Séminaire de Mathématiques Appliquées du CERMICS

3D Scene Understanding from Images

Vincent Lepetit (École des Ponts ParisTech)

3 octobre 2019

3D Scene Understanding from Images

Vincent Lepetit Imagine – LIGM – Ecole des Ponts ENPC

3D Scene Understanding from Images

Old, fundamental problem [Roberts 65, Yakimovsky 73, Ohta 78]

Why It Is Useful

Possible applications:

Robotics – Interaction with the environment

Augmented Reality – Realistic Augmentation

Why It Is Difficult

3D scene understanding, a long-standing problem in computer vision, for many reasons

different chairs have different shapes, materials, ..

Human vision is a (mostly) unconscious process that involves 20% of the brain

reflections

transparency

Why It Is Difficult, Example of Pose

Object pose estimation = estimating the 3D motion (= **a 3D rotation + a 3D translation**) between the object and the camera.

The function from the pixel intensities to the rotation and translation is extremely complex.

Why It Is Difficult, Example of Pose

Object pose estimation = estimating the 3D motion (= **a 3D rotation + a 3D translation**) between the object and the camera.

The function from the pixel intensities to the rotation and translation is extremely complex.

Flexibility of Deep Learning

We can use a Deep Network to approximate any continuous function;

• We can use any loss function as long as it is differentiable to find parameters Θ ;

3D Pose Estimation of Rigid Objects

BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth. Mahdi Rad and Vincent Lepetit. ICCV 2017.

8

3D Pose Estimation of Rigid Objects

Training set: images with known rotations and translations (about 200 images in practice)

Possible Loss Function

Training set

$$(I_i,(R_i,T_i))$$

$$\min_{\Theta} \sum_{i} \operatorname{dist}_{R}(R_{i}, f_{R}(I_{i}; \Theta)) + \lambda \operatorname{dist}_{T}(T_{i}, f_{T}(I_{i}; \Theta))$$

3D Pose Estimation from Correspondences

- Predicting 2D locations from an image is an easier regression task;
- We do not need a representation of the 3D rotation;
- We do not need to balance the rotation and the translation.

We can compute the 3D pose from these 2D locations.

New Loss Function

Training set

$$\min_{\Theta} \sum_{i} \operatorname{dist}(m_i, f(I_i; \Theta)) \ o \ rac{(I_i, (R_i, T_i))}{(I_i, m_i = (m_{i1}, ..., m_{i8}))}$$

Remark

Can we predict which functions are easy to approximate with Deep Networks?

Training the Updater as Data Augmentation

3D hand pose estimation and tracking

Training a Feedback Loop for Hand Pose Estimation. *Markus Oberweger, Paul Wohlhart, and Vincent Lepetit.* ICCV'15. Oral

3D Pose Estimation and 3D Model Retrieval for Objects in the Wild. Alexander Grabner, Peter M. Roth, and Vincent Lepetit. CVPR 2018.

ShapeNet

Location Fields

Flexibility of Deep Learning

We can use a Deep Network to approximate any continuous function;

• We can use any loss function as long as it is differentiable to find parameters θ ;

Learning the Descriptors

Room Layout

Need for Training Data...

Examples of training data from the Pix3D dataset

What can we do when there is no annotated training data?

How can we automatically learn new objects?

Learning to Predict Depth

$$\min_{\Theta} \sum_{i} \operatorname{dist}(D_{i}, f(I_{i}; \Theta))$$

Learning to Predict Depth, Normals, Object Contours

Depth, Normals, Contours Prediction from RGB

Our Solution

 \forall pixel location x Corrected Prediction $(x) = \text{Prediction}(x + g(\text{Prediction}; \Theta)(x))$

PhD Students

Giorgia Pitteri

Hugo Germain

Michael Ramamonjisoa

Yuming Du

Qualcomm

Thanks for listening!

Questions?

Learning Semantic Segmentation with Less Training Data

Supervised Learning

Learning with Geometric Constraints

Ground Truth

Learning Semantic Segmentation with Less Training Data

Geometric Constraints

Geometric Constraints as Unsupervised Learning

loss term: cross-entropy(Segmenter $(I_1)[\mathbf{m}_1]$, Segmenter $(I_2)[\mathbf{m}_2]$)

Casting Geometric Constraints in Semantic Segmentation as Semi-Supervised Learning

Supplementary Material

Paper Index: 5701

