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Local renewable energies are spreading

To lower CO2 emissions from our electricity generation

We tend to consume energy where it is produced
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But they require a storage that has to be managed

When intermittent renewables generation does not match demand

we rely on fossil fuels

Storage cleans our electricity generation

as long as we optimize its management to make it sustainable
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Real problems adressed by the optimization team at Efficacity

Our team solves energy management problems

for the energy transition of cities with our industrial partners

RATP case study VINCI Energies case study
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We optimize storage management on multiple time scales

to store/consume clean energy at the right minutes of the day

and to ensure a sustainable battery life lasting many years
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We tackle battery control problems on two time scales
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We will decompose the scales

7/32



Two time scales stochastic optimal control problem

min
X

0:D+1
, U

0:D

E
[ D∑
d=0

Ld(X d ,Ud ,W d) + K (XD+1)
]

s.t X d+1 = fd(X d ,Ud ,W d)

Ud = (Ud ,0, . . . ,Ud ,m, . . . ,Ud ,M)

W d = (W d ,0, . . . ,W d ,m, . . . ,W d ,M)

σ(Ud ,m) ⊂ σ
(
W d ′,m′ ; (d ′,m′) ≤ (d ,m)

)
We have a non standard problem

• with daily time steps

• but a non anticipativity constraint every minute
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Next to come: outline of the talk

I. Illustration with an energy storage management application

II. Two algorithms for two-time scales stochastic optimization

III. Numerical results for a house with solar panels and batteries
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Application to energy storage

management



Physical model: a home with load, solar panels and storage

• Two time scales uncertainties

• EL
d,m: Uncertain demand

• ES
d,m: Uncertain solar electricity

• Pb
d : Uncertain storage cost

• Two time scales controls

• EE
d,m: National grid import

• EB
d,m: Storage charge/discharge

• Rd : Storage renewal

• Two time scales states

• Bd,m: Storage state of charge

• Hd,m: Storage health

• Cd : Storage capacity

• Balance equation:

EE
d,m + ES

d,m = EB
d,m + EL

d,m

• Battery dynamic:

Bd,m+1 = Bd,m −
1
ρd

EB−
d,m + 1

ρd
ρcEB+

d,m
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New dynamics: aging and renewal model

• At the end of every day d , we can buy a new battery at cost Pb
d × Rd

Storage capacity: C d+1 =

Rd , if Rd > 0

C d , otherwise

example: a Tesla Powerwall 2 with 14 kWh costs 430× 14 = 6020 e

• A new battery can make a maximum number of cycles Nc(Rd):

Storage health: Hd+1,0 =

2× Nc(Rd)× Rd , if Rd > 0

Hd,M , otherwise

Hd,m is the amount of exchangeable energy day d , minute m

Hd,m+1 = Hd,m − 1

ρd
EB−

d,m − ρcEB+
d,m

example: a Tesla Powerwall 2 can make 3200 cycles or exchange 90 MWh

• A new battery is empty

Storage state of charge: Bd+1,0 =

B × Rd , if Rd > 0

Bd,M , otherwise
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We build a non standard stochastic optimal control problem

• Objective to be minimized

E
[ D∑

d=0

(
Pb

d × Rd︸ ︷︷ ︸
renewal

+
M−1∑
m=0

pe
d,m︸︷︷︸
price

×
(
EB

d,m + E L
d,m+1 − ES

d,m+1︸ ︷︷ ︸
national grid energy consumption

))]
• Controls

Ud = (EB
d,0 . . . ,E

B
d,m, . . . ,E

B
d,M−1,Rd)

• Uncertainties

W d =

(ES
d,1

E L
d,1

)
, . . . ,

(
ES

d,m

E L
d,m

)
, . . . ,

(
ES

d,M−1

E L
d,M−1

)
,

ES
d,M

E L
d,M

Pb
d




• States and dynamics

X d =

 C d

Bd,0

Hd,0

 and X d+1 = fd
(
X d ,Ud ,W d

)
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Two time scales stochastic optimal control problem

P : min
X

0:D+1
, U

0:D

E
[ D∑
d=0

Ld(X d ,Ud ,W d) + K (XD+1)
]
,

s.t X d+1 = fd(X d ,Ud ,W d) ,

Ud = (Ud ,0, . . . ,Ud ,m, . . . ,Ud ,M)

W d = (W d ,0, . . . ,W d ,m, . . . ,W d ,M)

σ(Ud ,m) ⊂ σ
(
W d ′,m′ ; (d ′,m′) ≤ (d ,m)

)
Two time scales because of the non anticipativity constraint

Information grows every minute!

• Intraday time stages: M = 24 ∗ 60 = 1440 minutes

• Daily time stages: D = 365 ∗ 20 = 7300 days

• D ×M = 10, 512, 000 stages!
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Time decomposition by daily

dynamic programming



Daily management when “end of the day” cost is known

On day d assume that we have a final cost Vd+1 : Xd+1 → [0,+∞]

giving a price to a battery in state X d+1 ∈ Xd+1

Solving the intraday problem with a final cost

min
X
d+1

,U
d

E
[
Ld(x ,Ud ,W d) + Vd+1(X d+1)

]
s.t X d+1 = fd(x ,Ud ,W d)

Ud = (Ud ,0, . . . ,Ud ,m, . . . ,Ud ,M)

σ(Ud ,m) ⊂ σ(W d ,0:m)

Gives a minute scale policy for day d that takes into account

the future through Vd+1, the daily value of energy storage
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We write a Bellman equation with daily time blocks

Daily Independence Assumption

{W d}d=0,...,D is a sequence of independent random variables

We set VD+1 = K and then by backward induction:

Vd(x) = min
X
d+1

,U
d

E
[
Ld(x ,Ud ,W d) + Vd+1(X d+1)

]
s.t X d+1 = fd(x ,Ud ,W d)

σ(Ud,m) ⊂ σ(W d,0:m)

where W d,0:m = (W d,0, . . . ,W d,m) = non independent random variables

Proposition

Under Daily Independence Assumption V0 is the value of problem P
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We present two efficient time decomposition algorithms

to compute upper and lower bounds

of the daily value functions

1. Targets decomposition gives an upper bound

2. Weights decomposition gives a lower bound

15/32



Targets decomposition algorithm



Decomposing by sending targets
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Stochastic targets decomposition

We introduce the stochastic target intraday problem

φ(d ,=)

(
xd ,X d+1

)
= min

U
d

E
[
Ld(x ,Ud ,W d)

]
s.t fd(x ,Ud ,W d) = X d+1

σ(Ud ,m) ⊂ σ(W d ,0:m)

Proposition

Under Daily Independence Assumption, Vd satisfies

Vd(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d ,=)

(
x ,X

)
+ E

[
Vd+1(X )

])
s.t σ(X ) ⊂ σ(W d)
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Relaxed stochastic targets decomposition

We introduce a relaxed target intraday problem

φ(d ,≥)

(
xd ,X d+1

)
= min

U
d

E
[
Ld(x ,Ud ,W d)

]
s.t fd(x ,Ud ,W d) ≥ X d+1

σ(Ud ,m) ⊂ σ(W d ,0:m)

A relaxed daily value function

V(d ,≥)(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d ,≥)

(
x ,X

)
+ E

[
V(d+1,≥)(X )

])
s.t σ(X ) ⊂ σ(W d)

Because of relaxation V(d,≥) ≤ Vd but V(d,≥) is hard to compute

due to the stochastic targets
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Relaxed deterministic targets decomposition

Now we can define value functions with deterministic targets:

V(d ,≥,Xd+1)(x) = min
X∈Xd+1

(
φ(d ,≥)

(
x ,X

)
+ V(d+1,≥,Xd+1)(X )

)
Monotonicity Assumption

The daily value functions Vd are non-increasing

Theorem

Under Monotonicity Assumption

• V(d ,≥) = Vd

• V(d ,≥,Xd+1) ≥ V(d ,≥) = Vd

There are efficient ways to compute the upper bounds V(d ,≥,Xd+1)
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Numerical efficiency of deterministic targets decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
V(d ,≥,Xd+1)(x) = min

X∈Xd+1

(
φ(d ,≥)

(
x ,X

)︸ ︷︷ ︸
Hard to compute

+V(d+1,≥,Xd+1)(X )
)

It is challenging to compute φ(d ,≥)

(
x ,X

)
for each couple (x ,X )

and each day d but

• We can exploit periodicity of the problem, e.g φ(d ,≥) = φ(0,≥)

• In some cases φ(d ,≥)

(
x ,X

)
= φ(d ,≥)

(
x − X , 0

)
• We can parallelize φ(d ,≥) computation on day d

• We can use any suitable method to solve the multistage

intraday problems φ(d ,≥) (SDP, scenario tree based SP...)
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Weights decomposition algorithm



Decomposing by sending weights
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Stochastic weights decomposition

We introduce the dualized intraday problems

ψ(d,?)(xd ,λd+1) = min
U
d

E
[
Ld(xd ,Ud ,W d) + 〈λd+1, fd(xd ,Ud ,W d)〉

]
s.t σ(Ud,m) ⊂ σ(W d,0:m)

Note that ψ(d,?) might be simpler than φ(d,≥) (state reduction)

Stochastic weights daily value function

V(d,?)(xd) = sup
λ
d+1
∈Lq(Ω,F,P;Λd+1)

ψ(d,?)(xd ,λd+1)−
(
EV(d+1,?)

)?
(λd+1)

s.t σ(λd+1) ⊂ σ(X d+1)

where
(
EV
)?

(λd+1) = sup
X∈Lp(Ω,F,P;Xd+1)

〈λd+1,X 〉 − E
[
V (X )

]
is the Fenchel transform of EV
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Deterministic weights decomposition

We define value functions with deterministic weights

V(d ,?,E)(xd) = sup
λd+1∈Λd+1

ψ(d ,?)(xd , λd+1)− V ∗(d+1,?,E)(λd+1)

Theorem

By weak duality and restriction, we get V(d ,?,E) ≤ V(d ,?) ≤ Vd

If ri
(
dom(ψ(d ,?)(xd , ·))− dom(EVd+1(·))

)
6= ∅ and P is convex

then we have V(d ,?,E) ≤ V(d ,?) = Vd

There are efficient ways to compute the lower bounds V(d ,?,E)
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Numerical efficiency of deterministic weights decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
V(d ,?,E)(xd) = sup

λd+1∈Λd+1

ψ(d ,?)(xd , λd+1)︸ ︷︷ ︸
Hard to compute

−V ∗(d+1,?,E)(λd+1)

It is challenging to compute ψ(d ,?)(x , λ) for each couple (x , λ) and

each day d but

• Under Monotonicity Assumption,

we can restrict to positive weights λ ≥ 0

• We can exploit periodicity of the problem ψ(d ,?) = ψ(0,?)

• We can parallelize ψ(d ,?) computation on day d
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We will use the daily value functions

upper and lower bounds
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Back to daily intraday problems with final costs

We obtained two bounds V(d ,?,E) ≤ Vd ≤ V(d ,≥,Xd+1)

Now we can solve all intraday problems with a final cost

min
X
d+1

,U
d

E
[
Ld(x ,Ud ,W d) + Ṽd+1(X d+1)

]
s.t X d+1 = fd(x ,Ud ,W d)

σ(Ud ,m) ⊂ σ(W d ,0:m)

with Ṽd+1 = V(d ,≥,Xd+1) or Ṽd+1 = V(d ,?,E)

We obtain one targets and one weights minute scale policies
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Numerical results



We present numerical results associated to two real use cases

Common data: load/production from a house with solar panels

1. Managing a given battery charge and health on 5 days

to compare our algorithms to references on a “small” instance

2. Managing batteries purchases, charge and health on 7300 days

to show that targets decomposition scales
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Application 1: managing charge and aging of a battery

We control a battery

• capacity c0 = 13 kWh

• h0,0 = 100 kWh of exchangeable energy (4 cycles remaining)

• over D = 5 days or D ×M = 7200 minutes

• with 1 day periodicity

We compare 4 algorithms

1. Stochastic dynamic programming

2. Stochastic dual dynamic programming

3. Targets decomposition (+ SDDP for intraday problems)

4. Weights decomposition (+ SDP for intraday problems)
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Decomposition algorithms provide tighter bounds

We know that

• V sddp
d ≤ Vd ≤ V sdp

d

• V(d ,?,E) ≤ Vd ≤ V(d ,≥,Xd+1)

We observe that V sddp
d ≤ V(d ,?,E) ≤ V(d ,≥,Xd+1) ≤ V sdp

d

We beat SDP and SDDP (that cannot fully handle 7200 stages)
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Computation times and convergence

SDP Weights SDDP Targets

Total time (with parallelization) 22.5 min 5.0 min 3.6 min 0.41 min

Gap (200× mc−v
mc+v

) 0.91 % 0.32 % 0.90 % 0.28 %

The Gap is between Monte Carlo simulation (upper bound)

and value functions at time 0

• Decomposition algorithms display smaller gaps

• Targets decompositon + SDDP is faster than SDDP

• Weights decomposition + SDP is faster than SDP
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Application 2: managing batteries purchases, charge and aging

• 20 years, 10, 512, 000 minutes, 1 day periodicity

• Battery capacity between 0 and 20 kWh

• Synthetic scenarios for batteries prices

SDP and SDDP fail to solve such a problem over 10, 512, 000 stages!
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Target decomposed SDDP solves 10, 512, 000 stages problems

Computing daily value functions by dynamic programming takes 45 min︷ ︸︸ ︷
V(d ,≥,Xd+1)(x) = min

X∈Xd+1

(
φ(d ,≥)

(
x ,X

)︸ ︷︷ ︸
Computing φ(d,≥)

(
·, ·

)
with SDDP takes 60 min

+V(d+1,≥,Xd+1)(X )
)

Complexity: 45 min + D × 60 min

• Periodicity: 45 min + N × 60 min with N << D

• Parallelization: 45 min + 60 min
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Does it pay to control aging?

We draw one battery prices scenario and one solar/demand scenario over

10, 512, 000 minutes and simulate the policy of targets algorithm

We make a simulation

of 10, 512, 000 decisions

in 45 minutes

We compare to a policy that

does not control aging

• Without aging control: 3 battery purchases

• With aging control: 2 battery purchases

It pays to control aging with targets decomposition! 32/32



Conclusion

1. We have solved problems

with millions of time steps

using targets decomposed SDDP

2. We have designed control strategies

for sizing/charging/aging/investment

of batteries

3. We have used our algorithms to improve

results obtained with algorithms sensitive

to the number of time steps (SDP, SDDP)
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Merci for your attention
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