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Various notions from geometric control theory are used to characterize the behavior
of the Markovian master equation fdl-level quantum mechanical systems driven

by unitary control and to describe the structure of the sets of reachable states. It is
shown that the system can be accessible but neither small-time controllable nor
controllable in finite time. In particular, if the generators of quantum dynamical
semigroups are unital, then the reachable sets admit easy characterizations as they
monotonically grow in time. The two level case is treated in detail2@3 Ameri-

can Institute of Physics][DOI: 10.1063/1.1571221

[. INTRODUCTION

The main question that we discuss in this work is the following: to which density operators
can we drive the quantum Markovian master equation by means of coherent control? This problem
is of relevance whenever one is interested in quantum state manipulation in presence of nonunitary
evolution, for example in the context of quantum information processft§and of molecular
control?? The ultimate goal is obviously to know when and how the state of a quantum mechani-
cal system can be arbitrarily manipulated by means of unitawersible control operations or at
least to what extent this is possible.

The viewpoint we take in this work is that of “classical” geometric control theory which
provides us the tools to mathematically formalize and answer the questions posed. In classical
control terms, the set of density operators to which we can steer the system is catiealctieble
setand the problem of arbitrary manipulability of the state can be formulatedcasteollability
problem.

The infinitesimal structure of the so-called quantum Markovian master equation, i.e., the
“axiomatic” model for an open quantum system, is known since the works of Lindblaxd
Gorini—Kossakowski—Sudarstaand it is a prerequisite for the utilization of the Lie algebraic
controllability methods developed below. We use the so-calrtor of coherenceformulation
for the density matriX,i.e., the expectation values corresponding to a complete set of Hermitian
operators, here the Gell-Mann matrices. Such formulation allows to treat the master equation as
a control system with affine vector fields or, geometrically, as a system living on a homogeneous
space of a matrix Lie group and subordinated to an affine group action, plus constraints originating
from the complete positivity of the quantum dynamical semigroup. If we drop these constraints,
the system falls into a class of systems whose controllability properties were studied in detail in
the past, see Refs. 10 and 19 for a general overview, and Refs. 6, 7, and 11 for the particular case
of affine fields. Including the complete positivity requirements totally alter these results, because
of the relaxation it induces.

The qualitative difference between studying the master equation and its controlled counterpart
is that the master equation is an ODE whose solution, obtained integrating a single vector field, is
a one parameter semigroup; the presence of control parameters in the controlled master equation
implies that we have to consider a family of vector fields simultaneously, and therefore the
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admissible flow is a multiparameter semigroup or Lie semigréupach a semigroup is the
reachable set. When the reachable set is large enough to be a subgroup or at least to act transitively
on the homogeneous space, then we have controllability. The problems arise when the reachable
semigroup is not a group, as in the case of the controlled master equation. A novel element with
respect to, for example, the control of Satliger equatiorfsis that in the master equation one

has to deal with a trudrift term, i.e., a vector field which is both noncontrollable and nonrecur-
rent. Then it can happen that although it(@dten) possible to generate motion in any direction

(i.e., we have the accessibility propextthe system in never controllable in finite time because the
flow cannot be reversed. In other terms, the reachable set may be open and dense in the space of
admissible density operators, but the initial condition of the controlled master equation always lies
on the boundary of such set for any finite time and therefore it is not possible to reach arbitrary
points in its neighborhoods. The vector of coherences representation is very useful in this respect,
as it allows to explain the lack of controllability in terms of the trace of the dissipation/relaxation
superoperator. In fact, the main reason for noncontrollability lies in the structure of the nonunitary
operators given by complete positivity. When such infinitesimal generators is unital this is clearly
visible: for the density operatqgs, tr(p) gives the level sets of a quadratic Lyapunov function
centered in the origin. In this case, the controlled dynamics is stable and the control alone allows
only to move within one of the level sets, not to pass from one level set to another. Since the
nonunitary operator is pointing inward, as time passes also the controlled integral curves can move
only inward and this establishes a monotonicity relation among the sets reachable at different time
instants. As pointed out, for example, in Ref. 22, the presence of a dissigatomnitary
operator is essential f@ny motion not confined to a sphere ! to be accomplished. Notice that

this holds regardless of the existence of a thermodynamic equilibrium, i.e., a fixed point for the
original uncontrolled master equation. For affine dissipation operators, the situation is slightly
more complicated and controllability may be recovered as a limit process. The atom with spon-
taneous emission is one such case and will be discussed in some detail. In this case, motion is not
confined to the inward of spheresit! and “purification” processes are possible.

The organization of the paper is as follows: in Sec. Il we review all the relevant notions
concerning controllability of bilinear/affine systems on homogeneous spaces of a Lie group; in
Sec. lll the formalism of the vector of coherences parametrization is recalled and used to discuss
controllability of Liouville dynamics; in Sec. IV the controllability of the master equation is
treated and the main Theorem formulated. Finally, in Sec. V the two-level case is discussed in
detail, first for general dissipation operators and then for few significant examples.

It is worth remarking that all our considerations make sense for finite dimensional quantum
systems.

II. DRIFT AND CONTROLLABILITY FOR BILINEAR CONTROL SYSTEMS

All properties introduced in this section are standard in geometric control and are adequately
surveyed for instance in Refs. 10 and 19. Consider the following bilinear control system:

q
X= Box+ E UkBkX,
k=1

1)
X(0)=x;,

where the controlau,,...,uq are real valued piecewise constant functions definedGm),
Bo,...,.Bq are square matrices ané: M, an analytic manifold of real dimension In this work:
M is Rj=R™{0} or somen-dimensional homogeneous spdtike a spherg contained inR", r
=n, or some subset oR" like a solid unit ball. The vector fiel@yx is called the drift and
B1U;1X,...,Bqugx are the control vector fields.

Givenx; e M, let us callR(x;, T) the reachable set frox at timeT>0 for the systen{1):

R(x;, T)={xeM s.t.x(0)=x; and x(T)=x, T>0, for some admissible controi,...,u,}.

Downloaded 10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 44, No. 6, June 2003 Controllability for Markovian master equations 2359

If R(Xi, <T)=Up<i=TR(X;, t), then thereachable sefrom X; is R(X;)=Ug<t=R(X;, 1). In
correspondence of a giveR; and of R(x;, =<T;), one can define the notions of finite time
controllability as follows.

Definition 1: Given F>0, system (1) is Fcontrollableif V x;, x; e M3 admissible control
functions y,...,uq such that the flow of (1) satisfie§®=x; and X(T) =X .
The existence of &; finite is important for the application discussed in this work. When, instead,
we are interested in controllability for any time T(x;), then we can use the following.

Definition 2: System (1) isontrollableif any x; € M is reachable from anyx M for some
admissible control functiony...,u.

Unlike the reachable set which accounts only for the positive time evolution of the trajectories
of the system, the orbi©(x;) requires to consider complete vector fields, i.e., defined on the
whole time axis:

O(xj))=UcpixeM s.t.x(0)=x; and x(t)=x, teR, for some admissible controj,...,uq}.

The difference betwee®(x;) andR(x;) corresponds to the difference between the accessi-
bility and controllability properties.

Definition 3: System (1) iaccessiblef R(x;, <T) contains nonempty open sets of M for all
T>0.

While accessibility guarantees the existence of open reachable sets, it does not say anything
on x; belonging to it.

Definition 4: System (1) ismall-time controllabléf x; belongs to the interior of the reachable
set intR(x;, T), for all T>0.

The accessibility property admits an algebraic characterization in terms of the Lie algebra
generated by the vector fiel@Xx,B;X,...,.Bgx, call it Lie(Byx,B;X,...,BgX).

Theorem 1: (Lie algebraic rank condition (LARC)): System (1) is accessible if and only if
dim (Lie(Box,B1X,...,Bgx)) =dim (M).

For bilinear systems, when accessibility holds there exists a Lie group of transformations, call
it G, of (finite) dimension greater or equal thaéh acting transitively orM and to which we can
lift the system. Invariance of the vector fields on a Lie group implies that the controllability
conditions are global and independent of the point of application. For example, foRlfathand
O(x;) we haveR(x;)=R¢gX; and O(x;)=OgX;, with Rg=R(l) and Og=O(l) reachable set
and orbit of the lifted system, where is the identity matrix ofG. Therefore we can work
indifferently with vector fields oM (BgX,B1u;X,...,BqugX) or with right invariant vector fields
on the Lie grougG (i.e., the matrice®,,B,u;,...,Bquq Of g, the Lie algebra oG), to which we
have lifted the system, starting from the identity®f

q
g=Bog+i§1 u(t)Big geG,

)
g(0)=1.

In particular, the LARC condition and the so-called orbit theorem guarante©thét the whole
G and thatM is nothing but a homogeneous spacésoéxpressed in terms of equivalence classes
asGx, xe M. The Lie algebragy is therefore equal to Lid,,...,B,) and the accessibility con-
dition reformulates as transitivity d& (or of g, with a common abuse of terminologgn M.
Theorem 2: System (1) is accessible if and onlyifs transitive on M
The LARC condition is only a necessary condition for controllability, even when it holds the
reachable set needs not be the whole Lie gr@pWhen Rg& Og the lifted system is not
controllable, the reason being that the drift is allowed to flow only along the time forward direc-
tion and may not be reversible by means of the control vector fields. In fact, the control vector
fields are “complete” in the sense that, sinag can assume both positive and negative values,
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once exponentiated they generate a one parameter subgrotpBxp¢(=0). On the contrary, the
drift produces only a subsemigroup etiy, t=0) and thusRg in general only has the structure
of a Lie semigroupof G.°

The case of a compact group is exceptional, since compact Lie groups do not admit semi-
groups: expB, t=0)=exp¢B, teR). HenceRs collapses inOg and the accessibility property
collapses into(“long time” ) controllability. The LARC condition then becomes necessary and
sufficient for controllability:R(Xx;) = Ogxi=Gx;=M, V X; € M.

In general, however, one has to deal with the casB@ibeing only a Lie semigroup. Even if
Rg is a proper semigroupR % G, it may still happen that the action &g on M is transitive.
In the literature, most results are in the form of sufficient conditions for controllability. For system
(1), examples are

(1) Reg=G andG acts transitively orM,
(2) Rg acts transitively orM,
(3) xjeintR(x;, T) VT>0.

For our case, none of theger similar) conditions hold and “negative” results have to be
established.

Affine vector fields cas@he case of affine vector fields generalizésto the following set of
ODEs:

q
X=BgX+boXg+ >, (UBX+byXo),
k=1

©)
x(0)=x;,

wherex, is a real constant. It corresponds to a Lie group of transformations having the structure
of a semidirect producK@®@V with V typically a n-dimensional real vector space aKda Lie

group acting linearly on it. The dimension &@©V is dim(K)+n. By choosing the following
homogeneous coordinates for the state[x,, x']", the system(3) recovers the linear form of

(1):

g
%=Box+ X, UBX,
=1

Wheregkz[gk gk]. The homogeneous coordinates allow to transform the affine actiki®&of on
x into linear action orx. If g=[12]1e G=[},2], the action® : GXM—M is

D@ =0%= 1yt o
so that the affine vector fields induced wiby ® are
@, (B)(X)=Bx=|g 0 }
X+ bxg
and the Lie bracket is
_ 0 0

[A,B]=

Ab—Ba [A,B]

Also for affine systems, special sufficient conditions for accessibility and controllability have been
devised, see Refs. 6, 7, and 11 for details.
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[II. CONTROLLABILITY OF HAMILTONIAN DYNAMICS

To describe differential equations for density operators, we make use of the so-called vector of
coherences formulation. A few essential facts about it are reported below; see, for example, Ref. 3
for a thorough description and further references.

A. Density operators and vectors of coherences

The state of a quantum mechanical system inNadimensional Hilbert spacé(N can be

described in terms of a trace 1 positive semidefinite Hermitian opesaiaited the density matrix.
If the density operator is entirely characterized by a wave fundtipnthen the system is said to
be in a pure statep is defined a(t)=|¢)(¢| and tr(p?)=1. If instead we have a statistical
ensemblep(t) == ,p®| M) (D] for p'=0 and=]. ;pN=1, then the system is said to be in
a mixed state characterized by the pdips’, |4} and tr(p?)<1. In both cases, the properties
of Hermitianity p=p' and of unit trace tg) =1 imply that theNX N matrix representing the
density operator depends ar= N?—1 real parameters. Up to the imaginary uhlt< N traceless
Hermitian matrices form the Lie algebray(N) of dimension exactlyn. If to it we add the
(properly normalizegunit vector, then we obtain a complete basis for the density operator of an
N-dimensional quantum mechanical system. In factNhdimensional Pauli matrices; , see, for
example, Ref. 14 for their explicit expression, and the identity matgix N~1/2|, form a com-
plete orthonormal set of basis operators fotorthonormal in the sense that )tr()\k) dj)- In
particular, thenp=Z3{_otr (o)A ))\j==[_op\j, with po=N"1'2 fixed constant and the real
parameterg; giving the parametrlzanon gb. Since thex,, k=1,...n, form a compete set of
observable operators, the=tr(p\;) are expectation values pf CaII p=[p1"'pn]T suchvector
of coherenceof p. Due to the constant component alokg, p is living on an affine space
characterized by the extra fixed coordingig=N"*'2. Suchn-dimensional Liouville space of
vectorsp=[pop1 -pnl =[pop']" has Euclidean inner product given by the trace mefifd:

={(p. p)=tr(p?). The condition trp?)<1 then translates ip-space agp belonging to the
solid affine ball of radius % (1/N) centered afpo0--- 0]", call it B", for all positive times. The
surface of such ball generalizes the idea of Block sphei¢ dimension and corresponds to pure
stateg[p]?=1. In terms of vector of coherences, the conditiopfj&1 becomes the ballp|?
<1- (1/N) centered at the origin.

B. Hamiltonian dynamics

If H is a constant finite-dimensional Hamiltonian, for the density operator the Liouville
equation is given by

p(t)=—i[H, p]=—iady(p).

If —iH esu(N), then—i ad, is a so-called commutator superoperator, i.e., a linear operator in the
n-dimensional Liouville space gb vectors. In terms op, the action of—i ad, is linear,

p=—iad,p, (4)

H being traceless and Hermitian, in the;} basis:H =3/ ,h\,. The process of passing from
to p is mathematically equivalent to passing to the adjoint representation of the Lie atgéhida
In fact, the corresponding basis in the adjoint representation is given bythe matrices
ad, ,...,aqd of elements (ad);=if;x with f;; real fully skew-symmetrigwith respect to the
permutation of any pair of indexesensor. Thus—iady=—iZ[_;h, ad\l. The nXn matrices
—i aq\l,...,—i aq\n are real and skew symmetric and as such they are part of a basi$n)t
Since

n(n—1) N*-3N?+2
2 2 ’

dim (so(n))=
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for N>2 then matrices—i aq\l,...,—i aqn span only a proper subalgebra,agd) of so(n). For
example, folN=3, n=dim(su(3))= 8, while dim(so(8))=28. In the Liouville equatiori4), the
propagator fogp corresponding to the Hamiltonian is an orthogonal matrix,

p()=9(1)p(0), g(t) e expad,n)) CSAN)

such thagy(t)=—i ad, g(t), g(0)=I. The action of anyg e SO(n) on p is isometric and as such
it preserves the inner produ|.

C. Coherent control of Hamiltonian dynamics

Assume that the Hamiltoniad is composed of a time-invariant patt, representing the free
evolution of the system plug time-varying forcing terms representing the interaction wjth
external fields, modeled semiclassically,

q
H(t)=Ho+ >, udt)Hy, —iHg,—iHesu(N),
k=1

with the parameters, representing the control fields. Consider a pure state of ket SC HN
(wheres is the sphere ilN-dimensional Hilbert spageand its Schrdinger equation

q
ilézf>=Ho|w>+k§1 UeH9),  [4(0))=]4o). (5

The spheré in HN is a homogeneous space of $N)( Compactness of SW) plus transitivity
of the SUN) action onS in this case guarantee the followirigee Ref. 12 for the original
formulation, Ref. 4 for a thorough discussion and Ref. 1 for more material on Lie algebras
transitive onS):

Theorem 3: If Lie(—iHg, —iH4,...,—iHy)=su(N) then system (5) is controllable
By computing the (rea) dimension of such Lie algebra dim(Lie(Hg,...,—iHg))
=dim(su(N))=n=dim(S).

In the following we will always consider the controllable case for the wave fungtian

Assumption Al: System (5) is controllable

Passing to density matrices, for a mixed statdriven by the same HamiltoniaH (t) the
corresponding forced Liouville equation written in terms of vector of coherences is

q
p=—iady p=i2, ucad,,p. (6)
The vector fields—i aq40,...,—i amq corresponding to the Hamiltonian dynamics lack the trans-

lation component and belong to a subalgebrgggof so(n). Just like the Lie group SWN) is

acting transitively on the unit sphere @1V, so the orthogonal group S@) is acting transitively

on a sphergp||®= consts1- (1/N). By dimension counting, exp(aghy) is not acting transitively

on such sphere IN>2. In fact, it is well known that coherent control cannot modify the eigen-
values ofp, and so controllability can occur only inside the leaf of the foliatiorp gfletermined

by the eigenvalugghat one starts with. See Ref. 20 for a description of the kinematic equivalence
classes of density matrices in the context of dynamical control, or Ref. 13 for a complete descrip-
tion of the invariants of motion.

IV. CONTROLLABILITY OF MARKOVIAN MASTER EQUATIONS

The requirement of tg?) <1 for the density operator is reformulated in the vector of coher-
ences parametrization #pl|><1. ThusB" has to be made invariant by the quantum dynamical
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evolution. The main feature of the master equation is to capture all the possible infinitesimal
generators that fulfill this condition. Obviously, also the driven master equation has to Ii%& on
and all controllability questions have to be restricted3to

A. Master equation

Calling L the superoperator representing the relaxing/dissipating part of the dynamics, in the
basis{\;} of traceless Hermitian matrices the Markovian master equation is expredsed as

n

1
p=Lulp)+Lo(p)=—1adi(p)+ 5 2 a([h. PN +INP M)

n

) 1
=—i[H.pl+5 2 a2\ ph— Ak, p}), v
j.k=1

where the Hermitian matriA=(a;) is positive semidefiniteA=0, and{ -, - } is the anticom-
mutator. For the basif\}, unlike a Lie bracket which is linear in the generators, the anticom-
mutator has an affine structurgx, \i}= (2v2/N) &j\o+={_,djqN;, with dj,, the real and
fully symmetric tensor. The expression @ in terms of vector of coherences is as follows:

n

p=—iady P+J_ él ajk(Ljkp+Vikpo) (8

with Lj, nXn complex matrix of mixed symmetry ang, imaginaryn vector given by

12 _ _
I—jk:(ij)Ir: - ZmEzl ((fjmr+|djmr)fkml+(fkmr_|dkmr)fjml)v
©)

i
ij:\/_ﬁ[fjkl"'fjkn]T-

B. Coherent control of master equations

Under the assumption of weak and high frequency control fields, it is acceptable to assume
that no time dependence is induced in fhgterm by the external fields. Adding the controls, Eq.
(8) modifies a8

q q n
p=Lugp+ 2, ULt Lop=—1ady p=1 2, ucac pt+ 2 a(Lip+Vicpo) (10
or, in homogeneous coordinates and caIIl_r]g:[SjkEjk], j,k=1,...n:

q
p=Lp=Lupt 2, Ul p+Lop, peb’
n

F+j él ajLjkp- (11)

q

pt 2 Uy

k=1

0 0
0 —iady

0 0
|0 —iady

The state of11) is living on R"** and is constrained by the positivity pfrequirement to belong
to B". However, the dissipation terffiy is not coherent and as such it enlarges the integral group
of (11) from exp(ad,(,) to one of the Lie groups properly containing it. Examples arer6@j,
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SL(n, R), GL*(n, R), the connected component of GL(R) containing the identity, or their
semidirect extensions S®(R)®R", SL(n, R)Y®R", and GL" (n, R)@R".

Since A is Hermitian, the number of independent paramegggsis n2. It is convenient to
rearrange th@? degrees of freedom in the following manner. Fré@, it is stralghtforward to
check that RELy)]= Re[(LJk)|,] Im[(Ly)ir J=—Im[(Lj)y ] and thereforel ;= Jk If we call

]k—Re[(LJk),r] and L]k—lm[(LJk),r] then with respect to index permutatlchrﬁ is symmetric,

L Lm while L3, ik 1S skew-symmetncl_kl L]k S|m|IarIy the Hermltlanlty ofA implies ay;

—aJk or if we wntea =Reay] anda =Im[ayl, akJ a]k, akJ . Therefore,
_ _ " 0 O S 0 0
L Fagli=(2=6)a +2a;| . 1<sj<ksn. 12
AL i+ agjLy;=( i)k 0 Lﬁ aj Vi _ijk ] n (12

To haveA>O a number of constraints among tag must be imposed like, for example;;
=0 andaj;aw= (al)?+(a})? or |aj| =< (ay; +a) /2.
Our aim here is to draw conclusions about whijgltan be reached by means of coherent
control. In(11), unlike EE=1uk£Hk, bothLy andLp have integral curves that can flow only along

the positive semiorbit and, in control terms,, plays the role of the drift and’, that of a

disturbance. Classically, a disturbance can be treated, for example, as a parametric family of vector
fields with parameters belonging to admissible intervhrea;, such thatA=0). However, in

the case onD parametric the master equation becomes a differential inclusion and little can be
said about its controllability properties. Therefore in this work we will assume to be dealing only

with a precisely known value oA, hence onD
Assumption A2: The parameters;a j,k=1,...n are fixed and known exactly

Consequently we can tref, as a part of the drift ternttogether WlthLH ) and use the tools

of Sec. Il.
Under the assumption of unitary controllability, the Lie algelgraf interest here is the

smallest Lie algebra of real matrices containing,ag and ZHO+ ZD and closed with respect to
the matrix commutation

g= Lie(ZHo+ ZD y ZHI’ e ,ZHq).

Onceg is computed, the system can be liftedGo

q
0=Lng+ 2, Ulu 9+ Log. (13)

The following theorem gathers various results about accessibility and controllability for sys-
tem (11). Concerning controllability, while foy unital the results are shafpnd negativg the

case ofLp affine is more difficult to treat. In fact, in this case, in spite of the lack of small-time
controllability it may happen that points that are not reachable in short time are reachalble for
large enough and even that Bl(p;)) = B" asymptotically (cl(- ) means closupe The atom with
spontaneous emission discussed in the examples of Sec. V is one such case. Essentially this fact
depends on the existence of a fixed point for the master equation and on it being on the boundary
of B", 9B". However, even in this caseB" is reached only asymptotically and therefore the
system fails to be controllable in finite time.

Theorem 4: Under assumptions Al and A2, we have the following:
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(1) System (11) is accessible ¥t if and only if g=gl(n,R) or g=gl(n,R)®R";
(2) System (11) is never small-time controllableBffor £p+#0;

(3) System (11) is never;Tontrollable inB" for any T;>0 and ZD;EO;

(4) the system (11) is never controllablelifi for £+ 0 unital.

Proof: The proof of Par{(1) follows from Theorem 2. The only transitive Lie algebraskf
(and thus on@‘) are sl(n, R) and gl(n, R) and their semidirect extension$(n, R)©R" and
gl(n, R)®R". Recall that matrices isl(n, R) are traceless and that, using the decomposition
al(n, R)=sl(n, R)@span(,) (I, thenxn identity matriy, if tr( £p)=na andl_=[8?n], Lp can
be splitasCp=al +Lp, ae R, @<0, Lp e sl(n, R)®R". But sincea;; =0, in order forLp to be
traceless it must ba;;=0 V j=1,... n and hence, fronhajk|s(ajj +ay)/2 all aj=0. Therefore
only gl(n, R) andgl(n, R)®R" are compatible withA=0.

To prove Part2), one needs to show that the initial conditipndoes not lie in intR(p,)). It
is quite easy to verify it forl unital. In fact, if the initial statg; is such that &|p;||= §<1, then
for the Hamiltonian part (L + =3 uily )pr, p)=0 while Lp is pointing inward:
(Lop; , p)<0. Therefore, the ball of radius is invariant for the flow of(11) andp; lies on the
boundary ofR(p;). For ZD affine, the lack of small-time local controllability is automatically
verified for pure stategp;|=1, because the physics of the problem imposes ghatich that
Ipl=V1+e€, e>0 is not admissible. Writing the integral curves of the control systemp(&5s
ﬂl)(Texpr,Z(r)dr)(E):g(t)E with 7 the Dyson operator, we can lift the dynamics to the
system(13) with initial conditiong(0)=1. p; ¢ int(R(p;)) for |p]|=1 implies that the reachable
setR(p;) =Rgp; cannot be transitive on any neighborhoodppfand that for the lifted system
| ¢ int(Rg). But, due to right invariance, the properties of accessibility, controllability, and tran-
sitivity have a global character and therefd®g is not transitive for any neighborhood of any
peBn.

Concerning Par(3), if a finite time T; is fixed, the reachable s@&(p;, <T;) for the master
equation is always only a Lie semigroup. In fact, if the fixed poinfgf(when it existg belongs
to int(R(p;, <Tj)) then cl(R(p;, <T{))Ccl(R(p;))EB"; if instead it belongs tas B then
cl(R(p;, <T;))Scl(R(p;)) =B". Even if a fixed point does not exist, we have that the nori of
can grow only if(Zpp;, pi)>0 and thai[p(t)| can approach 1 at most &s». SinceZH0 and

Ly ,....Lyq preserve the length, excluding the trivial cases the control cannot speed up the con-
1 q

vergence tod B" from its “best” initial condition. But even in that case convergence is only
asymptotic. Therefore, for any fixeétk the open seR(p;, <T;) cannot be all of3" and neither
can its closure.

Finally, the proof of noncontrollability i3" for £y unital follows from the same argument
used above in Par®). O

For the system lifted to its integral group, the small-time controllability property collapses into
controllability and we have the following.

Corollary 1: The ‘“lifted” system (13) is accessible for &GL"(n,R) or G
=GL"(n, R)®R" but it is never controllable on G fofy+0.

Proof: The first part is obvious, since accessibility on the Lie group is a necessary condition
for accessibility on the homogeneous space. Concerning controllability, from the proof of Theo-
rem 4, Par(?2), for the systen{13), | ¢ int(R¢g). But, for Lie groups, such property is a global one
and therefore the system is never controllable. O

Another way to prove the previous corollary is via piecewise constant controls: in this case,
g(t) =Texpf})£(r)dr=er:1 exp(Ch,+ £D+Eﬁ:1uk1£Hk)(tJ~ —tj_1)) and using the formula
det(expf))=exp(tr(-)) we have del?\[}=1 exp((ﬁHOJr Lp+ 2§=1ukj£Hk) (t—t-1))
=exp(2}:1tr((£H0+ £D+EE:1ukj£Hk)(tj—tj_l)))zexp(tr(ED)t)sl. Therefore, g(t)

Downloaded 10 May 2005 to 147.122.4.77. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



2366 J. Math. Phys., Vol. 44, No. 6, June 2003 Claudio Altafini

eGL*(n, R) org(t) e GL*(n, R)®R" (only in these cased d) is accessiblemust be such that
det@(t))<1 and cannot generate the whole Lie group.
Yet another method to show the same thing is to use the necessary condition of Lemma 6.8 of

Ref. 12. Write Lp=al+Lp, aecR, a<0, ZLpesl(n,RY®R". Since [I,F]=0VF
e gl(n, R)Y®R", under the assumption of accessibility the idealgimenerated by the control
vector fields coincides with the derived subalgepra|[g, g] (and sparﬂ with the center ofy)
and it is contained isl(n, R)®R". A necessary condition foRg=G is that exp(EHo+ ZD)t)
e exp(g,) (i.e., to SLM, R) or to SL(n, R)®R") for somet>0 which is obviously never true.

For £y unital, the reachable sets are ballskh (centered in Dand are completely charac-
terized by the following monotonicity property.

Corollary 2: If the system (11) is accessible anddf unital then R(p;, <T;)ER(p;,
<T,)V0<T,<T, andR(p,) is the ball of radiug|p.

Proof: It follows from the observation above thaj of norm|p,|| lies on the boundary of the
set reachable from, by the integral curves dfLl). If Hvzﬁ(Tl)=<I>(Texpf$1£(r)dr)(ﬁ), then
R(p;, <Ty)=R(p;, <T)UR(p(T,), <T,—T,). Notice that this does not requirg, to have a
fixed point. Accessibility of(11), in fact, guarantees thai{t) can be placed on any point of the
sphere of radiugp(t)|| and therefore, as—=, (11) can be made to tend to the origin regardless

of the existence of a fixed point faf, . HenceR(p;) is anything inside the ball of radig;]|. ]

V. TWO LEVEL SYSTEMS

For two level systemsp is the usual Bloch vector. Call,=(1A2) o, ke{0,x, Y, z} the
rescaledidentity and Pauli matrices. Then in thi\,} basis

1 .
—tp, Px—Ipy
Poo. Pos Mo+ Py T Pyhy+ PN L2 (19
= =p Pt pyhyt+p A= —
P10 P11 RS Y ) 1
pxTipy ——p,

V2

and p=[px py p,l', Where p=tr(p\y), ie, po=(IN2), p=v2 Rdpol, py
=—v2 Im[py], and p,=(1W2)(poo—p10)- In our case, {Ng, N\i}=V2N, {Nj, N}
=V26jho, V ],keZ={1,2, 3. Similarly to (14), the HamiltonianH can be written as

h,  heih,
hetihy,  —h,

H= E ‘/ihk)\k:
keZ

and, in the adjoint representation, from ady=(—i ady) pm= (=20 fipm) pm

0 —h, hy 0 0 O 0 0 1 0 -1 0
—iady=| h, 0 —hyf=h|0 O —1|+h| O O O|+h,/1 O O],
—h, hy 0 01 O -1 0 0 0O 0 O
(15

Specifying the coherent controls;= (hok+ uy, k=1,2,3, wherehok are the basis components of

the time-independent free Hamiltonikhy andu,=u,(t), k=1, 2, 3, the control paramete(some
of the hok or u, may be 0. In the homogeneous coordinates, the vector field for the Hamiltonian

acquires only a zero translation, and, frqdb), the infinitesimal generators of the coherent
rotations are
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000 O 0 0 0 O 00 0 O
_looo ol _ o o o1 _ |oo0 -1 0
MiZlo 0 0 1" Mo 0 o0 o MT|o 1 o of

001 0 0 -1 00 00 0 O

HenceZHO=E§:1hokl\7k and ZHk= M, k=1,2,3. In this cas€12) simplifies to

0 0

aLjctaglig=| .. » Ry |-
K= =4 2|ajijk (2—5jk)ajijk

(16)

The nine degrees of freedom Af(constrained by the positive semidefiniteness requirensast
captured by the nine real parametémindexed cardinally

_ AR J R J R J R R R
{a4, as, ---valz}_{axyv Ayy s Axz) xzy Ayz,s Ayz, Byxs Ay, azz}’-

In terms ofay,..., 215, the matrixA is

aqg astias agtiay
A= a4—ia5 all a8+ia9 .
ag—ia; ag—iag aq

In order to impose the positive semidefinitenesé p sufficient condition is that all the principal
minors have nonnegative determinant, i.e.,

a;0=0, a;;=0, a;»=0, (17
2, .2 2, .2 2, .2
ajpai=aztas, adp=agtaz, apap=agtag, (18)
2, .2 2, .2 2, .2
aje11812— d10(Ag+ag) —a(agtaz) —aaz +as) +2a4(agag+azag) —2as(agdyg—azag) =0.

The infinitesimal generators corresponding to this parametrization are linear combinations of the

Ljk- Numbering in the same fashion as thﬁ,ajjk parameters, we obtain the nine linearly
independent generators,

0 0 0 O 0O 0 0 O

- 0 010 - 0O 0 0 O
4:ny+LyX: 0 1 0 0 ’ M5_|(ny Lyx): 0 0 0 0 !
0 0 0 O -2 0 0 O

0 0 0 O 0O 0 0O

_ 0 0 0 1 - 0O 0 0O
Me=Ly,+ L= 00 o ol M7=i(Ly,— L= 2 0 0 ol

01 0 O 0O 0 0 O

0 0 0 O 0O 0 0 O

- 0 0 0 O - -2 0 0 O
M8:Lyz+|-zy: o0 0 1l M9:|(Lyz_|—zy)_ 0 o 0 ol
0 0 1 O 0 0 0 O
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TABLE |. Examples of subalgebras gf(3, R)@®R® obtained for differenfA (not necessarilyA=0).

Coefficientsa;y g
case 1 as=a;=ag=0; a9, a;;, a,S.t. trEE2 ;M) =0 sl(3,R)
case 2 as=a;=ag=0; a9, 811, a1, S.t. rE L2, aM,) #0 gl(3,R)
case 3 a,=ag=ag=a;;=a;;=a;,=0 ad,,®R?
case 4 10, a1, a12S.L trEE2 @M, ) =0 sl(3, R)OR?
case 5 a0, 11, A2 St tr(EE2 1 @AM) #0 gl(3, R)OR?
case 6 ay=-=ag=0, ajp=an=as ad,,;)®span()
case 7 ay=ag=ag=0, ayp=an=arp (ad2)@span())®R?
0 0 O 0 0O 0 0 O
_ 0O 0 O _ 0O -1 0 O
M10= Lyx= 0 0 -1 , M= I-yy_ 0 0 0 )
0O 0 0 -1 0O 0 0 -1
0O O 0
- 0 -1 0
Mp,=L,,= .
12 zz 0 0 -1 0
0O O 0O O

The above expression of the matrix generators is very convenient for our purposes, because it
splits the affine and linear parts of the action @nFurthermore, it makes it straightforward to
check that LieM 4, ...,M 1) =gl(3, R)®R?3 (recall that dim (3, R)®R3) =12). See Ref. 21 for
a comparison.

In terms of the coherence vector and using homogeneous coordinaté€d,lFlojecomes

3 3 12
p= k§—:1 ho Myp+ k§_)1 uMp+ k§_)4 aMp, peB’. (19

Given ZD, the corresponding Lie algebra is

3 12 3
g=Lie| 2 ho M+ > aMy, 2, uMy|Cgl(3, R)OR.
k=1 k=4 k=1

In general,g varies with the values o, . A few prototypes of subalgebras obtained disregarding
the assumptio®=0 are reported in Table I. On&&=0 is imposedgase 1, case 3 andcase 4
are not anymore admissibléhe argument is the same as in the proof of Theorem 4, (Bgrt

The two level version of Theorem 4 is the following.

Theorem 5: For a two-level master equation, under assumptions A1 and A2 we have

(1) System (19) is accessible i for Lp+# al +Z_578xMy, aeR, a<0.
(2) System (19) is never small-time nor finite-time controllabl®irfor £+ 0.

Proof: The assumptiorfDqt al + D= 5'7'9ak|\7k, a<0, rules outcase 6 andcase 7 of Table
I. By exclusion, or by exhaustive computation using the structure constant of the Appendix, any

nonnull £, such thatCp+# al + 2,5 78¢M, generates the Lie algebra cése 2 or case 5 as
required by Theorem 4. O
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Examples:In quantum information processing, some of tfig admit well-known physical
interpretations in terms of nonunltary quantum operations on a qubit normally used in the theory
of error correction. For exampM 10 M. 115 andM. 1o are, respectively, the infinitesimal generators
of the one-parameter semigroups correspondingjttflip, bit-phase flip andphase flipchannels
(see Ref. 17, Sec. 8.4nd soa depolarizing channétasa,, a;;, anda; all nonnull and equal.

(1) Depolarrzrng channell(D unital): The depolarizing channel is given uyo , a<0.
SinceLp commutes with everything, in this case the system is not accessible and furthermore its
integral curves are not at all modified by coherent control. They will be pointing “isotropically”
to the origin inlR>.

(2) Phase flip £p unital): The phase flip channel is also known as phase damping or pure
coherence channel and it is given Wy, aligned withMq,. The effect of this one-parameter
semigroup is to “contract” the Bloch sphere along thgand\ directions, leaving it untouched
along \,. As an example, check the accessibility property in correspondence of the following
simple master equation:

p=(U1M 1+ UM+ UM 3+a;M1))p,

i.e., controls available along all the three directions and no free Hamiltonian. The Lie algebra

Lie{M{, M,, M3, M, is computed using the structure constants given in the Appendix and the
Jacobi identity to eliminate terms not linearly independent.
First level Lie brackets,

[ermlﬂ:_mga [I\W21|\712-|:'\76'

Second level Lie brackets,
['\le MG]: - I\74, [Ml, MS]: I\712_ '\711, ['\72, I\WG]: I\710_ I\711-
Therefore
g={My, M3, M3, My, Mg, Mg, M3g— M5, M3;— My, My} =gl(3,R)

and the process is accessible. Notice ag— M 1, andM ;,— M, aretracelessi.e., they belong
to sI(3,R) (unlike M,) and therefore thag;=s[(3,R), as expected.

In this case, as it is easy to chetkee also Ref. 3, Part 2, Sec. )l.Bp is not uniquely
relaxing, i.e., a fixed point for the uncontrolled system does not exist. Thus the asymptotic value
depends from the initial condition and lim, p=[p,0 0p,(0)]". Once the control is added,
however, the controlled system can be made to converge to @nyn the interval
[—p4(0), p,(0)]. In particular, ifp,=0 thenR(p(0))={peB" s.t. |p]<|p(0)|}.

A Lie algebraic methogber seis normally not constructive. However, what it tells in this case
is that full accessibility is achieved only at the second level of brackets. Therefore a series
expansion cannot be truncated before that, if one wants to assure the generation of group actions
in arbitrary directions.

To understand what is happening to the integral curves of the system, it is convenient to split
£D into part ins (3) and 1 part ingl(3)\s[(3) as in the proof of Theorem 4CD al +£D, a<0,
Lpesl(3). ForLp=aj; My,

0O O 0
— — — ~ 2a;,— ap| 0 1 0
ED:alelzza’I"’ﬁD:_Tl‘i‘? 0 0 ~1 0 .

0O O 0 2
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If F(t)=Lp+323_1(ho, +u(t))My, since[l, F]=0 VF gi(3,R), the flow of the system can
be written as the exponential

g(t) =Texpf0t(al_+ F(7))dr=exptal) TexpfotF(T)dT

and its action orp asp(t) =exptal)7T exp([;F(7)d7)p(0). The ‘isotropic” contraction expial)
corresponds to the depolarizing chana¢2(M 1o+ M,+M,,) and cannot be reversed. Further-
more, the complete positivity constraiAE=0 imposes that thex] part must be dominant with
respect to thé (t) part. Thus, regardless of the control action, the overall result is a contraction of
the flow in 3.

(3) Amplitude damping4 affine): In terms of the master equation, the amplitude damping
channel corresponds to an atomic system with spontaneous emission. In a two-level system, the
excited statél) can decay to ground stal® while emitting a photon. The process of spontaneous
emission is characterized in terms of the atomic ladder operatorso,*io, and of the damp-
ing coefficienty, (y,>0) as(see, e.g., the survey in Refs. 2 and 17, Sec. 8.4.1

. . Y
p=—iadi(p)~ 5 (20 po.~0c. 0 p=po,0.). (20)

If, for example,H=v2(ho A3+ >3_uy) then

[0 0 0 0]
0 0 0 0 1
0 0 —ho,—Us  u, 0 -3 0 0 N
p= Pty p
hy +u — 1
0 0 3 0 ul 0 0 = o
0 — Uy ug 0 2
1 0 0 -1

=hoMapt 2 UMt 5 (Mot Myy—Ms)p. (1)

Since the unital part OED is not proportional to the identity, by Theorem 5 spontaneous emission
is an accessible process. Frgh®), the relaxation matrix is

As the unital part ofED is invertible,(21) has a fixed point. SincA=0 but notA>0, ZD lies on
an exposed face of the code=0 and in correspondence the fixed point liesad, i.e., it is a

pure state. Thus, asymptoticaIED admits a reachable set such thaﬂdﬁO)))=§3. As men-
tioned in the proof of Theorem 4, coherent control can speed up the “purificatiop”asfly for
certain values of the initial condition. In fact, from

d|[pll? o 3 -
% ”di_tH:«p' P)={ho,Msp, p))+ << kzl uM kﬁﬁ>> + %«(Mm*‘ M11—Ms)p, p)

only the last term gives a nontrivial contribution and can become positive, for example, in corre-
spondence op, positive andp,, p, small enough,
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Yo o o — Yl !
5 ((Mig+ M= Mg)p, )= 5 (2popz— (3 + 5+ p7) — p2) = 5 (2popz—lpI* = p2).

However, the purification process remains an asymptotic process since as soon as coherent control
has broughp to [0 0 +|p,|], then purification can occur only becausefgf. Once again, notice
how the role ofLy is essential in moving around in the reachable set.

VI. CONCLUSION

The aim of this work is to shed light on the possibility and limits of coherent control of
Markovian master equations using standard tools from geometric control theory. It turns out that
there is a remarkable complementarity between admissible quantum dynamical semigroups and

controllability: in the vector of coherences representation an admis8ipleas to have a nonnull
component along the nonzero-trace one-dimensional vector subspace of the Lie algekna of
matrices(or its semidirect extensionsA component in that direction guarantees noncontrollability

in small and finite time. In the simple cases of unital dissipation operators, the fact that the
“uncontrollable” direction has dimension 1 allows to obtain an order relation among the sets
reachable at different times by means of arbitrary coherent controls.

APPENDIX: STRUCTURE CONSTANTS OF gl((3,R)®R3

For the real Lie algebrgl(3,R) in the basilel,...,l\le, the structure constants, call them
c}k, are real but not totally skew symmetric,

3 _ 6 _ .7 _12_.8 _ .1 _10_.4 _ 6 _ 11_.8 _.9 _ 4 _ 2 _
C1,=C14=C15=C1g=C111=C33=C56=C;g=C5 15~ C34=C36=C37=C315=Cag= 1,
s _7_5 _5 _5_2 _5_ 7 _7 _.1 _.9 _.9 _
C2,10= C5,8= C5,16= C5,11= Cg,6= C6,12= C7,6= C7,20= C7,12= Cg,11= C9,11= Co,1~ 1,
2 _ 4 _.5 _11_.8 _.8_.9 _11_.5 _ 6 _ 10_ 6 _
C13=C16=C17=C1g=Cq119=Cp4=Cp 5= C6= C9=Cp 10~ C34=C35= — 1,

7 _ 4 _ 1 _.9_.7_3 _9_3_2 _1 _
C3,0=C3,11= C4 6= C4 7= C49= C411= C56= Cg 8= Cq,10~ Cg,10= — 1
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