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Introduction



GENERIC

(General Equation for Non-Equilibrium
Reversible-Irreversible Coupling)



GENERIC framework

ż = L dE︸︷︷︸
reversible

+ M dS︸ ︷︷ ︸
irrevesible

.

I E,S : Z→ R are energy and entropy functionals,
I dE,dS are appropriate derivatives of E and S;
I L = −LT , M = MT ≥ 0
I L dS = 0, M dE = 0.



Properties

dE(z(t))

dt
= 0,

dS(z(t))

dt
≥ 0.



What can we do with GENERIC

I well-accepted framework in physical community.
I very few study from mathematical perspective: Mielke 2011

Open questions

(1) Can we derive GENERIC from microscopic particle system?

(2) Existence theory for PDEs using GENERIC structure?
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Large deviation principle



Large deviation principle

Abel prize 2007
Toss a coin n times:

Probability of observing n heads = 2−n = exp [−n log 2]
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{Xn} satisfies a large deviation principle with a rate functional I
if

Prob(Xn ≈ x) ≈ exp(−nI(x)) as n→∞.

Property of the rate functional:

I(x) ≥ 0 ∀x ,
I(x) = 0⇒ x is the most likely event.
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Entropy driven systems.



Diffusion: the Fokker-Planck equation

∂tρ = ∆ρ+ div(ρ∇Ψ).

JK01998, Otto2001: Wasserstein gradient flow with respect to
the free energy

MdS := div(ρ∇dS) := gradW dS(ρ), S(ρ) =

∫
(log ρ+ Ψ)ρ,

Steepest descent: minimizing the functional

Kh(ρ) :=
1

2h
W 2

2 (ρ0, ρ) + S(ρ)− S(ρ0).



Microscopic interpretation of the Wasserstein distance

Many-particle system

dXi(t) = −∇Ψ(Xi(t))dt +
√

2dWi(t), i = 1, · · · ,n.

Empirical measure

ρn(t) :=
1
n

n∑
i=1

δXi (t).

Dawson-Gärtner1987: {ρn} satisfies a large deviation principle
with the rate functional

IT (ρ|ρ0) =
1
4

∫ T

0
‖∂tρt − (∆ρ+ div(ρ∇Ψ))‖2∗,ρdt ,

=
1
2

(S(ρT )− S(ρ0)) +
1
4

∫ T

0
(‖∂tρt‖2∗,ρ + ‖dS‖2ρ)dt ,



Theorem

Ih(·|ρ0) ≈ 1
2

Kh(·) as h→ 0,

≈: in the sense of Gamma convergence.

AdamDirrPeletierZimmer(Comm. Math. Phys. 2011): for Ψ ≡ 0
and for small class of probability measures.

DuongLaschosRenger(ESAIM: COCV. 2013): for quite general
Ψ and for much larger class of probability measures.



Energy and entropy driven systems.



The Kramers equation

dQ(t) =
P(t)
m

dt

dP(t) = −∇qV (Q(t))dt︸ ︷︷ ︸
Potential

− γ
m

P(t)dt︸ ︷︷ ︸
Friction

+
√

2γkTdW (t)︸ ︷︷ ︸
Stochastic pertubation

ρ(t ,q,p) = the probability of finding the system at position q,
momentum p at time t .

∂tρ = − divq ρ
p
m

+ divp ρ∇qV + γ divp ρ
p
m

+ γkT ∆pρ.



Kramers equation in GENERIC framework

Introduce an auxiliary variable e:

d
dt

e = γ

∫
R2d

p2

m2 ρ(dqdp)− γθd
m

.

Reformulation of the extended Kramers equation in GENERIC
framework

∂tzt = L(zt ) grad E(zt ) + M(zt ) grad S(zt ),

where

Z = P2(R2d )× R, E(ρ,e) = H(ρ) + e, L = L(ρ,e) =

(
Lρρ 0
0 0

)
,

z = (ρ,e), S(ρ,e) = S(ρ) + e, M = M(ρ,e) = γ

(
Mρρ Mρe
Meρ Mee

)
,(1)



where the operators defining L and M are given, upon applying
them to a vector (ξ, r) at (ρ,e), by

Lρρξ = div ρJ∇ξ, Mρρξ = − divp ρ∇pξ, Mρer = r divp

(
ρ p

m

)
,

Meρξ = −
∫

R2d
p
m · ∇pξ ρ(dqdp), Meer = r

∫
R2d

p2

m2 ρ(dqdp).



Particle system

dQi(t) =
Pi(t)

m
dt

dPi(t) = −∇qV (Qi(t))dt − γ

m
Pi(t)dt +

√
2γkTdWi(t)

Empirical process

ρn(t ,dq,dp) =
1
n

n∑
i=1

δ(Qi (t),Pi (t))(dq,dp).



Theorem (DuongPeletierZohannesZimmer, Nonlinearity
2013)
Assume that the initial data (Qi(0),Pi(0)), i = 1, . . . ,n are
deterministic and chosen such that ρn(0) ⇀ ρ0 for some
ρ0 ∈ P(R2d ). Then the empirical process {ρn} satisfies a
large-deviation principle in the space C([0,T ],P(R2d )), with
good rate function

I(ρ) =


1

4γθ

∫ T

0

∥∥∂tρt − Aτρt
ρt
∥∥2
−1,ρt

dt if ρ ∈ AC([0,T ];P(R2d ))

and ρ|t=0 = ρ0,

+∞ otherwise.



The rate function I can be written in terms of z as

I(z) =


∫ T

0

1
4θ
∥∥∂tzt − L(zt ) grad E(zt )−M(zt ) grad S(zt )

∥∥2
M(zt )−1 dt ,

if z = (ρ,e) ∈ AC([0,T ]; Z) and ρt=0 = ρ0,

+∞ otherwise,

in the sense that

I
(
(ρ,e)

)
=

{
I(ρ) provided t 7→ H(ρt ) + et is constant
+∞ otherwise.



A variational formulation for GENERIC

I(z) = S(z(T ))−S(z(0))+
1
2

∫ T

0

[
‖∂tz−L grad E

∥∥2
M−1+‖ grad S

∥∥2
M

]
dt .

Variational formulation of a GENERIC system:

Given a GENERIC system {Z,E,S,L,M}. A function
z : [0,T ]→ Z is a solution of the GENERIC equation iff
I(z) = 0.



How do we use the variational structure to study multi-scale
problems?



żε = Lε(zε) dEε(zε) + Mε(zε) dSε(zε),

Q: ε→ 0?



Perturbed Hamiltonian system

∂tρε = −1
ε

divqp(ρεJ∇H) + ∆pρε,

where
q,p ∈ R, H(q,p) =

1
2

p2 + V (q).

and V is a double-well potential.

Q: What is the behavior of the system when ε→ 0?



Diffusion on graph: Freidlin-Wentzell 1994



Our aim: recover the result of Freidlin-Wentzell using the
variational formulation:

ρε is a solution of the Kramers equation iff Iε(ρε) = 0.

By studying Gamma convergence of Iε, we get the limiting
problem.



Iε(ρ) = sup
f

Gε(ρ, f ),

where

Gε(ρ, f ) =

∫
R2

[fTρT−f0ρ0]−
∫ T

0

∫
R2

(∂t f−
1
ε

(J∇H)·∇f +∆pf +
1
2
|∇pf |2)ρt dt .

Choose f = g ◦ H ⇒ J∇H · ∇f = 0 and we get Gε(ρ, f )→ Ĝ0(ρ̂,g),
with ρ̂ = H]ρ and

Ĝ0(ρ̂,g) =

∫
Γ

[gT ρ̂T−g0ρ̂0]−
∫ T

0

∫
Γ

(∂tg+A∂hhg+B∂hg+
1
2

A(∂hg)2)ρ̂t dt .
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Set Î0(ρ̂) = supg Ĝ0(ρ̂,g), we obtain the liminf limit

lim inf
ε→0

Iε ≥ Î0.

and minimizer of Î0 is a diffusion on graph Γ:

∂t ρ̂ = ∂hh(Aρ̂)− ∂h(Bρ̂), (2)

for certain A,B computed from H.



Theorem (DuongPeletierSharma 2014: In preparation)
Assume that ρε ∈ C([0,T ],P(R2)) and supε>0 Iε(ρε) <∞. Then

(1) ρ̂ε ⇀ ρ̂0 in C([0,T ],P(Γ)),
(2) ρ̂0 solves (2) .



Summary and Future work

Summary

1. Connection between physical structure of PDEs with
particle models via large deviation principle

2. Suggested a variational formulation for GENERIC and its
application

3. The method obtains both the limiting equation and the
fluctuation simultaneously.

Future work

Apply the method for other (nonlinear) systems (ODEs, PDEs,
SDEs)

Answer question 2) at the beginning.



Thank you for your attention
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