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1. HIERARCHY OF MODELS FOR THIN ELASTIC STRUCTURES

Membrane, plate, von Kármán,...

Sort the models in a hierarchy. In terms of?
I either the external world action (load magnitude, boundary conditions),
I or, equivalently, the internal energy of the structure.

Tool? thickness h! 0, identify limit models.

Largely understood in a usual setting: the elastic energy density is min (0) on
rotations, Friesecke, James & Müller (2002, 2006), Le Dret & R. (1995), Fox,
R. & Simo (1993). Some regimes not yet resolved.

2. MIX POINT 1 WITH A “PRESTRAINED” ASSUMPTION

The elastic energy density is not min (0) on rotations.



“PRESTRAINED” ASSUMPTION

A body deforms in R3, � :⌦ 7! R3,

Usually:

I (�) =

ˆ
⌦
W (—�(x))dx , W : M>

3 7! R+ stored energy density,

M>
3 := {F 2M3;detF > 0}.

W (Id) = 0 and W (F ) = 0 on SO(3), TR(Id) =DW (Id) = 0, ⌦ natural state.
TR : First PK stress tensor.

Heterogeneity can be added still with W (x , Id) = 0,TR(x , Id) = 0.

Prestrain: Formally, a specific case of inhomogeneity assumption.

I (�) =

ˆ
⌦
W (—�(x)K�1(x))dx where K(x) 2 S>3 ,

and as above, W (Id) = 0 and W (·) = 0 on SO(3), left-SO(3) invariant.



Prestrain (cont’d): We defined

I (�) =

ˆ
⌦
W (—�(x)K�1(x))dx , W � 0,W (·) = 0 on SO(3).

In other words,

I (�) =

ˆ
⌦
Z(x ,—�(x))dx where the space-dependent stored energy density

Z(x ,F ) :=W (FK�1(x)),detF > 0, satisfies

Z(x ,F ) = 0 for FK�1(x) 2 SO(3),or equivalently, FT
F = K

2(x) =: G(x).

First PK stress tensor at x : TR(x ,F ) =DFZ(x ,F ) =DW (FK�1(x))K�1(x),

TR(x ,F ) = 0 for FT
F = G(x).

Find a stress-free configuration? Means � :⌦ 7! R3 such that

(—�(x))T—�(x) = G(x) 8x 2⌦, or a.e. Exists?



Why such energy densities? Allow to model situations where
for any x 2⌦, the material aims at reaching a prescribed metric G(x),

(—�(x))T—�(x) = G(x).

IF realized, then the changes of lengths between material points along a
deformation � follow G .

See: Lewicka & Pakzad (2011), Bhattacharya, Lewicka & Schaffner (2016),
Efrati, Sharon, Klein, Kupferman and coauthors (2007, ...).

In mind: growth-induced changes of target lengths, differential shrinking or
swelling of materials (responsive gels).



Klein, Efrati, Sharon experiment, Science (2007)

Shrinking by a different ratio h(r) at
each radius r both in the radial and
the azimuthal directions.
Target metric of this initially planar
structure:

g(r) =


h2(r) 0

0 r
2h2(r)

�

The initially planar sheet aims at deforming in a surface in R3 whose curvature
is encoded in g(r) (Gauss Egregium theorem).

The structure deforms in
space not because of loads,
or boundary conditions, but
because it has to accom-
modate lengths (and thick-
ness).



Kim, Hanna, Byun, Santangelo, Hayward experiment, Science (2012)

Photopatterning of polymer films

Remark: In both examples, the structures are thin. Of importance also for
living tissues (leaves, skin).



NATURAL QUESTION: Rigorous derivation of models for prestrained thin
structures from prestrained 3d models
Back to 3d: basic problem on a 3d-domain ⌦. Let G(x) 2 S>3 be given
(smooth). Can we find

� :⌦⇢ R3 7! R3, (—�(x))T—�(x) = G(x), det—�(x)> 0?

• if G(x) = Id, then �(x) =Qx with Q 2 SO(3) (Liouville),
• arbitrary G : yes iff R = 0, G said flat, where

Rqijk = ∂j�ikq �∂k�ijq +�p
ij
�kqp ��p

ik
�jqp , “six” entries,

2�ijq = ∂jgiq +∂igjq �∂qgij , �
p

ij
= g

pq�ijq , (g
pq) = G

�1.



HIERARCHY A hierarchy is known when G = Id.

How does an arbitrary G act on the hierarchy?
Answer: through blocks of entries of R.

Today: no x3 dependency, G(x̄) = K
2(x̄). See: LP, BLS, Lewicka, R. &

Ricciotti (2017), Lewicka & R. (2018).

Problem setting: cylindrical bodies with thickness h.

I
h(�) = 1

h

´
⌦h W (—�(x)K�1(x̄))dx , ⌦h = w⇥]� h

2 ,
h

2 [,

Change of variables
I
h(�) =

´
⌦W (—h�(x)K

�1(x̄))dx , ⌦= w⇥]� 1
2 ,

1
2 [,

—h�= (∂1�,∂2�,
1
h

∂3�).

Limit behavior or infimizers? Magnitude of I h?



I
h(�) =

ˆ
⌦
W (—h�(x)K

�1(x̄))dx , —h�= (∂1�,∂2�,
1
h

∂3�).

Order 0 model: Generalized membrane model

Expected that “�h converges to some � with some lim. behavior for 1
h

∂3�h”.
Natural to define

W0(x̄ , F̄ ) := min{W
⇣
[F̄ |b]K�1(x̄)

⌘
;b 2 R3} for F̄ 2M3,2.

Then,

I
h ��L

p(⌦)�����! I0 “effectively” defined onW 1,p(w;R3),

8�= j 2W
1,p(w;R3), I0(j) =

ˆ
w
QW0(x̄ , —̄j(x̄))dx̄ .

Question: min I0? Minimizers? First, when does W0(x̄ , F̄ ) = 0?



When does W0(x̄ , F̄ ) = 0? Recall W (FK�1(x̄)) = 0 , F
T
F (x̄) = G(x̄).

Then, W0(x̄ , F̄ ) := min
b

W ([F̄ |b]K�1(x̄)) = 0

when
9b 2 R3, [F̄ |b]T [F̄ |b] = G(x̄),

i .e.,

F̄
T
F̄ F̄

T
b

b
T
F̄ |b|2

�
= G(x̄), i .e., F̄T

F̄ = G2⇥2(x̄).

Indeed, complete F̄ with b s.t.
b · f1 = g13(x̄),b · f2 = g23(x̄), |b|2 = g33(x̄),det[F̄ |b]> 0.

Second, consequence on QW0?
Pipkin’s results and extensions: write W0(F ) = W̃0(FT

F ),

QW0(x̄ , F̄ ) inf{W̃0(x̄ , F̄
T
F̄ +S); S 2 S+2 }.

Consequence: QW0(x̄ , F̄ ) = 0 for any F̄ s.t. F̄
T
F̄  G2⇥2(x̄),



Third, consequence on the mappings?

I0(j) = 0 for j 2W
1,p(w,R3), (—̄j)T —̄j  G2⇥2,

that are the short maps.

Remark: one of the rare instances when a result on quasiconvex envelopes is
obtained algebraically.

Is the obtained zero-order model sound?

I with loads (of adequate magnitude) and boundary conditions, then “yes”
(contains some information).

I we decided: no loads, no B.C. All short maps make I0 equal to 0 (min).

How many short maps?
I arbitrary G2⇥2,

—̄jT —̄j = G2⇥2 is possible! (isometric immersion)

Nash-Kuiper circa 1954, with C
1-regularity, not C

2,
I and the “really short” maps.



Comments:
I totally different from the 3d 7! 3d framework,
I Conti, Delellis & Szekelyhidi (2010) proved C

1,a -regularity a < 1
7 ,

Delellis, Inauen & Szekelyhidi (2015), a < 1
5 ,

I Nirenberg (1953): smooth iso. immersion for G2⇥2 with K > 0, Poznyak
& Shikin (1995): K < 0.

I Conti & Maggi, Pakzad, Hornung & Velc̆ić, Olbermann, ...

Footnote: Isometric immersion of the flat torus into R3, K = 0, Hevea project.



Order 2 model: Generalized bending model

From now on, W (·)� C dist2(·,SO(3)).
Usual case K = Id . Usual bending model.

For F ] 2M2, let W2(F ]) = min{D2
W (Id)(F ,F );F 2M3,F2⇥2 = F

]},

I
h

h2
��H

1(⌦)������! I2, I2(�)=

(
1
4!
´

w W2
�
(—̄jT —̄n)(x̄)

�
dx̄ , �= j 2 H

2(w;R3), iso,

+• otherwise.

iso: |∂1j|= 1, |∂2j|= 1,∂1j ·∂2j = 0, —̄jT —̄n: surface curvature tensor (symmetric)
Fox, R. & Simo, Friesecke, James & Müller, Pantz
Makes crucial use of extensions of the quantitative rigid estimate

I on a given domain ⌦, 9C(⌦)> 0,

8� 2H
1(⌦;R3),9R 2 SO(3)

indep. x
,k—��Rk

L2(⌦)  C(⌦)dist(—�,SO(3))
L2(⌦) .

Constant C invariant for translated domains or homothetic domains, but not when h goes to 0.

I on slender domains ⌦h = w⇥]� h

2 , h2 [, or alternatively on ⌦= w⇥]� 1
2 , 1

2 [ with —h:
roughly speaking, 9c(w)> 0,

8� 2H
1(⌦;R3),9R : w 7! SO(3),

8
<

:
k—h��Rk

L2(⌦)  c(w)kdist(—h�,SO(3))k
L2(⌦) ,

k—̄Rk
L2(w) 

c(w)
h

kdist(—h�,SO(3))k
L2(⌦) .



Obviously,
I2(j) = 0 for j : w 7! R3 isometry and null curvature tensor (first form

equal to id and second form equal to 0): j = R(x̄ ,0)+ c ,R 2 SO(3).

Back to G(x̄). The infimum energy magnitude is smaller than h
0. Can it be

of order 2 “as usual”?

For
inf I h

h2 to converge to a finite value,

there must exist a H
2(w)-regular isometric immersion of G2⇥2.



Which object to work on?
I usual bending: 2nd fundamental form (—̄j)T —̄n, 2⇥2, symmetric,
I here: (—̄j)T —̄b, 2⇥2, b given at level 0 in terms of a G2⇥2-isometry j by

[—̄j|b]T [—̄j|b] = G , det[—̄j|b]> 0.

As before, D2
W enters the picture, D2

W (Id)(H)(2) =D
2
W (Id)(symH)(2).

For H], 2⇥2 matrix, define

W2(x̄ ,H
]) = min{D2

W (Id)(K�1(x̄)HK
�1(x̄))(2), H 2M3, H2⇥2 = H

]}.

Again, W2 acts on sym(H]).

I
h

h2
��H

1(⌦)������! I2, I2(�)=

(
1
4!
´

w W2
�
x̄ ,(—̄jT —̄b)(x̄)

�
dx̄ , �= j 2 H

2(w;R3), iso,
+• otherwise.



I2(�) =
1
4!

ˆ
w
W2

⇣
x̄ ,(—̄jT —̄b)(x̄)

⌘
dx̄ , �= j 2 H

2(w;R3), iso.

If the min is 0, further information should be sought for.

min I2 = 0 ,9j 2 H
2(w;R3), —̄jT —̄b skew, —̄jT —̄j = G2⇥2.

I if exists, then unique, because its 2nd fundamental form, in addition to its
first fundamental form, can be expressed in terms of G . Indeed, b reads
in the basis (∂1j,∂2j,n) as

b =�(G33)�1(G13∂1j +G
23∂2j)+(G33)�

1
2 n, G

�1 = G
ij .

I computations using the decomposition of b show that:

min I2 = 0 , R1212 = R1213 = R1223 = 0

which does not mean that R = 0: there may be some locking in the 3d-body
that does not show up at the bending level.



Order 4 model: Generalized von Kármán enegy

Start from min I2 = 0, i.e. R1212 = R1213 = R1223 = 0,

i.e. 9!j 2 H
2(w;R3), —̄jT —̄j = G2⇥2 and —̄jT —̄b skew.

First finding. Then inf I h is indeed smaller: inf I h  Ch
4.

Hint: Choose simply �h(x̄ ,x3) = j(x̄)+hx3b(x̄)+
h
2
x
2
3

2 d(x̄) with d as follows.

Letting Q = [—̄j|b], QK
�1 2 SO(3), B = [—̄b|d ],

—h�
h
K

�1(x̄ ,x3) = (QK
�1)(Id+hx3K

�1
Q

T
BK

�1+h
2
x
2
3T ),

W (—h�
h
K

�1) =W (Id+hx3K
�1

Q
T
BK

�1+h
2
x
2
3T ).

Make Q
T
B =

✓
—̄jT —̄b —̄jT

d

b
T —̄b b ·d

◆
skew (to kill the h

2 term in
´
D2W (Id)).

First block is skew, then choose d : Q
T
d = (�b ·∂1b,�b ·∂2b,0)T .



Limit model. We already know that �h H
1

! j, 1
h

∂3�h L
2

! b. Now,

u
h(x̄) :=

1
h

ˆ 1
2

� 1
2

⇣
�h�

�
j +hx3b

�⌘
dx3

H
1

! u
1, sym

⇣
—̄jT —̄u

1
⌘
= 0,

1
h

sym
⇣

—̄jT —̄u
h

⌘
! e

2 2 L
2(w;S2),

I4(u
1,e2) =

ˆ
w
|e2+

1
2
(—̄u

1)T —̄u
1+

1
4!

—̄b
T —̄b|2

+

ˆ
w
|—̄jT —̄p

1+(—̄u
1)T —̄b|2

+

ˆ
w
|sym(—̄jT —̄d)+ —̄b

T —̄b|2

where p
1(u1).

Link with usual case:

∂au
1
b +∂bu

1
a = 0

e
2+

1
2
(—̄u

1)T —̄u
1 =

1
2
(∂au

2
b +∂bu

2
a +∂au

1
3∂bu

1
3)

—̄jT —̄p
1 = �∂abu

1
3 .



Can be interpreted as

I4(u
1,e2) =

ˆ
w
|change in metric departing from j|2

+

ˆ
w
|change in curvature departing from j|2

+

ˆ
w
|sym(—̄jT —̄d)+ —̄b

T —̄b|2.

Remark: the third term is constant and can be written as

sym(—̄jT —̄d+ —̄b
T —̄b) =


R1313 R1323
R1323 R2323

�
=

⇥
remaining entries

⇤
.

Therefore, the third term is 0 iff R = 0, i.e, the 3d metric is flat. All minima
including those of the 3d-problem are 0.

The story ends. But,...



For the story to go on: Take G fully dependent on x = (x1,x2,x3).

I j isometry w.r.t G2⇥2 is replaced by isometry w.r.t G2⇥2(x̄ ,0),
I ∂3G , ∂33G . . . are to be added in the limit energies.

Change in the bending model:

I2(�) =
1
4!

ˆ
w
W2

✓
x̄ , [(—̄jT —̄b)(x̄)]sym�

1
2

∂3G2⇥2(x̄ ,0)
◆
dx̄ ,

minimizes to 0 if

R1212(x̄ ,0) = R1213(x̄ ,0) = R1223(x̄ ,0) = 0.

Change in the “von Kármàn” model:

I4(u
1,e2) =

ˆ
w
|e2+

1
2
(—̄u

1)T —̄u
1+

1
4!

—̄b
T —̄b� 1

2⇥4!
∂33G2⇥2(x̄ ,0)|2

+

ˆ
w
|—̄jT —̄p

1+(—̄u
1)T —̄b|2+

ˆ
w

��

R1313 R1323
R1323 R2323

�
(x̄ ,0)

��2

minimizes to 0 if

R1313(x̄ ,0) = R1323(x̄ ,0) = R2323(x̄ ,0) = 0, i .e., Rijkl (x̄ ,0).



Additional comments:
I toy examples for diagonal metrics,
I to learn more: Kupferman & Solomon (2014), Maor & Shachar (2018)...
I analytic solving of the isometry condition is rare,
I effective shape designing: still way to work, numerics: S. Venkatarami, J.

Gemmer...


