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We fix integers n, d > 1, a probability space (€2, A, P) provided with a filtration (F);>0 such
that F contains all negligible events, and (B;);>0 a d-dimensional (F;);>o-Brownian motion.

Given a time-interval / = [0,7] or [ = [0,+00), weletb: I x R" - R"ando : I x R" —
R™*? be measurable functions which are bounded on bounded subsets of I x R™.

We are interested in the Stochastic Differential Equation

dX; = b(t, Xt)dt + O'(t, Xt)dBt, (SDE)
complemented with the initial condition
Xo=¢, I0)

where £ is an JFp-measurable random variable in R™.
The function b is called the drift of the SDE, and o is the dispersion matrix. The n x n matrix

a(t,x) == o(t,x)o | (t,z)

is called the diffusion matrix.

1 Solution to (SDE)—(IC)

1.1 Notion of solution and associated differential operator

Definition 1.1 (Solution to (SDE)—(IC)). A solution to (SDE)—(IC) is an n-dimensional Ito process
such that, almost surelyl,

t d t
wel, Yief{l,....n}, Xg:gw/ bi(s,Xs)ds+Z/ oa(s, X o)A B,
s=0 k=1 s=0

An important object related with (SDE) is the differential operator L; defined by, for all C?
functions ¢ : R” — R,

L ¢ 1 ¢ 9%¢
Lip(z) = ;bi(t,w)a—wi(x) +3 Z aij(taw)M(w)'

The reason for the importance of this operator is that if (X} )c; is a solution to (SDE), then when
one wants to apply the Ito formula to ¢(X;), one gets

dp(Xs) = Lip(Xe)dt + o (t, Xe)V(X;) - dB.

'Throughout the chapter we systematically work with continuous versions of Ito processes.
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1.2 Existence and uniqueness for globally Lipschitz continuous coefficients

Theorem 1.2 (Ito). Assume that there exists K > 0 such that:
(i) foranyt € I, for any x,y € R", [b(t,z) — b(t,y)| + |o(t,z) — o(t,y)| < K|z —yl;
(ii) foranyt € I, for any x € R", |b(t,x)| + |o(t,z)| < K(1 + |z|).

Then (SDE)—(IC) admits a unique solution”.

Notice that if b and o do not depend on ¢, then the condition (ii) is implied by (i) so it does not

need to be checked.

The proof of Theorem 1.2 can be decomposed in 4 steps, see lecture notes for details.

1. If |¢| € L? and T = [0, T, then (SDE)—(IC) has a unique solution in A2([0, 7): this follows
from a fixed point argument.

2. If |¢| € L2 and I = [0, T], then in fact any solution to (SDE)—~(IC) is in A%([0,T7): this
is an a priori estimate, which follows from the Gronwall Lemma, and therefore proves the
statement of the Theorem if |¢| € L% and I = [0, T).

3. If |¢[ is no longer assumed to be in L2, one may still construct a solution as follows: the
first two steps provide a collection of processes { (X} ):er, € R™} which solve (SDE) with
deterministic (and a fortiori L?) initial condition X% = x. Then setting X;(w) := Xf @) (w)
yields a solution to (SDE)—(IC), and uniqueness follows from the Lipschitz condition.

4. If I = [0, +00), then the extension of the construction is straightforward.

Example: Ornstein—Uhlenbeck process, explicit solution, law at time ¢, limit when ¢t — +o0.

1.3 The case of locally Lipschitz continuous coefficients

Theorem 1.3 (Local existence and uniqueness). Let D be an open subset of R", and assume that
there exists Kp > 0 such that:

(i) foranyt € I, for any x,y € D, |b(t,z) — b(t,y)| + |o(t,z) — o(t,y)| < Kp|z — y|;

(ii) foranyt € I, forany x € D, |b(t,z)| + |o(t,z)| < Kp(1 + |z]|).
Then there exists an Ito process (Xy)ier such that, letting Tp := inf{t € I : X; ¢ D}3, we have,
almost surely,

t t

b(s,XS)ds—ir/ o (s, X,)dB,.

Vi < 1p, Xt:§+/
s s=0

=0
Moreover, if there exists another Ito process (X|)ic1 satisfying the same properties (with exit time
from D denoted by T1},), then almost surely,

D = Tb and Vi <71p, Xi= Xg.

This theorem follows from the combination of Theorem 1.2 and Theorem 2.1, p. 102 in Fried-
man (SDEs vol. 1).

Assume for simplicity that / = [0,400) and that b and o satisfy the assumptions of The-
orem 1.3 on every open ball with radius M, namely D = B(0, M). An important such case is
when b and o do not depend on ¢ and are C'! in . Denoting by 7, the corresponding exit time, we
therefore have the existence and uniqueness of a solution up to the explosion time 7, = sup,; Tas.
There are situations in which 7, is finite, so that X; indeed exploses when ¢ reaches 7, (see the
SDE dX; = %ezxﬁ dt + eXtd B, in the exercise sheet). On the other hand, it is useful to have cri-
teria ensuring that 7, = oo, almost surely, so that existence and uniqueness of a (global-in-time)
solution still holds even if the coefficients of the SDE are not globally Lipschitz continuous. An
example of such a criterion is provided by the next statement.

*Uniqueness is understood here as: the continuous versions of any two solutions are indistinguishable.
If I =[0,T] and X; € D forallt € [0,T], weset7p = T.



Proposition 1.4 (Global existence by Lyapunov function). Assume that I = [0, +00) and that the
assumptions of Theorem 1.3 hold on every open ball D = B(0, M), with corresponding exit time
denoted by Ty;. Assume moreover that there exists a C? function ® : R™ — R such that:
(i) ® >0 and lim)y_, o ®(z) = +00;

(i) E[®(€)] < +oo;

(iii) there exists ¢ > 0 such that for all t > 0, L;®(z) < c®(x).
Then 1, = oo, almost surely (so (SDE)—(IC) has a unique global-in-time solution), and moreover
we have the estimate

Ve>0,  Elp(X:)] < E[B ()]

Proof. Applying Ito’s formula to ®(X;)e™ for t < 7, we get

tATM tATM

e (Ly®(X,) — c®(X,)) ds+ / e o' (s, X,)Vp(X,)-dBs.

P (Xt/\TM) e M = (I)(é')—l-/
s s=0

=0

Since (s,z) +— e~ 0 (s,7)V¢(x) is bounded on the bounded set [0,¢] x B(0, M), we deduce
that the stochastic integral is integrable and has expectation 0. On the other hand, by (iii), the time
integral is almost surely nonpositive. Therefore

E [® (Xinry,) 7] < E[0(€)].

and since t A Ty < t we deduce that
E [(I) (XMTM)] < GCtE[¢(£)]-
We now show that 7y — +00, almost surely. Writing

E [(I) (Xt/\TM)] > E [q> (XTM) ]l{TMSt}] > ‘xl‘gf]\/[q)(:E)P(TM < t),

we deduce that
e“E[®(§)]
inf|x|:M (ID(x) )
Using (i) and (ii) we get that the right-hand side goes to 0 when M — +-o0. This shows that

Tam — +oo and therefore that 7. = sup;; 7ar = +00, almost surely. The final estimate now
follows from Fatou’s Lemma. O

P(ra <t) <

2 Discretisation

See lecture notes for details: Euler—Maruyama scheme, strong error, weak error, computation for
the Ornstein—Uhlenbeck process.
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