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Various notions from geometric control theory are used to characterize the behavior
of the Markovian master equation forN-level quantum mechanical systems driven
by unitary control and to describe the structure of the sets of reachable states. It is
shown that the system can be accessible but neither small-time controllable nor
controllable in finite time. In particular, if the generators of quantum dynamical
semigroups are unital, then the reachable sets admit easy characterizations as they
monotonically grow in time. The two level case is treated in detail. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1571221#

I. INTRODUCTION

The main question that we discuss in this work is the following: to which density oper
can we drive the quantum Markovian master equation by means of coherent control? This p
is of relevance whenever one is interested in quantum state manipulation in presence of non
evolution, for example in the context of quantum information processing5,16,18 and of molecular
control.22 The ultimate goal is obviously to know when and how the state of a quantum mec
cal system can be arbitrarily manipulated by means of unitary~reversible! control operations or a
least to what extent this is possible.

The viewpoint we take in this work is that of ‘‘classical’’ geometric control theory wh
provides us the tools to mathematically formalize and answer the questions posed. In cl
control terms, the set of density operators to which we can steer the system is called thereachable
setand the problem of arbitrary manipulability of the state can be formulated as acontrollability
problem.

The infinitesimal structure of the so-called quantum Markovian master equation, i.e
‘‘axiomatic’’ model for an open quantum system, is known since the works of Lindblad15 and
Gorini–Kossakowski–Sudarshan8 and it is a prerequisite for the utilization of the Lie algebra
controllability methods developed below. We use the so-calledvector of coherencesformulation
for the density matrix,3 i.e., the expectation values corresponding to a complete set of Herm
operators, here the Gell–Mann matrices. Such formulation allows to treat the master equa
a control system with affine vector fields or, geometrically, as a system living on a homoge
space of a matrix Lie group and subordinated to an affine group action, plus constraints orig
from the complete positivity of the quantum dynamical semigroup. If we drop these constr
the system falls into a class of systems whose controllability properties were studied in de
the past, see Refs. 10 and 19 for a general overview, and Refs. 6, 7, and 11 for the particu
of affine fields. Including the complete positivity requirements totally alter these results, be
of the relaxation it induces.

The qualitative difference between studying the master equation and its controlled coun
is that the master equation is an ODE whose solution, obtained integrating a single vector fi
a one parameter semigroup; the presence of control parameters in the controlled master e
implies that we have to consider a family of vector fields simultaneously, and therefor

a!Electronic mail: altafini@sissa.it
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admissible flow is a multiparameter semigroup or Lie semigroups.9 Such a semigroup is the
reachable set. When the reachable set is large enough to be a subgroup or at least to act tra
on the homogeneous space, then we have controllability. The problems arise when the re
semigroup is not a group, as in the case of the controlled master equation. A novel eleme
respect to, for example, the control of Schro¨dinger equations4 is that in the master equation on
has to deal with a truedrift term, i.e., a vector field which is both noncontrollable and nonrec
rent. Then it can happen that although it is~often! possible to generate motion in any directio
~i.e., we have the accessibility property!, the system in never controllable in finite time because
flow cannot be reversed. In other terms, the reachable set may be open and dense in the
admissible density operators, but the initial condition of the controlled master equation alwa
on the boundary of such set for any finite time and therefore it is not possible to reach arb
points in its neighborhoods. The vector of coherences representation is very useful in this r
as it allows to explain the lack of controllability in terms of the trace of the dissipation/relaxa
superoperator. In fact, the main reason for noncontrollability lies in the structure of the nonu
operators given by complete positivity. When such infinitesimal generators is unital this is c
visible: for the density operatorr, tr~r! gives the level sets of a quadratic Lyapunov functi
centered in the origin. In this case, the controlled dynamics is stable and the control alone
only to move within one of the level sets, not to pass from one level set to another. Sinc
nonunitary operator is pointing inward, as time passes also the controlled integral curves can
only inward and this establishes a monotonicity relation among the sets reachable at differe
instants. As pointed out, for example, in Ref. 22, the presence of a dissipation~nonunitary!
operator is essential foranymotion not confined to a sphere inRn to be accomplished. Notice tha
this holds regardless of the existence of a thermodynamic equilibrium, i.e., a fixed point fo
original uncontrolled master equation. For affine dissipation operators, the situation is sl
more complicated and controllability may be recovered as a limit process. The atom with
taneous emission is one such case and will be discussed in some detail. In this case, motio
confined to the inward of spheres inRn and ‘‘purification’’ processes are possible.

The organization of the paper is as follows: in Sec. II we review all the relevant no
concerning controllability of bilinear/affine systems on homogeneous spaces of a Lie gro
Sec. III the formalism of the vector of coherences parametrization is recalled and used to d
controllability of Liouville dynamics; in Sec. IV the controllability of the master equation
treated and the main Theorem formulated. Finally, in Sec. V the two-level case is discus
detail, first for general dissipation operators and then for few significant examples.

It is worth remarking that all our considerations make sense for finite dimensional qua
systems.

II. DRIFT AND CONTROLLABILITY FOR BILINEAR CONTROL SYSTEMS

All properties introduced in this section are standard in geometric control and are adeq
surveyed for instance in Refs. 10 and 19. Consider the following bilinear control system:

ẋ5B0x1 (
k51

q

ukBkx,

~1!
x~0!5xi ,

where the controlsu1 ,...,uq are real valued piecewise constant functions defined on@0,̀ !,
B0 ,...,Bq are square matrices andxPM , an analytic manifold of real dimensionn. In this work:
M is R0

n5Rn\$0% or somen-dimensional homogeneous space~like a sphere! contained inRr , r
>n, or some subset ofRn like a solid unit ball. The vector fieldB0x is called the drift and
B1u1x,...,Bquqx are the control vector fields.

Given xiPM , let us callR(xi , T) the reachable set fromxi at timeT.0 for the system~1!:

R~xi , T!5$xPM s.t. x~0!5xi and x~T!5x, T.0, for some admissible controlu1 ,...,uq%.
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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If R(xi , <T)5ø0<t<TR(xi , t), then thereachable setfrom xi is R(xi)5ø0<t<`R(xi , t). In
correspondence of a givenTf and of R(xi , <Tf), one can define the notions of finite tim
controllability as follows.

Definition 1: Given Tf.0, system (1) is Tf-controllableif ; xi , xfPM' admissible control
functions u1 ,...,uq such that the flow of (1) satisfies x(0)5xi and x(Tf)5xf .
The existence of aTf finite is important for the application discussed in this work. When, inste
we are interested in controllability for any time inR(xi), then we can use the following.

Definition 2: System (1) iscontrollableif any xfPM is reachable from any xiPM for some
admissible control function u1 ,...,uq .

Unlike the reachable set which accounts only for the positive time evolution of the trajec
of the system, the orbitO(xi) requires to consider complete vector fields, i.e., defined on
whole time axis:

O~xi !5ø tPR$xPM s.t. x~0!5xi and x~ t !5x, tPR, for some admissible controlu1 ,...,uq%.

The difference betweenO(xi) andR(xi) corresponds to the difference between the acce
bility and controllability properties.

Definition 3: System (1) isaccessibleif R(xi , <T) contains nonempty open sets of M for a
T.0.

While accessibility guarantees the existence of open reachable sets, it does not say a
on xi belonging to it.

Definition 4: System (1) issmall-time controllableif x i belongs to the interior of the reachabl
set, intR(xi , T), for all T.0.

The accessibility property admits an algebraic characterization in terms of the Lie al
generated by the vector fieldsB0x,B1x,...,Bqx, call it Lie(B0x,B1x,...,Bqx).

Theorem 1: ~Lie algebraic rank condition (LARC)): System (1) is accessible if and on
dim (Lie(B0x,B1x,...,Bqx))5dim (M ).

For bilinear systems, when accessibility holds there exists a Lie group of transformation
it G, of ~finite! dimension greater or equal thanM acting transitively onM and to which we can
lift the system. Invariance of the vector fields on a Lie group implies that the controllab
conditions are global and independent of the point of application. For example, for bothR(xi) and
O(xi) we haveR(xi)5RGxi and O(xi)5OGxi , with RG5R(I ) and OG5O(I ) reachable set
and orbit of the lifted system, whereI is the identity matrix ofG. Therefore we can work
indifferently with vector fields onM (B0x,B1u1x,...,Bquqx) or with right invariant vector fields
on the Lie groupG ~i.e., the matricesB0 ,B1u1 ,...,Bquq of g, the Lie algebra ofG), to which we
have lifted the system, starting from the identity ofG:

ġ5B0g1(
i 51

q

ui~ t !Big gPG,

~2!

g~0!5I .

In particular, the LARC condition and the so-called orbit theorem guarantee thatOG is the whole
G and thatM is nothing but a homogeneous space ofG expressed in terms of equivalence class
asGx, xPM . The Lie algebrag is therefore equal to Lie(B0 ,...,Bq) and the accessibility con
dition reformulates as transitivity ofG ~or of g, with a common abuse of terminology! on M .

Theorem 2: System (1) is accessible if and only ifg is transitive on M.
The LARC condition is only a necessary condition for controllability, even when it holds

reachable set needs not be the whole Lie groupG. When RG�OG the lifted system is not
controllable, the reason being that the drift is allowed to flow only along the time forward d
tion and may not be reversible by means of the control vector fields. In fact, the control v
fields are ‘‘complete’’ in the sense that, sinceuk can assume both positive and negative valu
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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once exponentiated they generate a one parameter subgroup exp(tukBk , t>0). On the contrary, the
drift produces only a subsemigroup exp(tB0, t>0) and thusRG in general only has the structur
of a Lie semigroupof G.9

The case of a compact group is exceptional, since compact Lie groups do not admit
groups: exp(tB, t>0)5exp(tB, tPR). HenceRG collapses inOG and the accessibility propert
collapses into~‘‘long time’’ ! controllability. The LARC condition then becomes necessary
sufficient for controllability:R(xi)5OGxi5Gxi5M , ; xiPM .

In general, however, one has to deal with the case ofRG being only a Lie semigroup. Even i
RG is a proper semigroup,RG�G, it may still happen that the action ofRG on M is transitive.
In the literature, most results are in the form of sufficient conditions for controllability. For sys
~1!, examples are

~1! RG5G andG acts transitively onM ,
~2! RG acts transitively onM ,
~3! xiP int R(xi , T) ; T.0.

For our case, none of these~or similar! conditions hold and ‘‘negative’’ results have to b
established.

Affine vector fields case:The case of affine vector fields generalizes~1! to the following set of
ODEs:

ẋ5B0x1b0x01 (
k51

q

~ukBkx1bkx0!,

~3!
x~0!5xi ,

wherex0 is a real constant. It corresponds to a Lie group of transformations having the stru
of a semidirect productKsV with V typically a n-dimensional real vector space andK a Lie
group acting linearly on it. The dimension ofKsV is dim(K)1n. By choosing the following
homogeneous coordinates for the statex̄5@x0 , xT#T, the system~3! recovers the linear form o
~1!:

xG 5B̄0x̄1 (
k51

q

ukB̄kx̄,

whereB̄k5@bk

0
Bk

0 #. The homogeneous coordinates allow to transform the affine action ofKsV on

x into linear action onx̄. If g5@v
1

k
0#PG5@V

1
K
0 #, the actionF : G3M→M is

F~g!~ x̄!5gx̄5F x0

kx1vx0
G

so that the affine vector fields induced onx̄ by F are

F* ~B̄!~ x̄!5B̄x̄5F 0
Bx1bx0

G
and the Lie bracket is

@Ā, B̄#5F 0 0

Ab2Ba @A, B#
G .

Also for affine systems, special sufficient conditions for accessibility and controllability have
devised, see Refs. 6, 7, and 11 for details.
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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III. CONTROLLABILITY OF HAMILTONIAN DYNAMICS

To describe differential equations for density operators, we make use of the so-called ve
coherences formulation. A few essential facts about it are reported below; see, for example,
for a thorough description and further references.

A. Density operators and vectors of coherences

The state of a quantum mechanical system in anN-dimensional Hilbert spaceH N can be
described in terms of a trace 1 positive semidefinite Hermitian operatorr called the density matrix.
If the density operator is entirely characterized by a wave functionuc&, then the system is said t
be in a pure state,r is defined asr(t)5uc&^cu and tr(r2)51. If instead we have a statistica
ensembler(t)5( i 51

N p( i )uc ( i )&^c ( i )u for p( i )>0 and( i 51
N p( i )51, then the system is said to be

a mixed state characterized by the pairs$p( i ), uc ( i )&% and tr(r2)<1. In both cases, the propertie
of Hermitianity r5r† and of unit trace tr(r)51 imply that theN3N matrix representing the
density operator depends onn5N221 real parameters. Up to the imaginary unit,N3N traceless
Hermitian matrices form the Lie algebrasu(N) of dimension exactlyn. If to it we add the
~properly normalized! unit vector, then we obtain a complete basis for the density operator o
N-dimensional quantum mechanical system. In fact, theN-dimensional Pauli matricesl j , see, for
example, Ref. 14 for their explicit expression, and the identity matrixl05N21/2I , form a com-
plete orthonormal set of basis operators forr ~orthonormal in the sense that tr(l jlk)5d jk). In
particular, then,r5( j 50

n tr (rl j )l j5( j 50
n r jl j , with r05N21/2 fixed constant and then real

parametersr j giving the parametrization ofr. Since thelk , k51,...,n, form a compete set o
observable operators, ther j5tr(rl j ) are expectation values ofr. Call r5@r1¯rn#T suchvector
of coherencesof r. Due to the constant component alongl0 , r is living on an affine space
characterized by the extra fixed coordinater05N21/2. Suchn-dimensional Liouville space o
vectorsr̄5@r0 r1¯rn#T5@r0 rT#T has Euclidean inner product given by the trace metric:i r̄i
5A^̂ r̄, r̄&&5Atr(r2). The condition tr(r2)<1 then translates inr̄-space asr̄ belonging to the
solid affine ball of radius 12(1/N) centered at@r0 0 ¯ 0#T, call it B̄n, for all positive times. The
surface of such ball generalizes the idea of Block sphere toN dimension and corresponds to pu
statesi r̄i251. In terms of vector of coherences, the condition tr(r2)<1 becomes the balliri2

<12 (1/N) centered at the origin.

B. Hamiltonian dynamics

If H is a constant finite-dimensional Hamiltonian, for the density operator the Liou
equation is given by

ṙ~ t !52 i @H, r#52 i adH~r!.

If 2 iH Psu(N), then2 i adH is a so-called commutator superoperator, i.e., a linear operator in
n-dimensional Liouville space ofr vectors. In terms ofr, the action of2 i adH is linear,

ṙ52 i adH r, ~4!

H being traceless and Hermitian, in the$l j% basis:H5( l 51
n hll l . The process of passing fromr

to r is mathematically equivalent to passing to the adjoint representation of the Lie algebrasu(N).
In fact, the corresponding basis in the adjoint representation is given by then3n matrices
adl1

,...,adln
of elements (adl l

) jk5 i f l jk with f l jk real fully skew-symmetric~with respect to the

permutation of any pair of indexes! tensor. Thus2 i adH52 i ( l 51
n hl adl l

. The n3n matrices
2 i adl1

,...,2 i adln
are real and skew symmetric and as such they are part of a basis ofso(n).

Since

dim ~so~n!!5
n~n21!

2
5

N423N212

2
,

10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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for N.2 then matrices2 i adl1
,...,2 i adln

span only a proper subalgebra adsu(N) of so(n). For
example, forN53, n5dim(su(3))58, while dim(so(8))528. In the Liouville equation~4!, the
propagator forr corresponding to the HamiltonianH is an orthogonal matrix,

r~ t !5g~ t !r~0!, g~ t !Pexp~adsu(N)!#SO~n!

such thatġ(t)52 i adH g(t), g(0)5I . The action of anygPSO(n) on r is isometric and as such
it preserves the inner productiri.

C. Coherent control of Hamiltonian dynamics

Assume that the HamiltonianH is composed of a time-invariant partH0 representing the free
evolution of the system plusq time-varying forcing terms representing the interaction withq
external fields, modeled semiclassically,

H~ t !5H01 (
k51

q

uk~ t !Hk , 2 iH 0 ,2 iH kPsu~N!,

with the parametersuk representing the control fields. Consider a pure state of ketuc&PS,HN

~whereS is the sphere inN-dimensional Hilbert space! and its Schro¨dinger equation

i uċ&5H0uc&1 (
k51

q

ukHkuc&, uc~0!&5uc0&. ~5!

The sphereS in H N is a homogeneous space of SU(N). Compactness of SU(N) plus transitivity
of the SU(N) action onS in this case guarantee the following~see Ref. 12 for the origina
formulation, Ref. 4 for a thorough discussion and Ref. 1 for more material on Lie alge
transitive onS!:

Theorem 3: If Lie(2 iH 0 , 2 iH 1 ,...,2 iH q)5su(N) then system (5) is controllable.
By computing the ~real! dimension of such Lie algebra dim(Lie(2 iH 0 ,...,2 iH q))
5dim(su(N))5n5dim(S).

In the following we will always consider the controllable case for the wave functionuc&.
Assumption A1: System (5) is controllable.
Passing to density matrices, for a mixed stater driven by the same HamiltonianH(t) the

corresponding forced Liouville equation written in terms of vector of coherences is

ṙ52 i adH0
r2 i (

k51

q

uk adHk
r. ~6!

The vector fields2 i adH0
,...,2 i adHq

corresponding to the Hamiltonian dynamics lack the tra
lation component and belong to a subalgebra adsu(N) of so(n). Just like the Lie group SU(N) is
acting transitively on the unit sphere onH N, so the orthogonal group SO(n) is acting transitively
on a sphereiri25const<12 (1/N). By dimension counting, exp(adsu(N)) is not acting transitively
on such sphere ifN.2. In fact, it is well known that coherent control cannot modify the eig
values ofr, and so controllability can occur only inside the leaf of the foliation ofr ~determined
by the eigenvalues! that one starts with. See Ref. 20 for a description of the kinematic equival
classes of density matrices in the context of dynamical control, or Ref. 13 for a complete de
tion of the invariants of motion.

IV. CONTROLLABILITY OF MARKOVIAN MASTER EQUATIONS

The requirement of tr(r2)<1 for the density operator is reformulated in the vector of coh
ences parametrization asi r̄i2<1. ThusB̄n has to be made invariant by the quantum dynami
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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evolution. The main feature of the master equation is to capture all the possible infinite
generators that fulfill this condition. Obviously, also the driven master equation has to live oB̄n,
and all controllability questions have to be restricted toB̄n.

A. Master equation

Calling LD the superoperator representing the relaxing/dissipating part of the dynamics,
basis$l j% of traceless Hermitian matrices the Markovian master equation is expressed as8

ṙ5LH~r!1LD~r!52 i adH~r!1
1

2 (
j ,k51

n

ajk~@l j , rlk#1@l jr, lk# !

52 i @H, r#1
1

2 (
j ,k51

n

ajk~2l jrlk2$lkl j , r%!, ~7!

where the Hermitian matrixA5(ajk) is positive semidefinite,A>0, and$ • , • % is the anticom-
mutator. For the basis$l j%, unlike a Lie bracket which is linear in the generators, the antico
mutator has an affine structure:$l j , lk%5 (2&/N) d jkl01( l 51

n djkll l , with djkl the real and
fully symmetric tensor. The expression of~7! in terms of vector of coherences is as follows:

ṙ52 i adH r1 (
j ,k51

n

ajk~L jkr1vjkr0! ~8!

with L jk n3n complex matrix of mixed symmetry andvjk imaginaryn vector given by

L jk5~L jk! lr 52
1

4 (
m51

n

~~ f jmr1 id jmr! f kml1~ f kmr2 idkmr! f jml!,

~9!

vjk5
i

AN
@ f jkl¯ f jkn#T.

B. Coherent control of master equations

Under the assumption of weak and high frequency control fields, it is acceptable to a
that no time dependence is induced in theLD term by the external fields. Adding the controls, E
~8! modifies as23

ṙ5LH0
r1 (

k51

q

ukLHk
r1LDr52 i adH0

r2 i (
k51

q

uk adHk
r1 (

j ,k51

n

ajk~L jkr1vjkr0! ~10!

or, in homogeneous coordinates and callingL̄ jk5@vjk

0
L jk

0 #, j ,k51,...,n:

rG5L̄r̄5L̄H0
r̄1 (

k51

q

ukL̄Hk
r̄1L̄Dr̄, r̄PB̄n

5F0 0

0 2 i adH0
G r̄1 (

k51

q

ukF0 0

0 2 i adHk

G r̄1 (
j ,k51

n

ajkL̄ jkr̄. ~11!

The state of~11! is living on Rn11 and is constrained by the positivity ofr requirement to belong
to B̄n. However, the dissipation termLD is not coherent and as such it enlarges the integral gr
of ~11! from exp(adsu(N)) to one of the Lie groups properly containing it. Examples are SO(n, R),
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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SL(n, R), GL1(n, R), the connected component of GL(n, R) containing the identity, or their
semidirect extensions SO(n, R)sRn, SL(n, R)sRn, and GL1(n, R)sRn.

SinceA is Hermitian, the number of independent parametersajk is n2. It is convenient to
rearrange then2 degrees of freedom in the following manner. From~9!, it is straightforward to
check that Re@(Lkj)lr#5Re@(Ljk)lr#, Im@(Lkj)lr#52Im@(Ljk)lr# and thereforeLk j5L jk* . If we call
L jk

R5Re@(Ljk)lr# and L jk
I 5Im@(Ljk)lr#, then with respect to index permutationL jk

R is symmetric,

Lk j
R5L jk

R while L jk
I is skew-symmetric,Lk j

I 52L jk
I . Similarly, the Hermitianity ofA implies ak j

5ajk* or, if we write ajk
R5Re@ajk# andajk

I 5Im@ajk#, ak j
R5ajk

R , ak j
I 52ajk

I . Therefore,

ajkL̄ jk1ak jL̄k j5~22d jk!ajk
RF0 0

0 L jk
RG12ajk

I F 0 0

ivjk 2L jk
I G , 1< j <k<n. ~12!

To haveA>0, a number of constraints among theajk must be imposed like, for example,aj j

5aj j
R>0 andaj j akk>(ajk

R)21(ajk
I )2 or uajku<(aj j 1akk)/2.

Our aim here is to draw conclusions about whichr̄ can be reached by means of cohere
control. In~11!, unlike(k51

q ukL̄Hk
, bothL̄H0

andL̄D have integral curves that can flow only alon

the positive semiorbit and, in control terms,L̄H0
plays the role of the drift andL̄D that of a

disturbance. Classically, a disturbance can be treated, for example, as a parametric family o
fields with parameters belonging to admissible intervals~hereajk such thatA>0). However, in
the case ofL̄D parametric the master equation becomes a differential inclusion and little ca
said about its controllability properties. Therefore in this work we will assume to be dealing
with a precisely known value ofA, hence ofL̄D .

Assumption A2: The parameters ajk , j ,k51,...,n are fixed and known exactly.
Consequently we can treatL̄D as a part of the drift term~together withL̄H0

) and use the tools
of Sec. II.

Under the assumption of unitary controllability, the Lie algebrag of interest here is the
smallest Lie algebra of real matrices containing adsu(N) and L̄H0

1L̄D and closed with respect to
the matrix commutation

g5Lie~L̄H0
1L̄D , L̄H1

,...,L̄Hq
!.

Onceg is computed, the system can be lifted toG,

ġ5L̄H0
g1 (

k51

q

ukL̄Hk
g1L̄Dg. ~13!

The following theorem gathers various results about accessibility and controllability for
tem ~11!. Concerning controllability, while forL̄D unital the results are sharp~and negative!, the
case ofL̄D affine is more difficult to treat. In fact, in this case, in spite of the lack of small-t
controllability it may happen that points that are not reachable in short time are reachableT

large enough and even that cl(R(r̄i))5B̄n asymptotically (cl(• ) means closure!. The atom with
spontaneous emission discussed in the examples of Sec. V is one such case. Essentially
depends on the existence of a fixed point for the master equation and on it being on the bo
of B̄n, ] B̄n. However, even in this case] B̄n is reached only asymptotically and therefore t
system fails to be controllable in finite time.

Theorem 4: Under assumptions A1 and A2, we have the following:
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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(1) System (11) is accessible inB̄n if and only if g5gl(n,R) or g5gl(n,R)sRn;

(2) System (11) is never small-time controllable inB̄n for L̄DÞ0;

(3) System (11) is never Tf-controllable in B̄n for any Tf.0 and L̄DÞ0;

(4) the system (11) is never controllable inB̄n for L̄DÞ0 unital.

Proof: The proof of Part~1! follows from Theorem 2. The only transitive Lie algebras onR0
n

~and thus onB̄n) are sl(n, R) and gl(n, R) and their semidirect extensionssl(n, R)sRn and
gl(n, R)sRn. Recall that matrices insl(n, R) are traceless and that, using the decomposit

gl(n, R)5sl(n, R) % span(I n) (I n the n3n identity matrix!, if tr( L̄D)5na and Ī 5@0
0

I n

0 #, L̄D can

be split asL̄D5a Ī 1L̃D , aPR, a,0, L̃DPsl(n, R)sRn. But sinceaj j >0, in order forL̄D to be
traceless it must beaj j 50 ; j 51,...,n and hence, fromuajku<(aj j 1akk)/2 all ajk50. Therefore
only gl(n, R) andgl(n, R)sRn are compatible withA>0.

To prove Part~2!, one needs to show that the initial conditionr̄i does not lie in int(R(r̄i)). It

is quite easy to verify it forL̄D unital. In fact, if the initial stater̄i is such that 0,i r̄i i5d<1, then

for the Hamiltonian part ^̂ (L̄H0
1(k51

q ukL̄Hk
)r̄i , r̄i&&50 while L̄D is pointing inward:

^̂ L̄Dr̄i , r̄i&&,0. Therefore, the ball of radiusd is invariant for the flow of~11! and r̄i lies on the

boundary ofR(r̄i). For L̄D affine, the lack of small-time local controllability is automatical
verified for pure statesi r̄i i51, because the physics of the problem imposes thatr̄ such that
i r̄i5A11e, e.0 is not admissible. Writing the integral curves of the control system asr̄(t)

5F(T exp*0
t L̄(t)dt)(r̄i)5g(t)r̄i with T the Dyson operator, we can lift the dynamics to t

system~13! with initial condition g(0)5I . r̄i¹ int(R(r̄i)) for i r̄i i51 implies that the reachabl
set R(r̄i)5RGr̄i cannot be transitive on any neighborhood ofr̄i and that for the lifted system
I ¹ int(RG). But, due to right invariance, the properties of accessibility, controllability, and t
sitivity have a global character and thereforeRG is not transitive for any neighborhood of an

r̄iPB̄n.
Concerning Part~3!, if a finite timeTf is fixed, the reachable setR(r̄i , <Tf) for the master

equation is always only a Lie semigroup. In fact, if the fixed point ofL̄D ~when it exists! belongs

to int(R(r̄i , <Tf)) then cl(R(r̄i , <Tf))#cl(R(r̄i))�B̄n; if instead it belongs to] B̄n then

cl(R(r̄i , <Tf))�cl(R(r̄i))5B̄n. Even if a fixed point does not exist, we have that the norm or̄i

can grow only if^̂ L̄Dr̄i , r̄i&&.0 and thati r̄(t)i can approach 1 at most ast→`. SinceL̄H0
and

L̄H1
,...,L̄Hq

preserve the length, excluding the trivial cases the control cannot speed up th

vergence to] B̄n from its ‘‘best’’ initial condition. But even in that case convergence is o

asymptotic. Therefore, for any fixedTf the open setR(r̄i , <Tf) cannot be all ofB̄n and neither
can its closure.

Finally, the proof of noncontrollability inB̄n for L̄D unital follows from the same argumen
used above in Part~2!. h

For the system lifted to its integral group, the small-time controllability property collapses
controllability and we have the following.

Corollary 1: The ‘‘lifted’’ system (13) is accessible for G5GL1(n, R) or G

5GL1(n, R)sRn but it is never controllable on G forL̄DÞ0.
Proof: The first part is obvious, since accessibility on the Lie group is a necessary con

for accessibility on the homogeneous space. Concerning controllability, from the proof of T
rem 4, Part~2!, for the system~13!, I ¹ int(RG). But, for Lie groups, such property is a global on
and therefore the system is never controllable. h

Another way to prove the previous corollary is via piecewise constant controls: in this

g(t)5T exp*0
t L̄(t)dt5) j 51

r exp((L̄H0
1L̄D1(k51

q ukj
L̄Hk

)(t j2t j 21)) and using the formula

det(exp(•))5exp(tr(•)) we have det() j51
r exp((L̄H0

1L̄D1(k51
q ukj

L̄Hk
)(t j2t j 21)))

5exp((j51
r tr((L̄H0

1L̄D1(k51
q ukj

L̄Hk
)(t j2t j 21)))5exp(tr(L̄D)t)<1. Therefore, g(t)
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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PGL1(n, R) or g(t)PGL1(n, R)sRn ~only in these cases~13! is accessible! must be such tha
det(g(t))<1 and cannot generate the whole Lie group.

Yet another method to show the same thing is to use the necessary condition of Lemma
Ref. 12. Write L̄D5a Ī 1L̃D , aPR, a,0, L̃DPsl(n, R)sRn. Since @ Ī , F̄#50 ; F̄
Pgl(n, R)sRn, under the assumption of accessibility the ideal ing generated by the contro
vector fields coincides with the derived subalgebrag15@g, g# ~and span(Ī ) with the center ofg!

and it is contained insl(n, R)sRn. A necessary condition forRG5G is that exp((L̄H0
1L̄D)t)

Pexp(g1) ~i.e., to SL(n, R) or to SL(n, R)sRn! for somet.0 which is obviously never true.
For L̄D unital, the reachable sets are balls inRn ~centered in 0! and are completely charac

terized by the following monotonicity property.
Corollary 2: If the system (11) is accessible and ifL̄D unital then R(r̄i , <T1)�R(r̄i ,

<T2); 0,T1,T2 and R(r̄i) is the ball of radiusi r̄i i .
Proof: It follows from the observation above thatr̄n of norm i r̄ni lies on the boundary of the

set reachable fromr̄n by the integral curves of~11!. If r̄n5r̄(T1)5F(T exp*0
T1L̄(t)dt)(r̄i), then

R(r̄i , <T2)5R(r̄i , <T1)øR(r̄(T1), <T22T1). Notice that this does not requireL̄D to have a
fixed point. Accessibility of~11!, in fact, guarantees thatr̄(t) can be placed on any point of th
sphere of radiusi r̄(t)i and therefore, ast→`, ~11! can be made to tend to the origin regardle
of the existence of a fixed point forL̄D . HenceR(r̄i) is anything inside the ball of radiusi r̄i i .h

V. TWO LEVEL SYSTEMS

For two level systems,r is the usual Bloch vector. Calllk5(1/&) sk , kP$0,x, y, z% the
rescaled~identity and! Pauli matrices. Then in the$lk% basis

r5Fr00 r01

r10 r11
G5r0l01rxlx1ryly1rzlz5

1

& F 1

&
1rz rx2 iry

rx1 iry
1

&
2rz

G ~14!

and r5@rx ry rz#
T, where rk5tr(rlk), i.e., r05(1/&) , rx5& Re@r01#, ry

52& Im@r01#, and rz5(1/&) (r002r11). In our case, $l0 , lk%5&lk , $l j , lk%
5&d jkl0 , ; j ,kPI5$1, 2, 3%. Similarly to ~14!, the HamiltonianH can be written as

H5(
kPI
&hklk5F hz hx2 ihy

hx1 ihy 2hz
G

and, in the adjoint representation, from2 i adH5(2 i adH)pm5(( l PIhl f lpm)pm ,

2 i adH5F 0 2hz hy

hz 0 2hx

2hy hx 0
G5hxF 0 0 0

0 0 21

0 1 0
G1hyF 0 0 1

0 0 0

21 0 0
G1hzF 0 21 0

1 0 0

0 0 0
G .

~15!

Specifying the coherent controls:hk5(h0k
1uk), k51, 2, 3, whereh0k

are the basis components o
the time-independent free HamiltonianH0 anduk5uk(t), k51, 2, 3, the control parameters~some
of the h0k

or uk may be 0!. In the homogeneous coordinates, the vector field for the Hamilto
acquires only a zero translation, and, from~15!, the infinitesimal generators of the cohere
rotations are
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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M̄15F 0 0 0 0

0 0 0 0

0 0 0 21

0 0 1 0

G , M̄25F 0 0 0 0

0 0 0 1

0 0 0 0

0 21 0 0

G , M̄35F 0 0 0 0

0 0 21 0

0 1 0 0

0 0 0 0

G .

HenceL̄H0
5(k51

3 h0k
M̄ k and L̄Hk

5M̄ k , k51, 2, 3. In this case~12! simplifies to

ajkL̄ jk1ak jL̄k j5F 0 0

2ia jk
I vjk ~22d jk!ajk

RL jk
G . ~16!

The nine degrees of freedom ofA ~constrained by the positive semidefiniteness requirement! are
captured by the nine real parameters~reindexed cardinally!,

$a4 , a5 , ...,a12%5$axy
R , axy

I , axz
R , axz

I , ayz
R , ayz

I , axx
R , ayy

R , azz
R%.

In terms ofa4 ,...,a12, the matrixA is

A5F a10 a41 ia5 a61 ia7

a42 ia5 a11 a81 ia9

a62 ia7 a82 ia9 a12

G .

In order to impose the positive semidefiniteness ofA, a sufficient condition is that all the principa
minors have nonnegative determinant, i.e.,

a10>0, a11>0, a12>0, ~17!

a10a11>a4
21a5

2 , a10a12>a6
21a7

2 , a11a12>a8
21a9

2, ~18!

a10a11a122a10~a8
21a9

2!2a11~a6
21a7

2!2a12~a4
21a5

2!12a4~a6a81a7a9!22a5~a6a92a7a8!>0.

The infinitesimal generators corresponding to this parametrization are linear combinations
L̄ jk . Numbering in the same fashion as theajk

R ,ajk
I parameters, we obtain the nine linear

independent generators,

M̄45L̄xy1L̄yx5F 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

G , M̄55 i ~ L̄xy2L̄yx!5F 0 0 0 0

0 0 0 0

0 0 0 0

22 0 0 0

G ,

M̄65L̄xz1L̄zx5F 0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

G , M̄75 i ~ L̄xz2L̄zx!5F 0 0 0 0

0 0 0 0

2 0 0 0

0 0 0 0

G ,

M̄85L̄yz1L̄zy5F 0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

G , M̄95 i ~ L̄yz2L̄zy!5F 0 0 0 0

22 0 0 0

0 0 0 0

0 0 0 0

G ,
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M̄105L̄xx5F 0 0 0 0

0 0 0 0

0 0 21 0

0 0 0 21

G , M̄115L̄yy5F 0 0 0 0

0 21 0 0

0 0 0 0

0 0 0 21

G ,

M̄125L̄zz5F 0 0 0 0

0 21 0 0

0 0 21 0

0 0 0 0

G .

The above expression of the matrix generators is very convenient for our purposes, bec
splits the affine and linear parts of the action onr. Furthermore, it makes it straightforward t
check that Lie(M̄1 ,...,M̄12)5gl(3,R)sR3 ~recall that dim (gl(3,R)sR3)512!. See Ref. 21 for
a comparison.

In terms of the coherence vector and using homogeneous coordinates, Eq.~11! becomes

rG5 (
k51

3

h0k
M̄ kr̄1 (

k51

3

ukM̄kr̄1 (
k54

12

akM̄kr̄, r̄PB̄3. ~19!

Given L̄D , the corresponding Lie algebra is

g5LieS (
k51

3

h0k
M̄ k1 (

k54

12

akM̄k , (
k51

3

ukM̄kD #gl~3,R!sR3.

In general,g varies with the values ofak . A few prototypes of subalgebras obtained disregard
the assumptionA>0 are reported in Table I. OnceA>0 is imposed,case 1, case 3 andcase 4
are not anymore admissible~the argument is the same as in the proof of Theorem 4, Part~1!!.

The two level version of Theorem 4 is the following.
Theorem 5: For a two-level master equation, under assumptions A1 and A2 we have

(1) System (19) is accessible inB̄3 for L̄DÞa Ī 1(k55,7,9akM̄k , aPR, a,0.
(2) System (19) is never small-time nor finite-time controllable inB̄3 for LDÞ0.

Proof: The assumptionL̄DÞa Ī 1(k55,7,9akM̄k , a,0, rules outcase 6 andcase 7 of Table
I. By exclusion, or by exhaustive computation using the structure constant of the Appendix
nonnull L̄D such thatL̄DÞa Ī 1(k55,7,9akM̄k generates the Lie algebra ofcase 2 or case 5 as
required by Theorem 4. h

TABLE I. Examples of subalgebras ofgl(3,R)sR3 obtained for differentA ~not necessarilyA>0).

Coefficientsajk g

case 1 a55a75a950; a10 , a11 , a12 s.t. tr((k510
12 akM̄k)50 sl~3,R!

case 2 a55a75a950; a10 , a11 , a12 s.t. tr((k510
12 akM̄k)Þ0 gl~3,R!

case 3 a45a65a85a105a115a1250 adsu(2)sR3

case 4 a10 , a11 , a12 s.t. tr((k510
12 akM̄k)50 sl(3,R)sR3

case 5 a10 , a11 , a12 s.t. tr((k510
12 akM̄k)Þ0 gl(3,R)sR3

case 6 a45¯5a950, a105a115a12 adsu(2)% span(Ī )
case 7 a45a65a850, a105a115a12 (adsu(2)% span(Ī ))sR3
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Examples:In quantum information processing, some of theM̄k admit well-known physical
interpretations in terms of nonunitary quantum operations on a qubit normally used in the t
of error correction. For exampleM̄10, M̄11, andM̄12 are, respectively, the infinitesimal generato
of the one-parameter semigroups corresponding tobit flip, bit-phase flip, andphase flipchannels
~see Ref. 17, Sec. 8.4! and soa depolarizing channelhasa10, a11, anda12 all nonnull and equal.

~1! Depolarizing channel (L̄D unital): The depolarizing channel is given byL̄D5a Ī , a,0.
SinceL̄D commutes with everything, in this case the system is not accessible and furtherm
integral curves are not at all modified by coherent control. They will be pointing ‘‘isotropica
to the origin inR3.

~2! Phase flip (L̄D unital): The phase flip channel is also known as phase damping or
coherence channel and it is given byL̄D aligned with M̄12. The effect of this one-paramete
semigroup is to ‘‘contract’’ the Bloch sphere along thelx andly directions, leaving it untouched
along lz . As an example, check the accessibility property in correspondence of the follo
simple master equation:

rG5~u1M̄11u2M̄21u3M̄31a12M̄12!r̄,

i.e., controls available along all the three directions and no free Hamiltonian. The Lie al
Lie$M̄1 , M̄2 , M̄3 , M̄12% is computed using the structure constants given in the Appendix and
Jacobi identity to eliminate terms not linearly independent.

First level Lie brackets,

@M̄1 , M̄12#52M̄8 , @M̄2 , M̄12#5M̄6 .

Second level Lie brackets,

@M̄1 , M̄6#52M̄4 , @M̄1 , M̄8#5M̄122M̄11, @M̄2 , M̄6#5M̄102M̄11.

Therefore

g5$M̄1 , M̄2 , M̄3 , M̄4 , M̄6 , M̄8 , M̄102M̄12, M̄122M̄11, M̄12%5gl~3,R!

and the process is accessible. Notice thatM̄102M̄12 andM̄122M̄11 aretraceless, i.e., they belong
to sl(3,R) ~unlike M̄12) and therefore thatg15sl(3,R), as expected.

In this case, as it is easy to check~see also Ref. 3, Part 2, Sec. II.5! L̄D is not uniquely
relaxing, i.e., a fixed point for the uncontrolled system does not exist. Thus the asymptotic
depends from the initial condition and limt→` r̄5@r0 0 0 rz(0)#T. Once the control is added
however, the controlled system can be made to converge to anyr̃z in the interval

@2rz(0), rz(0)#. In particular, if r̃z50 thenR(r̄(0))5$r̄PB̄n s.t. i r̄i<i r̄(0)i%.
A Lie algebraic methodper seis normally not constructive. However, what it tells in this ca

is that full accessibility is achieved only at the second level of brackets. Therefore a
expansion cannot be truncated before that, if one wants to assure the generation of group
in arbitrary directions.

To understand what is happening to the integral curves of the system, it is convenient t
L̄D into part in sl~3! and part ingl~3!\sl~3! as in the proof of Theorem 4:L̄D5a Ī 1L̃D , a,0,
L̃DPsl(3). For L̄D5a12M̄12,

L̄D5a12M̄125a Ī 1L̃D52
2a12

3
Ī 1

a12

3 F 0 0 0 0

0 21 0 0

0 0 21 0

0 0 0 2

G .
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If F(t)5L̃D1(k51
3 (h0k

1uk(t))M̄ k , since@ Ī , F#50 ;FPgl(3,R), the flow of the system can
be written as the exponential

g~ t !5T expE
0

t

~a Ī 1F~t!!dt5exp~ ta Ī ! T expE
0

t

F~t!dt

and its action onr̄ as r̄(t)5exp(taĪ)T exp(*0
t F(t)dt)r̄(0). The ‘‘isotropic’’ contraction exp(taĪ)

corresponds to the depolarizing channela/2(M̄101M̄111M̄12) and cannot be reversed. Furthe
more, the complete positivity constraintA>0 imposes that thea Ī part must be dominant with
respect to theF(t) part. Thus, regardless of the control action, the overall result is a contracti
the flow in B̄3.

~3! Amplitude damping (L̄D affine): In terms of the master equation, the amplitude damp
channel corresponds to an atomic system with spontaneous emission. In a two-level syst
excited stateu1& can decay to ground stateu0& while emitting a photon. The process of spontaneo
emission is characterized in terms of the atomic ladder operatorss65sx6 isy and of the damp-
ing coefficientg↓ (g↓.0) as~see, e.g., the survey in Refs. 2 and 17, Sec. 8.4.1!

ṙ52 i adH~r!2
g↓
2

~2s2rs12s1s2r2rs1s2!. ~20!

If, for example,H5&(h03
l31(k51

3 uklk) then

rG5F 0 0 0 0

0 0 2h03
2u3 u2

0 h03
1u3 0 2u1

0 2u2 u1 0

G r̄1g↓3
0 0 0 0

0 2
1

2
0 0

0 0 2
1

2
0

1 0 0 21

4 r̄

5h03
M̄3r̄1 (

k51

3

ukM̄kr̄1
g↓
2

~M̄101M̄112M̄5!r̄. ~21!

Since the unital part ofL̄D is not proportional to the identity, by Theorem 5 spontaneous emis
is an accessible process. From~16!, the relaxation matrix is

A5
g↓
2 F 1 2 i 0

i 1 0

0 0 0
G .

As the unital part ofL̄D is invertible,~21! has a fixed point. SinceA>0 but notA.0, L̄D lies on
an exposed face of the coneA>0 and in correspondence the fixed point lies on]B̄3, i.e., it is a
pure state. Thus, asymptotically,L̄D admits a reachable set such that cl(R(r̄(0)))5B̄3. As men-
tioned in the proof of Theorem 4, coherent control can speed up the ‘‘purification’’ ofr̄ only for
certain values of the initial condition. In fact, from

1

2

di r̄i2

dt
5 ^̂ rG , r̄&&5 ^̂ h03

M̄3r̄, r̄&&1KK (
k51

3

ukM̄kr̄, r̄LL 1
g↓
2

^̂ ~M̄101M̄112M̄5!r̄, r̄&&

only the last term gives a nontrivial contribution and can become positive, for example, in c
spondence ofrz positive andrx , ry small enough,
10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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g↓
2

^̂ ~M̄101M̄112M̄5!r̄, r̄&&5
g↓
2

~2r0rz2~rx
21ry

21rz
2!2rz

2!5
g↓
2

~2r0rz2iri22rz
2!.

However, the purification process remains an asymptotic process since as soon as coheren
has broughtr to @0 0 1urzu#, then purification can occur only because ofL̄D . Once again, notice
how the role ofL̄D is essential in moving around in the reachable set.

VI. CONCLUSION

The aim of this work is to shed light on the possibility and limits of coherent contro
Markovian master equations using standard tools from geometric control theory. It turns ou
there is a remarkable complementarity between admissible quantum dynamical semigrou
controllability: in the vector of coherences representation an admissibleL̄D has to have a nonnul
component along the nonzero-trace one-dimensional vector subspace of the Lie algebra on3n
matrices~or its semidirect extensions!. A component in that direction guarantees noncontrollabi
in small and finite time. In the simple cases of unital dissipation operators, the fact tha
‘‘uncontrollable’’ direction has dimension 1 allows to obtain an order relation among the
reachable at different times by means of arbitrary coherent controls.

APPENDIX: STRUCTURE CONSTANTS OF gl„3,R…sR3

For the real Lie algebragl(3,R) in the basisM̄1 ,...,M̄12, the structure constants, call the
cjk

l , are real but not totally skew symmetric,

c1,2
3 5c1,4

6 5c1,5
7 5c1,8

125c1,11
8 5c2,3

1 5c2,6
105c2,8

4 5c2,12
6 5c3,4

115c3,6
8 5c3,7

9 5c3,10
4 5c4,8

2 51,

c4,10
3 5c5,8

7 5c5,10
5 5c5,11

5 5c6,9
5 5c6,12

2 5c7,8
5 5c7,10

7 5c7,12
7 5c8,11

1 5c9,11
9 5c9,12

9 51,

c1,3
2 5c1,6

4 5c1,7
5 5c1,8

115c1,12
8 5c2,4

8 5c2,5
9 5c2,6

115c2,9
5 5c2,10

6 5c3,4
105c3,8

6 521,

c3,9
7 5c3,11

4 5c4,6
1 5c4,7

9 5c4,9
7 5c4,11

3 5c5,6
9 5c6,8

3 5c6,10
2 5c8,12

1 521.
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