Séminaire de Mathématiques Appliquées du CERMICS

ParisTech

Models for thin prestrained structures

Annie Raoult (Université Paris Descartes)
24 juin 2019

MODELS FOR THIN PRESTRAINED STRUCTURES

Annie Raoult,
Laboratoire MAP5, Université Paris Descartes, France

Focus

1. HIERARCHY OF MODELS FOR THIN ELASTIC STRUCTURES
2. MIX POINT 1 WITH A "PRESTRAINED" ASSUMPTION

1. HIERARCHY OF MODELS FOR THIN ELASTIC STRUCTURES

Membrane, plate, von Kármán,...
Sort the models in a hierarchy. In terms of?

- either the external world action (load magnitude, boundary conditions),
- or, equivalently, the internal energy of the structure.

Tool? thickness $h \rightarrow 0$, identify limit models.
Largely understood in a usual setting: the elastic energy density is $\min (0)$ on rotations, Friesecke, James \& Müller (2002, 2006), Le Dret \& R. (1995), Fox, R. \& Simo (1993). Some regimes not yet resolved.
2. MIX POINT 1 WITH A "PRESTRAINED" ASSUMPTION

The elastic energy density is not $\min (0)$ on rotations.

"PRESTRAINED" ASSUMPTION

A body deforms in $\mathbb{R}^{3}, \Phi: \Omega \mapsto \mathbb{R}^{3}$,

$\nabla \phi(x) \in m_{3}^{>}$

Usually:

$$
\begin{aligned}
& I(\Phi)=\int_{\Omega} W(\nabla \Phi(x)) \mathrm{d} x, \quad W: \mathbb{M}_{3}^{>} \mapsto \mathbb{R}^{+} \text {stored energy density, } \\
& \mathbb{M}_{3}^{>}:=\left\{F \in \mathbb{M}_{3} ; \operatorname{det} F>0\right\}
\end{aligned}
$$

$W(\mathrm{Id})=0$ and $W(F)=0$ on $\mathrm{SO}(3), T_{R}(\mathrm{Id})=D W(\mathrm{Id})=0, \Omega$ natural state.
T_{R} : First PK stress tensor.
Heterogeneity can be added still with $W(x, \mathrm{Id})=0, T_{R}(x, \mathrm{Id})=0$.
Prestrain: Formally, a specific case of inhomogeneity assumption.

$$
I(\Phi)=\int_{\Omega} W\left(\nabla \Phi(x) K^{-1}(x)\right) \mathrm{d} x \quad \text { where } \quad K(x) \in \mathbb{S}_{3}^{>}
$$

and as above, $W(\mathrm{ld})=0$ and $W(\cdot)=0$ on $\mathrm{SO}(3)$, left- $\mathrm{SO}(3)$ invariant.

Prestrain (cont'd): We defined

$$
I(\Phi)=\int_{\Omega} W\left(\nabla \Phi(x) K^{-1}(x)\right) \mathrm{d} x, \quad W \geq 0, W(\cdot)=0 \text { on } \mathrm{SO}(3)
$$

In other words,

$$
\begin{aligned}
& I(\Phi)=\int_{\Omega} Z(x, \nabla \Phi(x)) \mathrm{d} x \text { where the space-dependent stored energy density } \\
& \qquad Z(x, F):=W\left(F K^{-1}(x)\right), \operatorname{det} F>0, \text { satisfies } \\
& Z(x, F)=0 \text { for } F K^{-1}(x) \in \mathrm{SO}(3), \text { or equivalently, } F^{T} F=K^{2}(x)=: G(x)
\end{aligned}
$$

First PK stress tensor at $x: T_{R}(x, F)=D_{F} Z(x, F)=D W\left(F K^{-1}(x)\right) K^{-1}(x)$,

$$
T_{R}(x, F)=0 \text { for } F^{T} F=G(x)
$$

Find a stress-free configuration? Means $\Phi: \Omega \mapsto \mathbb{R}^{3}$ such that

$$
(\nabla \Phi(x))^{T} \nabla \Phi(x)=G(x) \quad \forall x \in \Omega, \text { or a.e. } \quad \text { Exists? }
$$

Why such energy densities? Allow to model situations where
for any $x \in \Omega$, the material aims at reaching a prescribed metric $\mathrm{G}(\mathrm{x})$,

$$
(\nabla \Phi(x))^{T} \nabla \Phi(x)=G(x)
$$

IF realized, then the changes of lengths between material points along a deformation Φ follow G.

See: Lewicka \& Pakzad (2011), Bhattacharya, Lewicka \& Schaffner (2016), Efrati, Sharon, Klein, Kupferman and coauthors (2007, ...).

In mind: growth-induced changes of target lengths, differential shrinking or swelling of materials (responsive gels).

Klein, Efrati, Sharon experiment, Science (2007)
Shrinking by a different ratio $\eta(r)$ at each radius r both in the radial and the azimuthal directions.
Target metric of this initially planar structure:
$\frac{\text { Hot Bath }}{\text { Aclivation" of the metric }}$

$$
g(r)=\left[\begin{array}{cc}
\eta^{2}(r) & 0 \\
0 & r^{2} \eta^{2}(r)
\end{array}\right]
$$

The initially planar sheet aims at deforming in a surface in \mathbb{R}^{3} whose curvature is encoded in $g(r)$ (Gauss Egregium theorem).

The structure deforms in space not because of loads, or boundary conditions, but because it has to accommodate lengths (and thickness).

Kim, Hanna, Byun, Santangelo, Hayward experiment, Science (2012)

Photopatterning of polymer films

Remark: In both examples, the structures are thin. Of importance also for living tissues (leaves, skin).

NATURAL QUESTION: Rigorous derivation of models for prestrained thin structures from prestrained 3d models
Back to 3d: basic problem on a 3d-domain Ω. Let $G(x) \in \mathbb{S}_{3}$ be given (smooth). Can we find

$$
\Phi: \Omega \subset \mathbb{R}^{3} \mapsto \mathbb{R}^{3},(\nabla \Phi(x))^{T} \nabla \Phi(x)=G(x), \operatorname{det} \nabla \Phi(x)>0 ?
$$

- if $G(x)=$ Id, then $\Phi(x)=Q x$ with $Q \in \mathrm{SO}(3)$ (Liouville),
- arbitrary G : yes iff $\mathscr{R}=0, G$ said flat, where

$$
\begin{aligned}
& \mathscr{R}_{q i j k}=\partial_{j} \Gamma_{i k q}-\partial_{k} \Gamma_{i j q}+\Gamma_{i j}^{p} \Gamma_{k q p}-\Gamma_{i k}^{p} \Gamma_{j q p}, " \text { six" entries, } \\
& 2 \Gamma_{i j q}=\partial_{j} g_{i q}+\partial_{i} g_{j q}-\partial_{q} g_{i j}, \Gamma_{i j}^{p}=g^{p q} \Gamma_{i j q},\left(g^{p q}\right)=G^{-1} .
\end{aligned}
$$

HIERARCHY A hierarchy is known when $G=\mathrm{ld}$.
How does an arbitrary G act on the hierarchy?
Answer: through blocks of entries of \mathscr{R}.
Today: no x_{3} dependency, $G(\bar{x})=K^{2}(\bar{x})$. See: LP, BLS, Lewicka, R. \& Ricciotti (2017), Lewicka \& R. (2018).

Problem setting: cylindrical bodies with thickness h.

$$
\begin{gathered}
\left.I^{h}(\Phi)=\frac{1}{h} \int_{\Omega^{h}} W\left(\nabla \Phi(x) K^{-1}(\bar{x})\right) \mathrm{d} x, \Omega^{h}=\omega \times\right]-\frac{h}{2}, \frac{h}{2}[, \\
\quad \text { Change of variables } \\
\left.I^{h}(\Phi)=\int_{\Omega} W\left(\nabla_{h} \Phi(x) K^{-1}(\bar{x})\right) \mathrm{d} x, \Omega=\omega \times\right]-\frac{1}{2}, \frac{1}{2}[, \\
\nabla_{h} \Phi=\left(\partial_{1} \Phi, \partial_{2} \Phi, \frac{1}{h} \partial_{3} \Phi\right) .
\end{gathered}
$$

Limit behavior or infimizers? Magnitude of I^{h} ?

$$
I^{h}(\Phi)=\int_{\Omega} W\left(\nabla_{h} \Phi(x) K^{-1}(\bar{x})\right) \mathrm{d} x, \quad \nabla_{h} \Phi=\left(\partial_{1} \Phi, \partial_{2} \Phi, \frac{1}{h} \partial_{3} \Phi\right) .
$$

Order 0 model: Generalized membrane model
Expected that " Φ^{h} converges to some Φ with some lim. behavior for $\frac{1}{h} \partial_{3} \Phi^{h}$ ". Natural to define

$$
W_{0}(\bar{x}, \bar{F}):=\min \left\{W\left([\bar{F} \mid b] K^{-1}(\bar{x})\right) ; b \in \mathbb{R}^{3}\right\} \text { for } \bar{F} \in \mathbb{M}_{3,2}
$$

Then,

$$
\begin{aligned}
& I^{h} \xrightarrow{\Gamma-L^{p}(\Omega)} I_{0} \quad \text { "effectively" defined on } W^{1, p}\left(\omega ; \mathbb{R}^{3}\right), \\
& \forall \Phi=\varphi \in W^{1, p}\left(\omega ; \mathbb{R}^{3}\right), I_{0}(\varphi)=\int_{\omega} Q W_{0}(\bar{x}, \bar{\nabla} \varphi(\bar{x})) \mathrm{d} \bar{x}
\end{aligned}
$$

Question: $\min I_{0}$? Minimizers? First, when does $W_{0}(\bar{x}, \bar{F})=0$?

When does $W_{0}(\bar{x}, \bar{F})=0$? Recall $W\left(F K^{-1}(\bar{x})\right)=0 \Leftrightarrow F^{T} F(\bar{x})=G(\bar{x})$.

$$
\text { Then, } \quad W_{0}(\bar{x}, \bar{F}):=\min _{b} W\left([\bar{F} \mid b] K^{-1}(\bar{x})\right)=0
$$

when

$$
\begin{gathered}
\exists b \in \mathbb{R}^{3},[\bar{F} \mid b]^{T}[\bar{F} \mid b]=G(\bar{x}), \\
\text { i.e., }\left[\begin{array}{cc}
\bar{F}^{T} \bar{F} & \bar{F}^{T} b \\
b^{T} \bar{F} & |b|^{2}
\end{array}\right]=G(\bar{x}), \text { i.e., } \bar{F}^{T} \bar{F}=G_{2 \times 2}(\bar{x}) .
\end{gathered}
$$

Indeed, complete \bar{F} with b s.t.

$$
b \cdot f_{1}=g_{13}(\bar{x}), b \cdot f_{2}=g_{23}(\bar{x}),|b|^{2}=g_{33}(\bar{x}), \operatorname{det}[\bar{F} \mid b]>0 .
$$

Second, consequence on $Q W_{0}$?
Pipkin's results and extensions: write $W_{0}(F)=\tilde{W}_{0}\left(F^{T} F\right)$,

$$
Q W_{0}(\bar{x}, \bar{F}) \leq \inf \left\{\tilde{W}_{0}\left(\bar{x}, \bar{F}^{T} \bar{F}+S\right) ; S \in \mathbb{S}_{2}^{+}\right\}
$$

Consequence: $Q W_{0}(\bar{x}, \bar{F})=0$ for any \bar{F} s.t. $\bar{F}^{T} \bar{F} \leq G_{2 \times 2}(\bar{x})$,

Third, consequence on the mappings?

$$
I_{0}(\varphi)=0 \text { for } \varphi \in W^{1, p}\left(\omega, \mathbb{R}^{3}\right),(\bar{\nabla} \varphi)^{T} \bar{\nabla} \varphi \leq G_{2 \times 2}
$$

that are the short maps.
Remark: one of the rare instances when a result on quasiconvex envelopes is obtained algebraically.

Is the obtained zero-order model sound?

- with loads (of adequate magnitude) and boundary conditions, then "yes" (contains some information).
- we decided: no loads, no B.C. All short maps make I_{0} equal to 0 (min).

How many short maps?

- arbitrary $G_{2 \times 2}$,

$$
\bar{\nabla} \varphi^{T} \bar{\nabla} \varphi=G_{2 \times 2} \text { is possible! (isometric immersion) }
$$

Nash-Kuiper circa 1954, with C^{1}-regularity, not C^{2},

- and the "really short" maps.

Comments:

- totally different from the $3 d \mapsto 3 d$ framework,
- Conti, Delellis \& Szekelyhidi (2010) proved $C^{1, \alpha}$-regularity $\alpha<\frac{1}{7}$, Delellis, Inauen \& Szekelyhidi (2015), $\alpha<\frac{1}{5}$,
- Nirenberg (1953): smooth iso. immersion for $G_{2 \times 2}$ with $\mathscr{K}>0$, Poznyak \& Shikin (1995): $\mathscr{K}<0$.
- Conti \& Maggi, Pakzad, Hornung \& Velc̆ić, Olbermann, ...

Footnote: Isometric immersion of the flat torus into $\mathbb{R}^{3}, \mathscr{K}=0$, Hevea project.

Order 2 model: Generalized bending model

From now on, $W(\cdot) \geq C \operatorname{dist}^{2}(\cdot, \mathrm{SO}(3))$.
Usual case $K=I d$. Usual bending model.
For $F^{\sharp} \in \mathbb{M}_{2}$, let $W_{2}\left(F^{\sharp}\right)=\min \left\{D^{2} W(\mathrm{Id})(F, F) ; F \in \mathbb{M}_{3}, F_{2 \times 2}=F^{\sharp}\right\}$,
$\frac{I^{h}}{h^{2}} \xrightarrow{\Gamma-H^{1}(\Omega)} I_{2}, I_{2}(\Phi)=\left\{\begin{array}{l}\frac{1}{4!} \int_{\omega} W_{2}\left(\left(\bar{\nabla} \varphi^{T} \bar{\nabla} n\right)(\bar{x})\right) \mathrm{d} \bar{x}, \Phi=\varphi \in H^{2}\left(\omega ; \mathbb{R}^{3}\right), \text { iso }, \\ +\infty \text { otherwise. }\end{array}\right.$
iso: $\left|\partial_{1} \varphi\right|=1,\left|\partial_{2} \varphi\right|=1, \partial_{1} \varphi \cdot \partial_{2} \varphi=0, \bar{\nabla} \varphi^{\top} \bar{\nabla} n$: surface curvature tensor (symmetric)
Fox, R. \& Simo, Friesecke, James \& Müller, Pantz
Makes crucial use of extensions of the quantitative rigid estimate
$>$ on a given domain $\Omega, \exists C(\Omega)>0$,

$$
\forall \Phi \in H^{\mathbf{1}}\left(\Omega ; \mathbb{R}^{\mathbf{3}}\right), \exists R \in \operatorname{SO}(3),\|\nabla \Phi-R\|_{L^{\mathbf{2}}(\Omega)} \leq C(\Omega) \operatorname{dist}(\nabla \Phi, \mathrm{SO}(3))_{L^{\mathbf{2}}(\Omega)}
$$

Constant C invariant for translated domains or homothetic domains, but not when goes to 0 .

- on slender domains $\left.\Omega^{h}=\omega \times\right]-\frac{h}{2}, \frac{h}{2}[$, or alternatively on $\Omega=\omega \times]-\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{2}}$ [with ∇_{h} : roughly speaking, $\exists c(\omega)>0$,

$$
\forall \Phi \in H^{\mathbf{1}}\left(\Omega ; \mathbb{R}^{\mathbf{3}}\right), \exists R: \omega \mapsto \operatorname{SO}(3),\left\{\begin{array}{l}
\left\|\nabla_{h} \Phi-R\right\|_{L^{\mathbf{2}}(\Omega)} \leq c(\omega)\left\|\operatorname{dist}\left(\nabla_{h} \Phi, \operatorname{SO}(3)\right)\right\|_{L^{\mathbf{2}}(\Omega)} \\
\|\bar{\nabla} R\|_{L^{\mathbf{2}}(\omega)} \leq \frac{c(\omega)}{h}\left\|\operatorname{dist}\left(\nabla_{h} \Phi, \operatorname{SO}(3)\right)\right\|_{L^{\mathbf{2}}(\Omega)}
\end{array}\right.
$$

Obviously,

$$
I_{2}(\varphi)=0 \text { for } \varphi: \omega \mapsto \mathbb{R}^{3} \text { isometry and null curvature tensor (first form }
$$ equal to id and second form equal to 0$): ~ \varphi=R(\bar{x}, 0)+c, R \in \mathrm{SO}(3)$.

Back to $G(\bar{x})$. The infimum energy magnitude is smaller than h^{0}. Can it be of order 2 "as usual"?

$$
\text { For } \frac{\inf I^{h}}{h^{2}} \text { to converge to a finite value, }
$$

there must exist a $H^{2}(\omega)$-regular isometric immersion of $G_{2 \times 2}$.

Which object to work on?

- usual bending: 2nd fundamental form $(\bar{\nabla} \varphi)^{T} \bar{\nabla} n, 2 \times 2$, symmetric,
- here: $(\bar{\nabla} \varphi)^{T} \bar{\nabla} b, 2 \times 2, b$ given at level 0 in terms of a $G_{2 \times 2}$-isometry φ by

$$
[\bar{\nabla} \varphi \mid b]^{T}[\bar{\nabla} \varphi \mid b]=G, \quad \operatorname{det}[\bar{\nabla} \varphi \mid b]>0
$$

As before, $D^{2} W$ enters the picture, $D^{2} W(\mathrm{Id})(H)^{(2)}=D^{2} W(\mathrm{Id})(\operatorname{sym} H)^{(2)}$.
For $H^{\sharp}, 2 \times 2$ matrix, define

$$
W_{2}\left(\bar{x}, H^{\sharp}\right)=\min \left\{D^{2} W(I d)\left(K^{-1}(\bar{x}) H K^{-1}(\bar{x})\right)^{(2)}, H \in \mathbb{M}_{3}, H_{2 \times 2}=H^{\sharp}\right\} .
$$

Again, W_{2} acts on $\operatorname{sym}\left(H^{\sharp}\right)$.
$\frac{I^{h}}{\bar{h}^{2}} \xrightarrow{\Gamma-H^{1}(\Omega)} I_{2}, I_{2}(\Phi)=\left\{\begin{array}{l}\frac{1}{4!} \int_{\omega} W_{2}\left(\bar{x},\left(\bar{\nabla} \varphi^{T} \bar{\nabla} b\right)(\bar{x})\right) d \bar{x}, \Phi=\varphi \in H^{2}\left(\omega ; \mathbb{R}^{3}\right), \text { iso }, \\ +\infty \text { otherwise } .\end{array}\right.$

$$
I_{2}(\Phi)=\frac{1}{4!} \int_{\omega} W_{2}\left(\bar{x},\left(\bar{\nabla} \varphi^{T} \bar{\nabla} b\right)(\bar{x})\right) d \bar{x}, \Phi=\varphi \in H^{2}\left(\omega ; \mathbb{R}^{3}\right), \text { iso. }
$$

If the \min is 0 , further information should be sought for.

$$
\min I_{2}=0 \Leftrightarrow \exists \varphi \in H^{2}\left(\omega ; \mathbb{R}^{3}\right), \bar{\nabla} \varphi^{T} \bar{\nabla} b \text { skew, } \bar{\nabla} \varphi^{T} \bar{\nabla} \varphi=G_{2 \times 2} .
$$

- if exists, then unique, because its 2nd fundamental form, in addition to its first fundamental form, can be expressed in terms of G. Indeed, b reads in the basis $\left(\partial_{1} \varphi, \partial_{2} \varphi, n\right)$ as

$$
b=-\left(G^{33}\right)^{-1}\left(G^{13} \partial_{1} \varphi+G^{23} \partial_{2} \varphi\right)+\left(G^{33}\right)^{-\frac{1}{2}} n, \quad G^{-1}=G^{i j}
$$

- computations using the decomposition of b show that:

$$
\min I_{2}=0 \Leftrightarrow \mathscr{R}_{1212}=\mathscr{R}_{1213}=\mathscr{R}_{1223}=0
$$

which does not mean that $\mathscr{R}=0$: there may be some locking in the 3d-body that does not show up at the bending level.

Order 4 model: Generalized von Kármán enegy
Start from $\min _{2}=0$, i.e. $\mathscr{R}_{1212}=\mathscr{R}_{1213}=\mathscr{R}_{1223}=0$,

$$
\text { i.e. } \exists!\varphi \in H^{2}\left(\omega ; \mathbb{R}^{3}\right), \bar{\nabla} \varphi^{T} \bar{\nabla} \varphi=G_{2 \times 2} \text { and } \bar{\nabla} \varphi^{T} \bar{\nabla} b \text { skew. }
$$

First finding. Then $\inf I^{h}$ is indeed smaller: $\inf I^{h} \leq C h^{4}$.
Hint: Choose simply $\Phi^{h}\left(\bar{x}, x_{3}\right)=\varphi(\bar{x})+h x_{3} b(\bar{x})+\frac{h^{2} x_{3}^{2}}{2} d(\bar{x})$ with d as follows.
Letting $Q=[\bar{\nabla} \varphi \mid b], Q K^{-1} \in \mathrm{SO}(3), B=[\bar{\nabla} b \mid d]$,

$$
\begin{gathered}
\nabla_{h} \Phi^{h} K^{-1}\left(\bar{x}, x_{3}\right)=\left(Q K^{-1}\right)\left(\mathrm{Id}+h x_{3} K^{-1} Q^{T} B K^{-1}+h^{2} x_{3}^{2} T\right) \\
W\left(\nabla_{h} \Phi^{h} K^{-1}\right)=W\left(\mathrm{Id}+h x_{3} K^{-1} Q^{T} B K^{-1}+h^{2} x_{3}^{2} T\right)
\end{gathered}
$$

Make $Q^{T} B=\left(\begin{array}{cc}\bar{\nabla} \varphi^{T} \bar{\nabla} b & \bar{\nabla} \varphi^{T} d \\ b^{T} \bar{\nabla} b & b \cdot d\end{array}\right)$ skew (to kill the h^{2} term in $\int D_{2} W(\mathrm{ld})$).
First block is skew, then choose $d: Q^{T} d=\left(-b \cdot \partial_{1} b,-b \cdot \partial_{2} b, 0\right)^{T}$.

Limit model. We already know that $\Phi^{h} \xrightarrow{H^{1}} \varphi, \frac{1}{h} \partial_{3} \Phi^{h} \xrightarrow{L^{2}} b$. Now,

$$
\begin{aligned}
& u^{h}(\bar{x}):=\frac{1}{h} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\Phi^{h}-\left(\varphi+h x_{3} b\right)\right) \mathrm{d} x_{3} \xrightarrow{H^{1}} u^{1}, \operatorname{sym}\left(\bar{\nabla} \varphi^{T} \bar{\nabla} u^{1}\right)=0 \\
& \begin{aligned}
\frac{1}{h} \operatorname{sym}\left(\bar{\nabla} \varphi^{T} \bar{\nabla} u^{h}\right) \rightarrow & e^{2} \in L^{2}\left(\omega ; \mathbb{S}_{2}\right)
\end{aligned} \\
& I_{4}\left(u^{1}, e^{2}\right) \\
& \\
& =\int_{\omega}\left|e^{2}+\frac{1}{2}\left(\bar{\nabla} u^{1}\right)^{T} \bar{\nabla} u^{1}+\frac{1}{4!} \bar{\nabla} b^{T} \bar{\nabla} b\right|^{2} \\
& \\
& +\int_{\omega}\left|\bar{\nabla} \varphi^{T} \bar{\nabla} p^{1}+\left(\bar{\nabla} u^{1}\right)^{T} \bar{\nabla} b\right|^{2} \\
& \\
& +\int_{\omega}\left|\operatorname{sym}\left(\bar{\nabla} \varphi^{T} \bar{\nabla} d\right)+\bar{\nabla} b^{T} \bar{\nabla} b\right|^{2}
\end{aligned}
$$

where $p^{1}\left(u^{1}\right)$.
Link with usual case:

$$
\begin{aligned}
\partial_{\alpha} u_{\beta}^{1}+\partial_{\beta} u_{\alpha}^{1} & =0 \\
e^{2}+\frac{1}{2}\left(\bar{\nabla} u^{1}\right)^{T} \bar{\nabla} u^{1} & =\frac{1}{2}\left(\partial_{\alpha} u_{\beta}^{2}+\partial_{\beta} u_{\alpha}^{2}+\partial_{\alpha} u_{3}^{1} \partial_{\beta} u_{3}^{1}\right) \\
\bar{\nabla} \varphi^{T} \bar{\nabla} p^{1} & =-\partial_{\alpha \beta} u_{3}^{1} .
\end{aligned}
$$

Can be interpreted as

$$
\begin{aligned}
I_{4}\left(u^{1}, e^{2}\right) & =\int_{\omega} \mid \text { change in metric departing from }\left.\varphi\right|^{2} \\
& +\int_{\omega} \mid \text { change in curvature departing from }\left.\varphi\right|^{2} \\
& +\int_{\omega}\left|\operatorname{sym}\left(\bar{\nabla} \varphi^{T} \bar{\nabla} d\right)+\bar{\nabla} b^{T} \bar{\nabla} b\right|^{2} .
\end{aligned}
$$

Remark: the third term is constant and can be written as

$$
\operatorname{sym}\left(\bar{\nabla} \varphi^{T} \bar{\nabla} d+\bar{\nabla} b^{T} \bar{\nabla} b\right)=\left[\begin{array}{ll}
\mathscr{R}_{1313} & \mathscr{R}_{1323} \\
\mathscr{R}_{1323} & \mathscr{R}_{2323}
\end{array}\right]=[\text { remaining entries }] .
$$

Therefore, the third term is 0 iff $\mathscr{R}=0$, i.e, the $3 d$ metric is flat. All minima including those of the 3 d -problem are 0 .

The story ends. But,...

For the story to go on: Take G fully dependent on $x=\left(x_{1}, x_{2}, x_{3}\right)$.

- φ isometry w.r.t $G_{2 \times 2}$ is replaced by isometry w.r.t $G_{2 \times 2}(\bar{x}, 0)$,
- $\partial_{3} G, \partial_{33} G \ldots$ are to be added in the limit energies.

Change in the bending model:

$$
I_{2}(\Phi)=\frac{1}{4!} \int_{\omega} W_{2}\left(\bar{x},\left[\left(\bar{\nabla} \varphi^{T} \bar{\nabla} b\right)(\bar{x})\right]_{\text {sym }}-\frac{1}{2} \partial_{3} G_{2 \times 2}(\bar{x}, 0)\right) d \bar{x}
$$

minimizes to 0 if

$$
\mathscr{R}_{1212}(\bar{x}, 0)=\mathscr{R}_{1213}(\bar{x}, 0)=\mathscr{R}_{1223}(\bar{x}, 0)=0 .
$$

Change in the "von Kármàn" model:

$$
\begin{aligned}
I_{4}\left(u^{1}, e^{2}\right) & =\int_{\omega}\left|e^{2}+\frac{1}{2}\left(\bar{\nabla} u^{1}\right)^{T} \bar{\nabla} u^{1}+\frac{1}{4!} \bar{\nabla} b^{T} \bar{\nabla} b-\frac{1}{2 \times 4!} \partial_{33} G_{2 \times 2}(\bar{x}, 0)\right|^{2} \\
& +\int_{\omega}\left|\bar{\nabla} \varphi^{T} \bar{\nabla} p^{1}+\left(\bar{\nabla} u^{1}\right)^{T} \bar{\nabla} b\right|^{2}+\int_{\omega}\left|\left[\begin{array}{ll}
\mathscr{R}_{1313} & \mathscr{R}_{1323} \\
\mathscr{R}_{1323} & \mathscr{R}_{2323}
\end{array}\right](\bar{x}, 0)\right|^{2}
\end{aligned}
$$

minimizes to 0 if

$$
\mathscr{R}_{1313}(\bar{x}, 0)=\mathscr{R}_{1323}(\bar{x}, 0)=\mathscr{R}_{2323}(\bar{x}, 0)=0 \text {, i.e., } \mathscr{R}_{i j k l}(\bar{x}, 0) .
$$

Additional comments:

- toy examples for diagonal metrics,
- to learn more: Kupferman \& Solomon (2014), Maor \& Shachar (2018)...
- analytic solving of the isometry condition is rare,
- effective shape designing: still way to work, numerics: S. Venkatarami, J. Gemmer...

