Algorithms For Two-Time-Scales Stochastic Optimization With Applications To Long Term Management Of Energy Storage

P. Carpentier, M. De Lara, J.-Ph. Chancelier and T. Rigaut 31 July, 2019

ParisTech

Local renewable energies are spreading

To lower CO_2 emissions from our electricity generation

We tend to consume energy where it is produced

But they require a storage that has to be managed

When intermittent renewables generation does not match demand we rely on fossil fuels

Storage cleans our electricity generation as long as we optimize its management to make it sustainable

Our team solves energy management problems for the energy transition of cities with our industrial partners

RATP case study

VINCI Energies case study

to store/consume clean energy at the right minutes of the day

and to ensure a sustainable battery life lasting many years

We tackle battery control problems on two time scales

We will decompose the scales

Two time scales stochastic optimal control problem

$$\min_{\mathbf{X}_{0:D+1}, \mathbf{U}_{0:D}} \mathbb{E} \left[\sum_{d=0}^{D} L_d(\mathbf{X}_d, \mathbf{U}_d, \mathbf{W}_d) + K(\mathbf{X}_{D+1}) \right]$$

s.t $\mathbf{X}_{d+1} = f_d(\mathbf{X}_d, \mathbf{U}_d, \mathbf{W}_d)$
 $\mathbf{U}_d = (\mathbf{U}_{d,0}, \dots, \mathbf{U}_{d,m}, \dots, \mathbf{U}_{d,M})$
 $\mathbf{W}_d = (\mathbf{W}_{d,0}, \dots, \mathbf{W}_{d,m}, \dots, \mathbf{W}_{d,M})$
 $\sigma(\mathbf{U}_{d,m}) \subset \sigma(\mathbf{W}_{d',m'}; (d', m') \leq (d, m))$

We have a non standard problem

- with daily time steps
- but a non anticipativity constraint every minute

- I. Illustration with an energy storage management application
- II. Two algorithms for two-time scales stochastic optimization
- III. Numerical results for a house with solar panels and batteries

Application to energy storage management

Physical model: a home with load, solar panels and storage

- Two time scales uncertainties
 - $E_{d,m}^L$: Uncertain demand
 - **E**^S_{d,m}: Uncertain solar electricity
 - P_d^b : Uncertain storage cost
- Two time scales controls
 - $\boldsymbol{E}_{d,m}^{E}$: National grid import
 - **E**^B_{d,m}: Storage charge/discharge
 - **R**_d: Storage renewal
- Two time scales states
 - **B**_{d,m}: Storage state of charge
 - $H_{d,m}$: Storage health
 - **C**_d: Storage capacity
- Balance equation:

$$\boldsymbol{E}_{d,m}^{E} + \boldsymbol{E}_{d,m}^{S} = \boldsymbol{E}_{d,m}^{B} + \boldsymbol{E}_{d,m}^{L}$$

• Battery dynamic:

$$\boldsymbol{B}_{d,m+1} = \boldsymbol{B}_{d,m} - \frac{1}{
ho_d} \boldsymbol{E}_{d,m}^{B-} + \frac{1}{
ho_d}
ho_c \boldsymbol{E}_{d,m}^{B+}$$

New dynamics: aging and renewal model

• At the end of every day d, we can buy a new battery at cost $\boldsymbol{P}_d^b imes \boldsymbol{R}_d$

Storage capacity:
$$m{C}_{d+1} = egin{cases} m{R}_d \ , & ext{if } m{R}_d > 0 \ m{C}_d \ , & ext{otherwise} \end{cases}$$

example: a Tesla Powerwall 2 with 14 kWh costs 430 \times 14 = 6020 \in

A new battery can make a maximum number of cycles N_c(R_d):

Storage health:
$$H_{d+1,0} = \begin{cases} 2 \times N_c(R_d) \times R_d , & \text{if } R_d > 0 \\ H_{d,M} , & \text{otherwise} \end{cases}$$

 $H_{d,m}$ is the amount of exchangeable energy day d, minute m

$$\boldsymbol{H}_{d,m+1} = \boldsymbol{H}_{d,m} - \frac{1}{\rho_d} \boldsymbol{\mathcal{E}}_{d,m}^{B-} - \rho_c \boldsymbol{\mathcal{E}}_{d,m}^{B+}$$

example: a Tesla Powerwall 2 can make 3200 cycles or exchange 90 MWh

A new battery is empty

Storage state of charge:
$$\boldsymbol{B}_{d+1,0} = \begin{cases} \underline{B} \times \boldsymbol{R}_d , & \text{if } \boldsymbol{R}_d > 0 \\ \boldsymbol{B}_{d,M} , & \text{otherwise} \end{cases}$$

We build a non standard stochastic optimal control problem

• Objective to be minimized

• Controls

$$\boldsymbol{U}_d = (\boldsymbol{E}_{d,0}^B,\ldots,\boldsymbol{E}_{d,m}^B,\ldots,\boldsymbol{E}_{d,M-1}^B,\boldsymbol{R}_d)$$

Uncertainties

$$\boldsymbol{W}_{d} = \left(\begin{pmatrix} \boldsymbol{E}_{d,1}^{S} \\ \boldsymbol{E}_{d,1}^{L} \end{pmatrix}, \dots, \begin{pmatrix} \boldsymbol{E}_{d,m}^{S} \\ \boldsymbol{E}_{d,m}^{L} \end{pmatrix}, \dots, \begin{pmatrix} \boldsymbol{E}_{d,M-1}^{S} \\ \boldsymbol{E}_{d,M-1}^{L} \end{pmatrix}, \begin{pmatrix} \boldsymbol{E}_{d,M}^{S} \\ \boldsymbol{E}_{d,M}^{L} \\ \boldsymbol{P}_{d}^{b} \end{pmatrix} \right)$$

• States and dynamics

$$oldsymbol{X}_d = egin{pmatrix} oldsymbol{C}_d \ oldsymbol{B}_{d,0} \ oldsymbol{H}_{d,0} \end{pmatrix}$$
 and $oldsymbol{X}_{d+1} = f_dig(oldsymbol{X}_d,oldsymbol{U}_d,oldsymbol{W}_dig)$

Two time scales stochastic optimal control problem

$$\mathcal{P}: \min_{\mathbf{X}_{0:D+1}, \mathbf{U}_{0:D}} \mathbb{E} \left[\sum_{d=0}^{D} L_d(\mathbf{X}_d, \mathbf{U}_d, \mathbf{W}_d) + K(\mathbf{X}_{D+1}) \right],$$

s.t $\mathbf{X}_{d+1} = f_d(\mathbf{X}_d, \mathbf{U}_d, \mathbf{W}_d),$
 $\mathbf{U}_d = (\mathbf{U}_{d,0}, \dots, \mathbf{U}_{d,m}, \dots, \mathbf{U}_{d,M}),$
 $\mathbf{W}_d = (\mathbf{W}_{d,0}, \dots, \mathbf{W}_{d,m}, \dots, \mathbf{W}_{d,M}),$
 $\sigma(\mathbf{U}_{d,m}) \subset \sigma(\mathbf{W}_{d',m'}; (d', m') \leq (d, m))$

Two time scales because of the non anticipativity constraint Information grows every minute!

- Intraday time stages: M = 24 * 60 = 1440 minutes
- Daily time stages: D = 365 * 20 = 7300 days
- *D* × *M* = 10, 512, 000 stages!

Time decomposition by daily dynamic programming

Daily management when "end of the day" cost is known

On day d assume that we have a final cost $V_{d+1} : \mathbb{X}_{d+1} \to [0, +\infty]$ giving a price to a battery in state $X_{d+1} \in \mathbb{X}_{d+1}$

Solving the intraday problem with a final cost

$$\min_{\boldsymbol{X}_{d+1}, \boldsymbol{U}_d} \mathbb{E} \left[L_d(\boldsymbol{x}, \boldsymbol{U}_d, \boldsymbol{W}_d) + \boldsymbol{V}_{d+1}(\boldsymbol{X}_{d+1}) \right]$$

s.t $\boldsymbol{X}_{d+1} = f_d(\boldsymbol{x}, \boldsymbol{U}_d, \boldsymbol{W}_d)$
 $\boldsymbol{U}_d = (\boldsymbol{U}_{d,0}, \dots, \boldsymbol{U}_{d,m}, \dots, \boldsymbol{U}_{d,M})$
 $\sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m})$

Gives a minute scale policy for day d that takes into account the future through V_{d+1} , the daily value of energy storage

Daily Independence Assumption $\{W_d\}_{d=0,...,D}$ is a sequence of independent random variables

We set $V_{D+1} = K$ and then by backward induction:

$$V_d(x) = \min_{\boldsymbol{X}_{d+1}, \boldsymbol{U}_d} \mathbb{E} \left[L_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) + V_{d+1}(\boldsymbol{X}_{d+1}) \right]$$

s.t $\boldsymbol{X}_{d+1} = f_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d)$
 $\sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m})$

where $\boldsymbol{W}_{d,0:m} = (\boldsymbol{W}_{d,0}, \dots, \boldsymbol{W}_{d,m}) =$ non independent random variables

Proposition

Under Daily Independence Assumption V_0 is the value of problem \mathcal{P}

We present two efficient time decomposition algorithms to compute upper and lower bounds of the daily value functions

1. Targets decomposition gives an upper bound

2. Weights decomposition gives a lower bound

Targets decomposition algorithm

Decomposing by sending targets

Stochastic targets decomposition

We introduce the stochastic target intraday problem

$$\phi_{(d,=)}(x_d, \boldsymbol{X}_{d+1}) = \min_{\boldsymbol{U}_d} \mathbb{E} \Big[L_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) \Big]$$

s.t $f_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) = \boldsymbol{X}_{d+1}$
 $\sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m})$

Proposition

Under Daily Independence Assumption, V_d satisfies

$$V_{d}(x) = \min_{\boldsymbol{X} \in L^{0}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{X}_{d+1})} \left(\phi_{(d,=)}(x, \boldsymbol{X}) + \mathbb{E} \left[V_{d+1}(\boldsymbol{X}) \right] \right)$$

s.t $\sigma(\boldsymbol{X}) \subset \sigma(\boldsymbol{W}_{d})$

Relaxed stochastic targets decomposition

We introduce a relaxed target intraday problem $\phi_{(d,\geq)}(x_d, \boldsymbol{X}_{d+1}) = \min_{\boldsymbol{U}_d} \mathbb{E} \Big[L_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) \Big]$ s.t $f_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) \geq \boldsymbol{X}_{d+1}$ $\sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m})$

A relaxed daily value function

$$\begin{aligned} \mathbf{V}_{(d,\geq)}(x) &= \min_{\mathbf{X} \in L^0(\Omega,\mathcal{F},\mathbb{P};\mathbb{X}_{d+1})} \left(\phi_{(d,\geq)}(x,\mathbf{X}) + \mathbb{E} \left[\mathbf{V}_{(d+1,\geq)}(\mathbf{X}) \right] \right) \\ &\text{s.t } \sigma(\mathbf{X}) \subset \sigma(\mathbf{W}_d) \end{aligned}$$

Because of relaxation $V_{(d,\geq)} \leq V_d$ but $V_{(d,\geq)}$ is hard to compute due to the stochastic targets

18/32

Relaxed deterministic targets decomposition

Now we can define value functions with deterministic targets:

$$V_{(d,\geq,\mathbb{X}_{d+1})}(x) = \min_{\mathbf{X}\in\mathbb{X}_{d+1}} \left(\phi_{(d,\geq)}(x,\mathbf{X}) + V_{(d+1,\geq,\mathbb{X}_{d+1})}(\mathbf{X}) \right)$$

Monotonicity Assumption

The daily value functions V_d are non-increasing

Theorem

Under Monotonicity Assumption

•
$$V_{(d,\geq)} = V_d$$

•
$$V_{(d,\geq,\mathbb{X}_{d+1})} \geq V_{(d,\geq)} = V_d$$

There are efficient ways to compute the upper bounds $V_{(d,>,\mathbb{X}_{d+1})}$

Numerical efficiency of deterministic targets decomposition

Easy to compute by dynamic programming

$$V_{(d,\geq,\mathbb{X}_{d+1})}(x) = \min_{X\in\mathbb{X}_{d+1}} \left(\underbrace{\phi_{(d,\geq)}(x,X)}_{\text{Hard to compute}} + V_{(d+1,\geq,\mathbb{X}_{d+1})}(X) \right)^{2}$$

It is challenging to compute $\phi_{(d,\geq)}(x,X)$ for each couple (x,X)and each day d but

- We can exploit periodicity of the problem, e.g $\phi_{(d,\geq)} = \phi_{(0,\geq)}$
- In some cases $\phi_{(d,\geq)}(x,X) = \phi_{(d,\geq)}(x-X,0)$
- We can parallelize $\phi_{(d,\geq)}$ computation on day d
- We can use any suitable method to solve the multistage intraday problems φ_(d,≥) (SDP, scenario tree based SP...)

Weights decomposition algorithm

Decomposing by sending weights

Stochastic weights decomposition

We introduce the dualized intraday problems $\psi_{(d,\star)}(x_d, \boldsymbol{\lambda}_{d+1}) = \min_{\boldsymbol{U}_d} \mathbb{E} \Big[L_d(x_d, \boldsymbol{U}_d, \boldsymbol{W}_d) + \langle \boldsymbol{\lambda}_{d+1}, f_d(x_d, \boldsymbol{U}_d, \boldsymbol{W}_d) \rangle \Big]$ s.t $\sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m})$

Note that $\psi_{(d,\star)}$ might be simpler than $\phi_{(d,\geq)}$ (state reduction)

Stochastic weights daily value function

$$V_{(d,\star)}(x_d) = \sup_{\substack{\lambda_{d+1} \in L^q(\Omega, \mathcal{F}, \mathbb{P}; \Lambda_{d+1}) \\ \text{s.t } \sigma(\lambda_{d+1}) \subset \sigma(\mathbf{X}_{d+1})}} \psi_{(d,\star)}(x_d, \lambda_{d+1}) - \left(\mathbb{E}V_{(d+1,\star)}\right)^{\star}(\lambda_{d+1})$$

where
$$\left(\mathbb{E}V\right)^{\star}(\boldsymbol{\lambda}_{d+1}) = \sup_{\boldsymbol{X} \in L^{p}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{X}_{d+1})} \langle \boldsymbol{\lambda}_{d+1}, \boldsymbol{X} \rangle - \mathbb{E}\big[V(\boldsymbol{X})\big]$$

is the Fenchel transform of $\mathbb{E}V$

We define value functions with deterministic weights

$$V_{(d,\star,\mathbb{E})}(x_d) = \sup_{\lambda_{d+1} \in \Lambda_{d+1}} \psi_{(d,\star)}(x_d,\lambda_{d+1}) - V^*_{(d+1,\star,\mathbb{E})}(\lambda_{d+1})$$

Theorem

By weak duality and restriction, we get $V_{(d,\star,\mathbb{E})} \leq V_{(d,\star)} \leq V_d$ If $ri(dom(\psi_{(d,\star)}(x_d,\cdot)) - dom(\mathbb{E}V_{d+1}(\cdot))) \neq \emptyset$ and \mathcal{P} is convex then we have $V_{(d,\star,\mathbb{E})} \leq V_{(d,\star)} = V_d$

There are efficient ways to compute the lower bounds $V_{(d,\star,\mathbb{E})}$

Easy to compute by dynamic programming

$$V_{(d,\star,\mathbb{E})}(x_d) = \sup_{\lambda_{d+1} \in \Lambda_{d+1}} \underbrace{\psi_{(d,\star)}(x_d,\lambda_{d+1})}_{\text{Hard to compute}} - V_{(d+1,\star,\mathbb{E})}^*(\lambda_{d+1})$$

It is challenging to compute $\psi_{(d,\star)}(x,\lambda)$ for each couple (x,λ) and each day d but

- Under Monotonicity Assumption, we can restrict to positive weights $\lambda \ge 0$
- We can exploit periodicity of the problem $\psi_{(d,\star)} = \psi_{(0,\star)}$
- We can parallelize $\psi_{(d,\star)}$ computation on day d

We will use the daily value functions upper and lower bounds

Back to daily intraday problems with final costs

We obtained two bounds $V_{(d,\star,\mathbb{E})} \leq V_d \leq V_{(d,\geq,\mathbb{X}_{d+1})}$

Now we can solve all intraday problems with a final cost $\begin{aligned}
\mathbf{x}_{d+1}^{\min} & \mathbb{E}\left[L_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) + \widetilde{V}_{d+1}(\boldsymbol{X}_{d+1})\right] \\
\text{s.t } & \boldsymbol{X}_{d+1} = f_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) \\
& \sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m}) \\
\text{with } & \widetilde{V}_{d+1} = V_{(d, \geq , \mathbb{X}_{d+1})} \text{ or } \widetilde{V}_{d+1} = V_{(d, \star, \mathbb{E})}
\end{aligned}$

We obtain one targets and one weights minute scale policies

Numerical results

We present numerical results associated to two real use cases

Common data: load/production from a house with solar panels

- 1. Managing a given battery charge and health on 5 days to compare our algorithms to references on a "small" instance
- 2. Managing batteries purchases, charge and health on 7300 days to show that targets decomposition scales

Application 1: managing charge and aging of a battery

We control a battery

- capacity $c_0 = 13 \text{ kWh}$
- $h_{0,0} = 100$ kWh of exchangeable energy (4 cycles remaining)
- over D = 5 days or $D \times M = 7200$ minutes
- with 1 day periodicity

We compare 4 algorithms

- 1. Stochastic dynamic programming
- 2. Stochastic dual dynamic programming
- 3. Targets decomposition (+ SDDP for intraday problems)
- 4. Weights decomposition (+ SDP for intraday problems)

Decomposition algorithms provide tighter bounds

We know that

- $V_d^{sddp} \leq V_d \leq V_d^{sdp}$
- $V_{(d,\star,\mathbb{E})} \leq V_d \leq V_{(d,\geq,\mathbb{X}_{d+1})}$

We observe that $V_d^{sddp} \leq V_{(d,\star,\mathbb{E})} \leq V_{(d,\geq,\mathbb{X}_{d+1})} \leq V_d^{sdp}$

We beat SDP and SDDP (that cannot fully handle 7200 stages)

	SDP	Weights	SDDP	Targets
Total time (with parallelization)	22.5 min	5.0 min	3.6 min	0.41 min
$Gap (200 imes rac{mc-v}{mc+v})$	0.91 %	0.32 %	0.90 %	0.28 %

The Gap is between Monte Carlo simulation (upper bound) $\label{eq:gap} \mbox{and value functions at time 0}$

- Decomposition algorithms display smaller gaps
- Targets decompositon + SDDP is faster than SDDP
- Weights decomposition + SDP is faster than SDP

Application 2: managing batteries purchases, charge and aging

- 20 years, 10, 512, 000 minutes, 1 day periodicity
- Battery capacity between 0 and 20 kWh
- Synthetic scenarios for batteries prices

SDP and SDDP fail to solve such a problem over 10, 512,000 stages!

Computing daily value functions by dynamic programming takes 45 min

$$V_{(d,\geq,\mathbb{X}_{d+1})}(x) = \min_{X\in\mathbb{X}_{d+1}} \left(\underbrace{\phi_{(d,\geq)}(x,X)}_{\text{Computing }\phi_{(d,\geq)}(\cdot,\cdot)} + V_{(d+1,\geq,\mathbb{X}_{d+1})}(X) \right)$$

Complexity: 45 min + $D \times 60$ min

- Periodicity: 45 min + $N \times 60$ min with $N \ll D$
- Parallelization: 45 min + 60 min

Does it pay to control aging?

We draw one battery prices scenario and one solar/demand scenario over 10,512,000 minutes and simulate the policy of targets algorithm

We make a simulation of 10, 512, 000 decisions in 45 minutes

We compare to a policy that does not control aging

- Without aging control: 3 battery purchases
- With aging control: 2 battery purchases

It pays to control aging with targets decomposition!

Conclusion

- 1. We have solved problems with millions of time steps using targets decomposed SDDP
- 2. We have designed control strategies for sizing/charging/aging/investment of batteries
- 3. We have used our algorithms to improve results obtained with algorithms sensitive to the number of time steps (SDP, SDDP)

Merci for your attention