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3D Scene Understanding from Images

Old, fundamental problem [Roberts 65, Yakimovsky 73, Ohta 78]
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Why It Is Useful

Possible applications:

Robotics — Interaction with the Augmented Reality — Realistic
environment Augmentation
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Why [t |s Difficult

3D scene understanding, a long-standing problem in computer vision, for many reasons

different chairs have different

shapes, materials, ..
3D to 2D projection

illumination effects

Visual cortex

Human vision is a (mostly)
unconscious process that

involves 20% of the brain occlusions

& reflections transparency




Why It |s Difficult, Example of Pose

Object pose estimation = estimating the 3D motion (= a 3D rotation + a 3D translation) between the
object and the camera.

The function from the pixel intensities to the rotation and translation is extremely complex.
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Flexibility of Deep Learning

We can use a Deep Network to approximate any continuous function;

X Deep Network f(x; 0) O

We can use any loss function as long as it is differentiable to find parameters 0;




3D Pose Estimation of Rigid Objects

—

BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses
of Challenging Objects without Using Depth. Mahdi Rad and Vincent Lepetit. ICCV 2017.
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3D Pose Estimation of Rigid Objects
Emaay

e

Training set: images with known

rotations and translations
(about 200 images in practice)

Predictor
CNN

Pose Input Image
| g I

(3D Rotation and
Translation)




Possible Loss Function
(L;, (R;, T3))

mén Z diStR(Ri, fR(IZ'; @)) + )\diStT(Ti, fT(IfL‘; @))

Training set
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3D Pose Estimation from Correspondences

Predicting 2D locations from an image is an
easier regression task;

» We do not need a representation of the 3D
rotation:;

« We do not need to balance the rotation and
the translation.

We can compute the 3D pose from these 2D

locations. T
& Camera center




New Loss Function Training st




Remark

Can we predict which functions are easy to
approximate with Deep Networks?




OpenGL

Predictor
CNN

Synthesized Image

Input Image




OpenGL

Predictor
CNN

Synthesized Image

Input Image

Updater
CNN

Pose Update




OpenGL

Predictor
CNN

Synthesized Image

Input Image

Updater
CNN

Pose Update




Training the Updater as Data Augmentation

Ground Truth
Pose for
Training Image
+ random
DeltaPose

OpenGL

Synthesized Image

Input Image

Updater
pCNN — DeltaPose

Pose Update
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A Pose (vector)

Predictor
CNN

Pose (vector)

Synthesized Image

Input Image

Updater
CNN

L
We train a CNN

to predict
updates for
the pose.

Pose Update




3D hand pose estimation
and tracking

Training a Feedback Loop for Hand Pose Estimation. Markus Oberweger, Paul Wohlhart, and
Vincent Lepetit. ICCV'15. Oral
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3D Pose Retrieval for Object Categories




3D Pose Retrieval for Object Categories

3D Pose Estimation and 3D Model Retrieval for Objects in the Wild. Alexander
Grabner, Peter M. Roth, and Vincent Lepetit. CVPR 2018.




3D Pose Retrieval for Object Categories

— pose predictor

=» 3D pose ?
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3D Pose Retrieval for Object Categories

2D Projections predictor
+ Size predictor

(length,
width,
height) of
object’s
bounding
box

PnP >

length

height

width

3D pose +
size of the
object’s
bounding
o]0
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3D Model Retrieval for Object Categories
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3D Model Retrieval for Object Categories




|_ocation Fields

Image

LF (X)

LF (Y)

LF (Z)
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Flexibility of Deep Learning

We can use a Deep Network to approximate any continuous function;

X Deep Network f(x; 0) O

We can use any loss function as long as it is differentiable to find parameters 0;




Learning the Descriptors

— Descriptor CNN =—> | -

Descriptor CNN =>

}

= Descriptor CNN

= Descriptor CNN > | .
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Need for Training Data...

Examples of training data from the Pix3D dataset
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How can we automatically learn new objects?
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Learning to Predict Depth

Deep Network

m(gn Z dist(D;, f(I;;©))
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Learning to Predict Depth, Normals, Object Contours

|

constraint,

Deep Network

ming ) . dist (D, N;, Ci)
Aiconstrainty (D
Agconstraints (D

constraintse

Ecole des Ponts
ParisTech




Depth, Normals, Contours Prediction from RGB
| 9
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Our Solution

: prediction
1 ground truth
corrected prediction

V pixel location z Corrected Prediction(x) = Prediction(z + g(Prediction; ©)(x))
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Thanks for listening!

Questions?




Learning Semantic Segmentation with
Less Training Data

Learning with Geometric Ground Truth
Constraints

Supervised Learning
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Learning Semantic Segmentation with
Less Training Data
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DeepLabV3+ trained DeepLabV3+ trained
supervised with S4-Net

A
AVA
A'A
TAVAVAVA




Geometric Constraints

These two pixels should have the same labels




Geometric Constraints as Unsupervised Learning

These two pixels should have the same labels

loss term: cross-entropy(Segmenter(/;)|[m1], Segmenter (/)| ms])




Casting Geometric Constraints in Semantic
Segmentation as Semi-Supervised Learning
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