Définissant les variations :
5f (0 =nt(flx)) . 8% =f1(0 nt(f(»)

et utilisant le fait que la métrique est invariante dans

la variation puisqu’elle est donnée, on obtient aprés

remplacement :

O () M () + @, (N NTH) +17 () 9,04 () =0
Dans notre cas, posant 1, = @, N} on a simplement
Nyt Ny = 0. Il vient alors, aprés un calcul élémen-
taire mais fastidieux dans lequel T]lm, =0

&t = (a“ jaf

o "
Sx]z—glf][ Jafr

anl
Définissant successivement ((4), p 130) :

i dw i _ dw
Toagk %k T ok
9 7

et introduisant ensuite les nouvelles quantités ((4),
p 136):

A%zr =gi¥io0. /",
avec A(x) = det(d,f *(x))
formule définissant la variation sur I'élément de
Adx:

s -k R

, on obtient finalement la

volume déformé dy=

{
oW = J-b .a_r_nr +?%”(§n_ OJ dy

Cette formule fait apparaitre pour la premiére fois, entre les
parentheses, Uopérateur de Spencer relatif aux variables
indépendantes y. Montant et descendant les indices
grace a la métrique ® comme pour le déplacement,
on peut alors écrire : »

SW :quk,l [?*yf-ﬂm}r"@“"% d

Il faut cependant remarquer que la premiére som-

mation est faite sur tous les indices (k) alors que la
seconde sommation est faite seulement sur les
indices (k < {). Regroupant les termes, on a donc,
comme sur la page 136 de (4) :

W = ﬂ nk+[ MTMX“ «gk}nk ,}dy+
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et on retrouve exactement les équations fondamen-
tales de 1'élastostatique avec seulement des nota-
tions légérement différentes.

1 suffit donc de multiplier les composantes de
I'opérateur de Spencer par les « fonctions test » Y
et d’intégrer par partie. Ceci est exactement la facon
de construire I’adjoint formel d’un opérateur diffé-

rentiel linéaire. ]
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