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Abstract. Applications of molecular simulations targeted at the estimation of free energies
are reviewed, with a glimpse into their promising future. The methodological milestones
paving the road of free energy calculations are summarized, in particular free energy per-
turbation and thermodynamic integration, in the framework of constrained or unconstrained
molecular dynamics. The continuing difficulties encountered when attempting to obtain ac-
curate estimates are discussed with an emphasis on the usefulness of large–scale numerical
simulations in non–academic environments, like the world of the pharmaceutical industry.
Applications of the free energy arsenal of methods is illustrated through a variety of biologi-
cally relevant problems, among which the prediction of protein–ligand binding constants, the
determination of membrane–water partition coefficients of small, pharmacologically active
compounds — in connection with the blood–brain barrier, the folding of a short hydropho-
bic peptide, and the association of transmembrane α–helical domains, in line with the “two–
stage” model of membrane protein folding. Current strategies for improving the reliability of
free energy calculations, while making them somewhat more affordable, and, therefore, more
compatible with the constraints of an industrial environment, are outlined.
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1 Introduction

To understand fully the vast majority of chemical and biochemical processes, a close
examination of the underlying free energy behavior is often necessary [1]. Such is
the case, for instance, of protein–ligand binding constants and membrane–water par-
tition coefficients, that are of paramount important in the emerging field of de novo,
rational drug design, and cannot be predicted reliably and accurately without the
knowledge of the associated free energy changes. The ability to determine a priori
these physical constants with a reasonable level of accuracy, by means of statistical
simulations, is now within reach. Developments on both the software and the hard-
ware fronts have contributed to bring free energy calculations at the level of similarly
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robust and well–characterized modeling tools, while widening their field of applica-
tions. Yet, in spite of the tremendous progress accomplished since the first published
calculations some twenty years ago [2–5], the accurate estimation of free energy
changes in large, physically and biologically realistic molecular assemblies still con-
stitutes a challenge for modern theoretical chemistry. Taking advantage of massively
parallel architectures, cost–effective, “state–of–the–art” free energy calculations can
provide a convincing answer to help rationalizing experimental observations, and, in
some instances, play a predictive role in the development of new leads for a specific
target.

In the first section of this chapter, the methodological background of free en-
ergy calculations is developed, focusing on the methods that are currently utilized
to determine free energy differences. Next, four biologically relevant applications
are presented, corresponding to distinct facets of free energy simulations. The first
one delves into the use of these calculations in de novo drug design, through the
estimation of protein–ligand binding affinities and water–membrane partition coef-
ficients. The somewhat more challenging application of molecular dynamics (MD)
simulations and free energy methods to validate the three–dimensional structure of
a G protein–coupled receptor (GPCR) is shown next. Understanding of the intricate
physical phenomena that drive protein folding by means of free energy calculations
is also reported here, followed by an investigation of the reversible association of
transmembrane (TM) α–helices in a membrane mimetic. Conclusions on the role
played by free energy calculations in the molecular modeling community are drawn
with a prospective look into their future.

2 Methodological Background

In the canonical, (N,V, T ), ensemble, the Helmholtz free energy is defined by [6]:

A = − 1
β

lnQNVT (1)

β = 1/kBT , where kB is the Boltzmann constant and T is the temperature of the
N–particle system. QNVT is its 6N–dimensional partition function:

QNVT =
1

h3NN !

∫ ∫
exp [−βH(x,px)] dx dpx (2)

where H(x,px) is the classical Hamiltonian describing the system. In (2), integra-
tion is carried out over all atomic coordinates, {x}, and momenta, {px}. The nor-
malization factor reflects the measure of the volume of the phase space through the
Planck constant, h, and the indistinguishable nature of the particles, embodied in the
factorial term, N !. In essence, the canonical partition function constitutes the corner
stone of the statistical mechanical description of the ensemble of particles. From a
phenomenological perspective, it may be viewed as a measure of the thermodynamic
states accessible to the system in terms of spatial coordinates and momenta. It can be
further restated in terms of energies:
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QNVT =
1

h3NN !

∫
�[H(x,px)] exp [−βH(x,px)] dH(x,px) (3)

where �[H(x,px)] is the so–called density of states accessible to the system of in-
terest.

The definition of the partition function may be utilized to introduce the concept
of probability distribution to find the system in the unique microscopic state charac-
terized by positions {x} and momenta {px}:

P(x,px) =
1

h3NN !
1

QNVT
exp [−βH(x,px)] (4)

A logical consequence of this expression is that low–energy regions of the
phase space will be sampled predominantly, according to their respective Boltzmann
weight [7].

2.1 Free Energy Perturbation

Returning to the original definition (1) of the free energy, and using the identity:∫ ∫
exp [+βH(x,px)] exp [−βH(x,px)] dx dpx = h3NN ! (5)

it follows that:

A = − 1
β

ln
1

h3NN !

∫ ∫
exp [−βH(x,px)] dx dpx

= +
1
β

ln
∫ ∫

exp [+βH(x,px)] P(x,px) dx dpx

= +
1
β

ln 〈exp [+βH(x,px)]〉 (6)

This expression illuminates the fast growth of exp [+βH(x,px)] with the total
energy, H(x,px), of the system. It should, therefore, be expected that the weight
of the high–energy regions of phase space be significant when evaluating the inte-
gral. Yet, as hinted by (4), in simulations of finite length, sampling of these regions
is likely to be insufficient to guarantee a correct estimate of A. In most instances,
evaluation of accurate absolute free energies from statistical simulations is not pos-
sible. The latter may, however, give access to free energy differences between two
well–delineated thermodynamic states, provided that a reaction coordinate can be
defined to characterize the pathway that connects these two states. In this context,
the Hamiltonian, H(x,px), describing the transformation is made a function of the
reaction coordinate, or “coupling parameter”, λ [8]. Conventionally, λ varies be-
tween 0 and 1 when the system goes from the initial state, a, to the final state, b,
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characterized, respectively, by the Hamiltonians H(x,px;λa) = H(x,px;λ = 0)
and H(x,px;λb) = H(x,px;λ = 1) . In practice, λ can correspond to a variety
of reaction coordinates, ranging from a simple distance to determine a potential of
mean force (PMF) to non–bonded parameters in the so–called “alchemical transfor-
mations” or in silico point mutations [4, 5].

Within this framework, the canonical partition function defined in (2) now de-
pends explicitly on the coupling parameter, and so does the free energy:

∆Aa→b = A(λb) −A(λa) = − 1
β

ln
QNVT(λb)
QNVT(λa)

(7)

Combining the above with the definition of the partition function, and introducing
the identity (5), it follows that:

∆Aa→b = − 1
β

ln 〈exp {−β [H(x,px;λb) −H(x,px;λa)]}〉λa
(8)

Here, 〈· · · 〉λa
denotes an ensemble average over configurations representative of the

initial state, a. Validity of perturbation formula (8) only holds for small changes
between the initial state, a, and the final state, b, of the transformation [9]. At this
stage, the condition of small changes should be clarified, as it has often been mis-
construed in the past. It does not imply that the free energies characteristic of a and
b be sufficiently close, but rather that the corresponding configurational ensembles
overlap appropriately to guarantee the desired accuracy [10, 11]. In other words, it is
expected that the density of states, �[H(x,px)], describing the transformation from
a to b be narrow enough — viz. typically on the order of 1 / β, to ascertain that,
when multiplied by the exponential term of (3), the resulting distribution be located
in a region where ample statistical data have been collected. In most circumstances,
however, single–step transformations between rather orthogonal states are unlikely to
fulfill this requirement. To circumvent this difficulty, the reaction pathway is broken
down into a number of physically meaningless intermediate states connecting a to b,
so that between any two contiguous states, the condition of overlapping ensembles is
satisfied [12]. The interval separating these intermediate states, which corresponds to
selected fixed values of the coupling parameter, λ, is often referred to as “window”.
It should be reminded that the vocabulary window adopted in perturbation theory is
distinct from that utilized in “umbrella sampling” (US) simulations [13], where it
denotes a range of values taken by the reaction coordinate. For a series of a N in-
termediate states, the total free energy change for the transformation from a to b is
expressed as a sum of N − 1 free energy differences [12]:

∆Aa→b = − 1
β

N−1∑
k=1

ln 〈exp {−β [H(x,px;λk+1) −H(x,px;λk)]}〉λk
(9)

Assessing the ideal number of intermediate states, N , between a and b evidently de-
pends upon the nature of the system that undergoes the transformation. The condition
of overlapping ensembles should be kept in mind when setting N , remembering that
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the choice of δλ = λk+1 − λk ought to correspond to a perturbation of the system.
A natural choice consists in using a number of windows that guarantees a reasonably
similar free energy change between contiguous intermediate states. The consequence
of this choice is that the width of the consecutive windows connecting a to b may be
different.

Performing “alchemical transformations” calls for the definition of topologies
that describe the initial and the final states of the mutation. To this end, a single– or
a dual–topology paradigm [17] can be employed, as shown in Fig. 1. Each approach
has its advantages and inherent drawbacks. To circumvent numerical instabilities in
the trajectory caused by the concurrent scaling of the charges, the van der Waals and
selected internal parameters, transformation of electrostatic and non–electrostatic
terms are usually decoupled in the single–topology approach, thus, giving access
to the corresponding free energy contributions. This scheme requires two distinct
simulations, when the dual–topology paradigm only involves one. The latter, how-
ever, does not provide much information about the contributions that drive the global
free energy change — albeit contributions should be interpreted with great care, be-
cause, in contrast with the net free energy, which is a state function, the former are
path–dependent. The dual–topology approach has been recognized to be generally
more sensitive to so–called “end–point catastrophes”, when λ → 0 or 1, than the

Figure 1. Difference between the single– (a) and the dual–topology (b) paradigms illustrated
in the case of the methanol to ethane “alchemical transformation”. In the single–topology ap-
proach, a common topology for the initial and the final states of the transformation is designed.
Non–bonded parameters are scaled as λ varies from 0 to 1. Modification of the oxygen atom
into a carbon one imposes that the chemical bond be shrunk, using, for instance, a PMF–type
calculation [14–16]. In the dual–topology paradigm, the initial and the final states coexist , yet
without “seeing” each other. The interaction energy of these topologies with their environment
is scaled as λ goes from 0 to 1
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single–topology paradigm. A number of schemes have been devised to circumvent
this problem, among which the use of windows of decreasing width as λ tends to-
wards 0 or 1. Introduction of a soft–core potential [18] to eliminate the singularities
at 0 or 1 perhaps constitutes the most elegant method proposed hitherto.

2.2 Thermodynamic Integration

Closely related to the free energy perturbation (FEP) expression, thermodynamic
integration (TI) restates the free energy difference between state a and state b as a
finite difference [8, 19]:

∆Aa→b = A(λb) −A(λa) =
∫ λb

λa

dA(λ)
dλ

dλ (10)

Combining with the definition of the canonical partition function (2), it follows that:

dA(λ)
dλ

=

∫
∂H(x,px;λ)

∂λ
exp−βH(x,px;λ) dx dpx∫

exp−βH(x,px;λ) dx dpx

(11)

Consequently, the integrand can be written as an ensemble average:

∆Aa→b =
∫ λb

λa

〈
∂H(x,px;λ)

∂λ

〉
λ

dλ (12)

In sharp contrast with the FEP method, the criterion of convergence here is the
appropriate smoothness of A(λ). Interestingly enough, assuming that the variation of
the kinetic energy between states a and b can be neglected, the derivative of ∆Aa→b

with respect to some reaction coordinate, ξ , is equal to, −〈Fξ〉ξ , the average of the
force exerted along ξ , hence, the concept of PMF [20].

2.3 Unconstrained Molecular Dynamics and Average Forces

Generalization of the classical definition of a PMF, w(r), based on the pair corre-
lation function, g(r), is not straightforward. For this reason, the free energy as a
function of reaction coordinate ξ will be expressed as:

A(ξ) = − 1
β

lnP(ξ) + A0 (13)

where P(ξ) is the probability distribution to find the system at a given value, ξ, along
that reaction coordinate:

P(ξ) =
∫

δ[ξ − ξ(x)] exp[−βH(x,px)] dx dpx (14)
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Equation (13) corresponds to the classic definition of the free energy in methods
like US, in which external biasing potentials are included to ensure a uniform dis-
tribution P(ξ). To improve sampling efficiency, the complete reaction pathway is
broken down into “windows”, or ranges of ξ, wherein individual free energy profiles
are determined. The latter are subsequently pasted together using, for instance, the
self–consistent weighted histogram analysis method (WHAM) [21].

For a number of years, the first derivative of the free energy with respect to the
reaction coordinate has been written as [22]:

dA(ξ)
dξ

=
〈
∂V(x)
∂ξ

〉
ξ

(15)

This description is erroneous because ξ and {x} are evidently not independent vari-
ables [23]. Furthermore, it assumes that kinetic contributions can be safely omitted.
This may not always be necessarily the case. For these reasons, a transformation of
the metric is required, so that:

P(ξ) =
∫

|J | exp[−βV(q; ξ)] dq
∫

exp[−βT (px)]dpx (16)

Introduction in the first derivative of probability P(ξ), it follows that the kinetic
contribution vanishes in dA(ξ)/dξ:

dA(ξ)
dξ

= − 1
β

1
P(ξ)

∫
exp[−βV(q; ξ∗)] δ(ξ∗ − ξ) ×

{
−β|J |∂V(q; ξ∗)

∂ξ
+

∂|J |
∂ξ

}
dq dξ∗ (17)

After back transformation into Cartesian coordinates, the derivative of the free en-
ergy with respect to ξ can be expressed as a sum of configurational averages at con-
stant ξ [24]:

dA(ξ)
dξ

=
〈
∂V(x)
∂ξ

〉
ξ

− 1
β

〈
∂ ln |J |

∂ξ

〉
ξ

= −〈Fξ〉ξ (18)

In this approach, only 〈Fξ〉ξ is the physically meaningful quantity, unlike the instan-
taneous components, Fξ, from which it is evaluated. Moreover, it should be clearly
understood that neither Fξ nor −∂H(x,px)/∂ξ are fully defined by the sole choice
of the reaction coordinate.

In practice, Fξ is accumulated in bins of finite size δξ and provides an estimate
of dA(ξ)/dξ. After a predefined number of observables are accrued, the adaptive
biasing force (ABF) [25, 26] is applied along the reaction coordinate:

FABF = ∇Ã = −〈Fξ〉ξ ∇ξ (19)
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As sampling proceeds, ∇Ã is progressively refined. Evolution of the system along
ξ is governed mainly by its self–diffusion properties. It is apparent from the present
description that this method is significantly more effective than US or its variants,
because no a priori knowledge of the free energy hypersurface is required to define
the necessary biasing potentials that will guarantee uniform sampling along ξ. The
latter can easily become intricate in the case of qualitatively new problems, in which
variation of the free energy behavior cannot be guessed with the appropriate accu-
racy. Often misconstrued, it should be emphasized that, whereas ABF undoubtedly
improves sampling dramatically along the reaction coordinate, efficiency suffers, like
any other free energy method, from orthogonal degrees of freedom in the slow man-
ifolds.

2.4 When is Enough Sampling Really Enough?

When is the trajectory long enough to assume safely that the results are converged? is
a recurrent question asked by modelers performing free energy calculations. Assess-
ing the convergence properties and the error associated to a free energy calculation
often turns out to be daunting task. Sources of errors likely to be at play are diverse,
and, hence, will modulate the results differently. The choice of the force field para-
meters undoubtedly affects the results of the simulation, but this contribution can be
largely concealed by the statistical error arising from insufficient sampling. Paradox-
ically, exceedingly short free energy calculations employing inadequate non–bonded
parameters may, nonetheless, yield the correct answer [14]. Under the hypothetical
assumption of an optimally designed potential energy function, quasi non–ergodicity
scenarios constitute a common pitfall towards fully converged simulations.

Appreciation of the statistical error has been devised following different schemes.
Historically, the free energy changes for the λ → λ + δλ and the λ → λ − δλ
perturbations were computed simultaneously to provide the hysteresis between the
forward and the reverse transformations. In practice, it can be shown that when δλ
is sufficiently small, the hysteresis of such “double–wide sampling” simulation [27]
becomes negligible, irrespective of the amount of sampling generated in each win-
dow — as would be the case in a “slow–growth” calculation [28]. A somewhat less
arguable point of view consists in performing the transformation in the forward,
a → b , and in the reverse, b → a, directions. Micro–reversibility imposes that,
in principle, ∆Ab→a = −∆Aa→b — see for instance Fig. 2. Unfortunately, forward
and reverse transformations do not necessarily share the same convergence proper-
ties. Case in point, the insertion and deletion of a particle [29]: Whereas the former
simulation converges rapidly towards the expected excess chemical potential, the
latter never does. This shortcoming can be ascribed to the fact that configurations
in which a cavity does not exist where a real atom is present are never sampled. In
terms of density of states, this scenario would translate into �a embracing �b entirely,
thereby ensuring a proper convergence of the forward simulation, whereas the same
cannot be said for the reciprocal, reverse transformation. Estimation of errors based
on forward and reverse simulations should, therefore, be considered with great care.
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Figure 2. Free energy change characterizing the “zero–sum”, for- ce–field–independent mu-
tation of ethane into ethane in water (insert). Forward (solid line) and reverse (dashed line)
profiles were obtained by dividing the reaction pathway into 40 windows, in which 16 ps of
equilibration and 32 ps of data collection were sampled. The dual–topology paradigm was
used to define a pseudo–propane molecule

In fact, appropriate combination of the two can be used profitably to improve the
accuracy of free energy calculations [10].

In FEP, convergence may be probed by monitoring the time–evolution of the
ensemble average (6). This is, however, a necessary, but not sufficient condition for
convergence, because apparent plateaus of the ensemble average often conceal anom-
alous overlap of the density of states characterizing the initial, �a , and the final, �b ,
states [10, 11]. The latter should be the key–criterion to ascertain the local conver-
gence of the simulation for those degrees of freedom that are effectively sampled.
Statistical errors in FEP calculations may be estimated by means of a first–order
expansion of the free energy:

∆A = − 1
β

{
ln 〈exp [−β∆V(x;λ)]〉λ ± δε

〈exp [−β∆V(x;λ)]〉λ

}
(20)

Here, δε is the statistical error on the ensemble average, 〈exp [−β∆V(x;λ)]〉λ , de-
fined as:

δε2 =
1 + 2τ
N

{
〈exp [−2β∆V(x;λ)]〉λ − 〈exp [−β∆V(x;λ)]〉2λ

}
(21)

N is the number of samples accrued in the FEP calculation, and (1 + 2τ) is the
sampling ratio of the latter [30].

Commonly, in US simulations, convergence is probed by verifying two crite-
ria: (i) convergence of individual windows — the statistical error can be measured
through a block–averaging over sub–runs — and (ii) appropriate overlap of the free
energy profiles between adjacent windows — which gives rise to a systematic er-
ror. The latter can be evaluated by minimizing the difference in the curvature of two
consecutive free energy profiles in the region where they overlap.
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In the idealistic cases where a thermodynamic cycle can be defined — e.g. in-
vestigation of the conformational equilibrium of a short peptide through the αR →
C7ax → αL → β′ ≡ (β,C5, C7eq) → αR successive transformations — closure
of the latter imposes that the sum of individual free energy contributions sum up
to zero [31]. In principle, any deviation from this target should provide a valuable
guidance to improve sampling efficiency. In practice, discrimination of the faulty
transformation, or transformations, is cumbersome on account of possible mutual
compensation or cancellation of errors.

As has been commented on previously, visual inspection of �a and �b indicates
whether the free energy calculation has converged [10, 11]. Deficiencies in the over-
lap of the two distributions is also suggestive of possible errors, but it should be
kept in mind that approximations like (20) only reflect the statistical precision of the
computation, and evidently do not account for fluctuations in the system occurring
over long time scales. In sharp contrast, the statistical accuracy is expected to yield a
more faithful picture of the degrees of freedom that have been actually sampled. The
safest route to estimate this quantity consists in performing the same free energy cal-
culation, starting from different regions of the phase space — viz. the error is defined
as the root mean square deviation over the different simulations [32]. Semantically
speaking, the error measured from one individual run yields the statistical precision
of the free energy calculation, whereas that derived from the ensemble of simulations
provides its statistical accuracy.

3 Free Energy Calculations and Drug Design

One of the grand challenges of free energy calculations is their ability to play a
predictive role in ranking ligands of potential pharmaceutical interest, agonist or an-
tagonist, according to their relative affinity towards a given protein. The usefulness
of such numerical simulations outside an academic environment can be assessed by
answering the following question: Can free energy calculations provide a convinc-
ing answer faster than experiments are carried out in an industrial setting? Early
encouraging results had triggered much excitement in the community, opening new
vistas for de novo, rational drug design. They were, however, subsequently shattered
when it was realized that accurate free energies would require considerably more
computational effort than was appreciated hitherto. Beyond the fundamental need of
appropriate sampling to yield converged ensemble averages — today, easily achiev-
able in some favorable cases by means of inexpensive clusters of personal computers
— the necessity of well–parameterized potential energy functions, suitable for non–
peptide ligands, rapidly turns out to constitute a critical bottleneck for the routine
use of free energy calculations in the pharmaceutical industry. Closely related to the
parametrization of the force field, setting up free energy calculations — i.e. defin-
ing the alternate topology of the mutated moieties and the initial set of coordinates
— is sufficiently time–consuming to be incompatible with the high–throughput re-
quirements of industrial environments. In essence, this is where the paradox of free
energy calculations lies: They have not yet come of age to be considered as black box
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routine jobs, but should evolve in that direction to become part of the arsenal of com-
putational tools available to the pharmaceutical industry. Selection of potent ligand
candidates in large data bases containing several millions of real or virtual mole-
cules, employing a screening funnel that involves increasingly complex searching
tools, from crude geometrical recognition to more sophisticated flexible molecular
docking, offers new prospects for de novo drug design. In this pipeline of screening
methods, free energy calculations should evidently be positioned at the very end,
i.e. at the level of the optimization loop aimed at a limited number of ligands, which
also checks adsorption–metabolism/toxicology (ADME/TOX) properties. Ideally, as
selection in the funnel proceeds, the computational effort should remain constant —
viz. the amount of CPU time necessary to perform free energy calculations on a few
candidates is equivalent to that involved in the rough geometrical recognition over a
number of molecules five to six orders of magnitude larger.

Perhaps the key to the generalized and routine use of free energy calculations
for molecular systems of pharmacological relevance is the demonstration that this
methodology can be applied fruitfully to problems that clearly go beyond the typi-
cal scope of an academic environment. Collaborative projects with the pharmaceu-
tical industry provide such a framework. In the context of the search for therapeutic
agents targeted at osteoporosis and other bone–related diseases, free energy calcula-
tions have been applied to complexes formed by the multi–domain protein pp60src
kinase associated to non–peptide inhibitors. pp60src kinase is involved in signal trans-
duction pathways and is implicated in osteoclast–mediated bone resorption [33]. Of
particular interest, its SH2 domain, a common recognition motif of highly conserved
protein sequence, binds preferentially phosphotyrosine (pY)–containing peptides. In
most circumstances, the latter adopt an extended conformation mimicking a two–
pronged plug that interacts at two distinct anchoring sites of the protein — i.e. the
hydrophilic phosphotyrosine pocket and the hydrophobic pocket — separated by a
flat surface [34, 35]. For instance, the prototypical tetrapeptide pYEEI — a sequence
found on the PDGF receptor upon activation, appears to recognize the src SH2 do-
main with an appropriate specificity.

In silico point mutations have been performed on a series of non–peptide in-
hibitors — see Fig. 3, using the FEP methodology in conjunction with the dual–
topology paradigm. All simulations have been carried in the isothermal–isobaric
ensemble, using the program NAMD [36, 37]. The temperature and the pressure
were fixed at 300 K and 1 atm, respectively, employing Langevin dynamics and the
Langevin piston. To avoid possible end–point catastrophes, 33 windows of uneven
width, δλ , were utilized to scale the interaction of the mutated moieties with their
environment. The total length of each trajectory is equal to 1 ns, in the free and in
the bound states. Forward and reverse simulations were run to estimate the statistical
error, with the assumption that the two transformations have identical convergence
properties. The structures of the protein–ligand complex were determined by x–ray
crystallography [34, 35].

Compared with pYEEI, ligand l1 adopts a very similar binding mode. The
biphenyl moiety occupies the hydrophobic pocket entirely and the interaction of pY
with the hydrophilic site is strong. The scaffold of the peptide forms steady van
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(a)

(b)

(c)

Figure 3. Non–peptide inhibitors of the SH2 domain of the pp60src kinase (a). Complex
formed by the src SH2 domain and inhibitor l3 bound to the surface of the latter. Note the
diphenyl moiety interacting with the hydrophobic pocket, while the pY motif is buried in
the hydrophilic pocket (b). Thermodynamic cycle utilized to estimate relative protein–ligand
binding free energies. Horizontal transformations are determined experimentally and generally
are not amenable to statistical simulations. Vertical transformations correspond to “alchemical
transformations” of the ligand in the free state (left) and in the bound state (right), so that
∆G2

bind − ∆G1
bind = ∆G2

mut − ∆G1
mut (c)

der Waals contacts with the surface of the protein. A persistent water molecule is
bridged between the carbonyl group of the lactam moiety and the amide –NH group
of Lys62. The relative binding free energies corresponding to the “alchemical trans-
formations” of ligand l1 are gathered in Table 1. Overall, the agreement between
the computational and the experimental estimates is good, within chemical accuracy.
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Table 1. Point mutations of a series of non–peptide inhibitors of the SH2 domain of the pp60src
kinase. The FEP methodology was employed in association with the dual–topology paradigm.
Experimental binding free energies were determined using micro–calorimetry techniques

Calculated Experimental
Transformation ∆G2

mut − ∆G1
mut (kcal/mol) ∆G2

bind − ∆G1
bind (kcal/mol)

l1 → l2 +0.6±0.4 +1.3
l1 → l3 +2.9±0.4 +2.2
l1 → l4 +1.9±0.4 +1.8

Replacement of one methylene group in the lactam scaffold by a sulfur atom —
see Fig. 3, reduces the binding affinity by about an order of magnitude. No strik-
ing structural modification of the scaffold is observed, and the two–pronged plug
motif is preserved. A closer look at the protein–ligand interface, however, reveals a
loss of van der Waals contacts and unfavorable electrostatic interactions where the
point mutation occurred, causing a somewhat increased flexibility in l2. Replace-
ment of the amide group of l1 by an amino group decreases the binding affinity
more significantly. Here again, the altered ligand, l3, remains perfectly anchored in
the hydrophobic and hydrophilic pockets upon mutation. Yet, the interaction of the
–NAc moiety with Arg14 vanishes as the former is modified into –NH2 , resulting in
a weaker binding, ca. forty times less than for l1. Ligands l1 and l4 differ in their hy-
drophobic region, the first phenyl ring of the biphenyl moiety being replaced by two
methylene groups. Close examination of the complex formed by the src SH2 domain
and l4 reveals that the second phenyl ring of l1 and l4 superimpose nicely. Position-
ing of the peptide scaffold is, however, modified, so that –NAc no longer interacts
with Arg14 , but rather with His60 . This structural change propagates to the pY ring,
which adopts an alternative conformation, corresponding, overall, to a radically dif-
ferent binding mode of the ligand. It is important to underline that the “alchemical
transformation” of l1 into l4 is able to capture the structural modifications in the
protein–ligand association, and, hence, provide an accurate estimate of the relative
free energy. This may be ascribed to the rapidly relaxing degrees of freedom of the
short peptide, compatible with the time scale of the simulation.

Design of potent leads for a given target is only one element of the complex
process that will eventually result in the release of a drug candidate suitable for clini-
cal test phases. Downstream from the ranking of ligands according to their affinity for
a protein, bioavailability and toxicity properties should be explored [38]. Of particu-
lar interest, the unassisted transport of pharmacologically active molecules across the
membrane, in connection with the so–called blood–brain barrier (BBB), is an area
where modeling techniques can provide a convincing answer, and, hence, complete
the pipeline of in silico screening tools. Free energy methods may play a significant
role in this effort by offering a detailed picture of the underlying energetics involved
in the translocation of a drug from the aqueous medium to the hydrophobic core
of the membrane. US calculations were used to simulate the passage of a series of
pharmacologically relevant molecules across the interface formed by a lamella of
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Figure 4. Transfer free energy of antipyrine across the water–dodecane interface. Uncorrected
profile (dashed line) and profile incorporating the distortion energy (solid line), evaluated from

∆Adistort =
〈
ψ|Ĥ0|ψ

〉
−

〈
ψ0|Ĥ0|ψ0

〉
, where Ĥ0 and |ψ0〉 are the unperturbed Hamil-

tonian and wave function. |ψ〉 is the SCRF wave function that includes the solvent contribu-
tion

dodecane in equilibrium with a lamella of water — a pertinent model for estimating
partition coefficients [39]. Up to 20 ns were sampled to cover the whole reaction
pathway, divided into sequentially overlapping windows to improve efficiency.

An example of such PMFs is depicted in Fig. 4, in the case of antipyrine, for
which the net transfer free energy is equal to +3.0±0.5 kcal/mol, i.e. log10Pwat−dod

= −2.1, to be compared to the experimental value of −2.5 [40]. In most circum-
stances, modification of the environment and the ensuing change in the polarization
of the solute is ignored when evaluating differential solvation properties. Tradition-
ally, basis sets that inflate artificially the polarity of the molecule — e.g. 6–31G(d ,
p) , have been utilized to parameterize the electrostatic term of the potential energy
function, thereby compensating in an average sense for missing induction effects.
Whereas the fitted sets of point charges are generally ad hoc for molecular simula-
tions in an aqueous environment, the same cannot be said for non–polar media, in
which the polarity of the solute is clearly exaggerated. A convenient framework to
circumvent this difficulty is provided by the self–consistent reaction field (SCRF)
method [41]. Atomic charges are derived from the electrostatic potential that ac-
counts for the mutual polarization of the molecule by a dielectric continuum sur-
rounding it. Upon translation from one medium to another, less polar one, the posi-
tive, reversible work corresponding to the overestimated polarity of the solute in the
non–polar environment — i.e. the distortion energy [42], should be accounted for
when determining the transfer free energy. In the example of antipyrine, this correc-
tion can be as large as ca. 2.5 kcal/mol (see Fig. 4), thus, demonstrating the necessity
to incorporate this important contribution in solvation free energy calculations.

As indicated above, determination of accurate transfer free energies by means,
for instance, of US simulations, is CPU demanding, and, hence, not compatible with
the high–throughput requirements of industrial settings. These calculations should,
therefore, be performed on the handful of drug candidates discriminated by the
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screening process. Faster approaches have been devised, however, based on quan-
tum chemical calculations associated to an SCRF scheme for taking solvent effects
into account. Aside from the electrostatic term, van der Waals contributions are usu-
ally evaluated from empirical formulation using the solvent accessible surface area
(SASA) of the solute. This set of methods is substantially faster than statistical sim-
ulations, but, at the same time, only supply simple liquid–liquid partition coeffi-
cients, rather than the full free energy behavior characterizing the translocation of
the molecule between the two media. This information may, however, turn out to be
of paramount importance to rationalize biological phenomena. Such was the case, for
instance, of general anesthesia by inhaled anesthetics, an interfacial process shown
to result from the accumulation of anesthetics at the water–membrane interface of
neuronal tissues [43].

4 Free Energy Calculations and Signal Transduction

The paucity of structural information available for membrane proteins has imparted
a new momentum in the in silico investigation of these systems. The grand challenge
of molecular modeling is to attain the microscopic detail that is often inaccessible to
conventional experimental techniques. Of topical interest are seven transmembrane
(TM) domain G–protein coupled receptors (GPCRs) [44], which correspond to the
third largest family of genes in the human genome, and, therefore, represent privi-
leged targets for de novo drug design. Full resolution by x–ray crystallography of the
three–dimensional structure of bovine rhodopsin [45], the only GPCR structure to
this date, has opened new vistas for the modeling of related membrane proteins. Un-
fortunately, crystallization of this receptor in its dark, inactive state precludes the use
of the structure for homology modeling of GPCR–ligand activated complexes [46].
When neither theory nor experiment can provide atomic–level, three–dimensional
structures of GPCRs, their synergistic combination offers an interesting perspective
to reach this goal. Such a self–consistent strategy between experimentalists and mod-
elers has been applied successfully to elucidate the structure of the human receptor of
cholecystokinin (CCK1R) in the presence of an agonist ligand [47] — viz. a nonapep-
tide (CCK9) [48] of sequence Arg–Asp–S-Tyr–Thr–Gly–Trp–Met–Asp–Phe–NH2 ,
where S-Tyr stands for a sulfated tyrosyl amino acid. On the road towards a con-
sistent in vacuo construction of the complex, site–directed mutagenesis experiments
were designed to pinpoint key receptor–ligand interactions, thereby helping in the
placement of TM α–helices and the docking of CCK9.

Whereas in vacuo models reflect the geometrical constraints enforced in the
course of their construction, it is far from clear whether they will behave as ex-
pected when immersed in a realistic membrane environment. Accordingly, the model
formed by CCK1R and CC9 was inserted in a fully hydrated palmitoyloleylphos-
phatidylcholine (POPC) bilayer, resulting in a system of 72,255 atoms, and the com-
plete assembly was probed in a 10.5 ns MD simulation. Analysis of the trajectory
reveals no apparent loss of secondary structure in the TM domain, and a distance root
mean square deviation for the backbone atoms not exceeding 2 Å. More importantly,
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the crucial receptor–ligand interactions are preserved throughout the simulation —
e.g. Arg336 with Asp8 [49], and Met195 and Arg197 with S-Tyr3 [50, 51]. Admit-
tedly, such numerical experiments in essence only supply a qualitative picture of the
structural properties of the molecular assembly and its integrity over the time scale
explored. Free energy calculations go one step beyond by quantifying intermolecu-
lar interactions according to their importance, and, consequently, represent a tangible
thermodynamic measure for assessing the accuracy of the model. Furthermore, this
information is directly comparable to site–directed mutagenesis experiments utilized
in the in vacuo construction of the receptor, thereby closing the loop of the modeling
process.

To some extent, performing free energy calculations in such large molecular as-
semblies may be viewed as a bold and perhaps foolish leap of faith, considering the
various possible sources of errors likely to affect the final result. Among the latter,
attempting to reproduce free energy differences using a three–dimensional model in
lieu of a well–resolved, experimentally determined structure casts the greatest doubts
on the chances of success of this venture. Of equal concern, “alchemical transforma-
tions” involving charged amino acids are driven primarily by the solvation of the
ionic moieties, resulting in large free energies, the difference of which, between the
free and the bound states, is expected to be small. Assuming a validated model, which
appears to be confirmed by the preliminary MD simulation, a key–question, already
mentioned in this chapter, remains: When is “enough sampling” really enough? This
conundrum should be, in fact, rephrased here as: Are the time scales characteristic
of the slowest degrees of freedom in the system crucial for the free energy changes
that are being estimated? For instance, is the mutation of the penultimate amino acid
of CCK9 — viz. Asp8 into alanine (see Fig. 5), likely to be affected by the slow col-
lective motions of lipid molecules, or possible vertical and lateral motions of TM α–
helices? Nanosecond MD simulations obviously cannot capture these events, which
occur over significantly longer times. Yet, under the assumption that the replacement
of an agonist ligand by an alternate one does not entail any noticeable rearrangement
of the TM domain, current free energy calculations are likely to be appropriate for
ranking ligands according to their affinity towards a given GPCR.

The FEP estimate of +3.1±0.7 kcal/mol for the D8A transformation agrees, in-
deed, very well with the site–directed mutagenesis experiments that yielded a free en-
ergy change equal to +3.6 kcal/mol. The in silico value was obtained from two runs
of 3.4 ns each, in bulk water and in CCK1R, respectively, breaking the reaction path
into 114 consecutive windows of uneven width, and using the dual–topology para-
digm. The error was estimated from two distinct runs performed at 5.0 and 10.5 ns of
the MD simulation. In contrast with an error derived from a first–order expansion of
the free energy, which only reflects the statistical precision of the calculation — here,
±0.3 kcal/mol, repeating the simulation from distinct initial conditions accounts for
fluctuations of the structure over longer time scales. Put together, while it is difficult
to ascertain without ambiguity the correctness of the three–dimensional structure in
the sole light of a limited number of numerical experiments, it still remains that the
host of observations accrued in theses simulations coincide nicely with the collec-
tion of experimental data. De novo development of new drug candidates for targets of
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(b)

(a) (c)

Figure 5. Human receptor of cholecystokinin (CCK1R) embedded in a fully hydrated POPC
bilayer. The agonist ligand, nonapeptide CCK9, is highlighted (a). Free energy change for the
mutation in CCK9 of Asp8 into alanine: Transformation in the receptor (solid line) and in
water (dashed line). Insert: Overlapping density of states characterizing adjacent states, at λ
= 0.5 (b). Thermodynamic cycle utilized to estimate the relative receptor–ligand binding free
energy for the D8A point mutation in CCK9 (c)

unknown structure constitutes one of the greatest challenges faced today by the phar-
maceutical industry. It is envisioned that the encouraging results presented herein for
CCK1R will pave the way towards a more self–contained approach to drug design,
emancipated from the requirement of well–resolved structures.

5 Free Energy Calculations and Peptide Folding

Capturing the underlying mechanisms that govern protein folding has been one of
the holy grails of modern theoretical biophysics. Whereas the sequence of amino
acids that forms the protein contains all the necessary information to determine the
unique, compact structure of the chain under a given physiological condition, the un-
derstanding of the paths that lead to this native, generally biologically active structure
remains fragmentary. Two classes of theoretical approaches for tackling the protein
folding problem have been employed in recent years. In the first one, an all–atom
representation of the protein and its environment and an empirically–based poten-
tial energy function are used to evaluate the intra– and intermolecular forces acting
on the system. This description is often associated to an MD scheme for exploring
the rugged conformational space of the solvated protein. Yet, ab initio folding by
means of atomic–level MD simulations featuring both the protein and the solvent
remain limited to short peptides and small proteins [52]. The reason for this limi-
tation is rooted in the computational cost of such in silico experiments, which does
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not allow biologically relevant time scales to be accessed routinely. An alternative
to the detailed, all–atom approach consists in turning to somewhat rougher models,
that, nonetheless, retain the fundamental characteristics of protein chains. Such is
the case of coarse–grained models, in which each amino acid of the protein is repre-
sented by a bead located at the vertex of a two– or a three–dimensional lattice [53].
An intermediate description consists of an all–atom representation of the protein in
an implicit solvent. It is far from clear, however, whether the delicate interplay of the
protein with explicit water molecules is a necessary condition for guaranteeing the
correct folding toward the native state.

Whereas MD simulations involving an explicit solvent rarely exceed a few hun-
dreds of ns [54], significantly shorter free energy calculations can be designed ad-
vantageously to understand the physical phenomena that drive folding. Among these
phenomena, the subtle, temperature–dependent hydrophobic effect [55, 56] remains
one of the most investigated to rationalize the collapse of a disordered protein chain
into an appropriately folded one. The choice of a pertinent reaction coordinate that
characterizes the folding process of a short peptide, let alone a small protein, con-
stitutes a conundrum, unlikely to find a definitive answer in the near future. This
intricate problem is rooted in the vast number of degrees of freedom that vary con-
comitantly as the peptide evolves toward a folded structure. The free energy is, there-
fore, a function of many variables that cannot be accounted for in a straightforward
fashion. Valuable information may, nonetheless, be obtained from simple model sys-
tems, for which a non–ambiguous reaction coordinate can be defined. Such is the
case of the terminally blocked undecamer of L–leucine organized in an α–helix, the
C–terminal residue of which was unfolded from an α–helical conformation to that
of a β–strand [57]. Similar calculations have been endeavored with blocked poly–L–
alanine of various lengths to examine helix propagation at its N– and C–termini [58]

To highlight the temperature–dependent nature of the hydrophobic effect, the MD
simulations were run in the canonical ensemble at 280, 300, 320, 340, 360 and 370 K,
using the Nosé–Hoover algorithm implemented in the program COSMOS. Changes
in the free energy consecutive to modifications of the last ψ dihedral angle of the
homopolypeptide were estimated with the US method. All other torsional angles
were restrained softly in a range characteristic of an α–helix. For each temperature,
the complete reaction pathway connecting the α–helical state to the β–strand —
roughly speaking −90 ≤ ψ ≤ +170◦ , was broken down in five mutually overlapping
windows. The full free energy profiles were subsequently reconstructed employing
WHAM. The total simulation length varied from 14 ns at 370 K, to 76 ns at 280 K,
on account of the slower relaxation at lower temperatures.

The PMFs shown in Fig. 6 each possess two distinct local minima corresponding
to the α–helix and the β–strand, and separated by a maximum of the free energy
around 90◦ . These three conformational states are characterized by different SASAs
— viz. 134±2, 149±7 and 117±13 Å2 for the α–helix, the transition state (TS) and
the β–strand, respectively. The most striking feature of the PMFs lies in the tempera-
ture dependence of the free energy associated to the transition from the α–helix to the
TS, ∆AαR→‡ , and that from the β–strand to the TS, ∆Aβ→‡ . Furthermore, neither
∆AαR→‡(T ) nor ∆Aβ→‡(T ) varies monotonically as the temperature increases. On
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Figure 6. Free energy profile characterizing the unfolding of the undecamer of poly–leucine
at different temperatures (a). Activation free energies from the α–helix to the transition state,
‡ , and from the β–strand to ‡ (b). Arrhenius plot for the same transitions, inferred from the
activated complex theory, viz. ln k = ln h/β − β∆A‡ . h is the Planck constant (c)

the contrary, the two profiles exhibit a maximum at a characteristic temperature Ti ,
suggestive of a non–Arrhenius behavior driven by physical principles that are re-
lated to the solvation properties of the hydrophobic homopolypeptide. Considering
that the variation of entropy between state Ξ — i.e. either the α–helix or the β–
strand, and the TS is ∆S‡(T ) = −∂∆A‡(T )/∂T , it follows that at Ti , the entropy
is zero. Since ∆A‡(T ) decreases when T > Ti , ∆S‡(T ) is positive in this region,
hence, implying that the conformational transition is favored entropically. Moreover,
as ∆A‡(T ) > 0 , the change in internal energy, ∆U‡(T ) = ∆A‡(T )+T∆S‡(T ) , is
also necessarily positive, so that Ξ is the thermodynamically favored state. Symmet-
rically, when T < Ti , ∆S‡(T ) is negative and Ξ is the entropically favored state.
On account of the greater SASA for the TS, the transition from Ξ to the TS can be
viewed as the transfer of a portion of the side chain from a buried state to a solvent–
exposed one, similar in spirit to the translocation of a hydrophobic solute from a
non–polar medium to water, that is accompanied by a positive free energy change
— the thermodynamic fingerprint of the hydrophobic effect [59]. Put together, the
free energy barrier can be ascribed at high temperature to the sole internal energy, to
which an increasing entropic contribution is added upon lowering the temperature.

A fundamental issue brought to light in this investigation is the non–Arrhenius
behavior of the unfolding kinetics of the hydrophobic peptide, and the underlying
temperature dependence of the free energy barrier. This result is in blatant contra-
diction with the hypothesis commonly adopted in lattice model simulations that the
activation free energy is a constant, and further suggests that a temperature depen-
dence should be introduced in these models to capture subtle solvent contributions,
like the hydrophobic effect [55].
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6 Free Energy Calculations and Membrane Protein Association

To a large extent, our knowledge of how membrane protein domains recognize and
associate into functional, three–dimensional entities remains fragmentary. Whereas
the structure of membrane proteins can be particularly complex, their TM region
is often simple, consisting in general of a bundle of α–helices, or barrels of β–
strands. An important result brought to light by deletion experiments indicates that
some membrane proteins can retain their biological function upon removal of large
fractions of the protein. This is suggestive that rudimentary models, like simple α–
helices, can be utilized to understand the recognition and association processes of
TM segments into complex membrane proteins. On the road to reach this goal, the
“two–stage” model [60] provides an interesting view for rationalizing the folding of
membrane proteins. According to this model, elements of the secondary structure
— viz. in most cases, α–helices, are first formed and inserted into the lipid bilayer,
prior to specific inter–helical interactions that drive the TM segments towards well–
ordered, native structures. Capturing the atomic detail of the underlying mechanisms
responsible for α–helix recognition and association requires model systems that are
supported by robust experimental data to appraise the accuracy of the computations
endeavored. Glycophorin A (GpA), a glycoprotein ubiquitous to the human erythro-
cyte membrane, represents one such system. It forms non–covalent dimers through
the reversible association of its membrane–spanning domain — i.e. residues 62 to
101, albeit only residues 73 to 96 actually adopt an α–helical conformation [61–63].
Inter–helical association has been shown to result from specific interactions involv-
ing a heptad of residues, essentially located on one face of each TM segment, as may
be seen in Fig. 7.

(a) (b)

Figure 7. TM domain of GpA formed by a homodimer of α–helices, embedded in a lipid
membrane mimetic. The heptad of residues involved in the association of the TM segments
are shown as transparent van der Waals spheres. Note the crossing angle between the two
α–helices, equal to ca. 40◦ (a). Free energy profile delineating the reversible association of
the TM segments. Insert: Gaussian–like distributions of the force acting along the reaction
coordinate, ξ , in the repulsive region — viz. ξ < 8 Å, and in the attractive region — viz. ξ >
8 Å (b)
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The reversible association of GpA in a lipid bilayer was modelled using its
dimeric, α–helical TM segments immersed in a membrane mimetic formed by a
lamella of dodecane placed between two lamellae of water. The ABF method in-
troduced in the program NAMD [26] was employed to allow the TM segments to
diffuse freely along the reaction coordinate, ξ , chosen to be the distance separating
the centers of mass of the two α–helices. Such a free energy calculation is not only
challenging methodologically, but it is also of paramount importance from a biophys-
ical standpoint, because it bridges structural data obtained from nuclear magnetic
resonance (NMR) [61–63] to thermodynamic data obtained from analytical ultra-
centrifugation [64, 65] and fluorescence resonance energy transfer (FRET) [66, 67],
providing a dynamic view of the recognition and association stages.

Visual inspection of the PMF derived from a 125 ns simulation and describing
the reversible association of the α–helices reveals a qualitatively simple profile, fea-
turing a single minimum characteristic of the native, dimeric state. As ξ increases, so
does the free energy, progressing by steps that correspond to the successive breaking
of inter–helical contacts. Beyond 21 Å, the TM segments are sufficiently separated
to assume that they no longer interact. Integration of the PMF in the limit of α–helix
association yields the association constant and, hence, the free energy of dimeriza-
tion, equal to +11.5±0.4 kcal/mol. Direct and precise comparison of this value with
experiment is not possible, because measurements were carried in different environ-
ments, namely hydrocarbon vs.detergent micelles. It can, nonetheless, be inferred
that the value in dodecane probably constitutes an upper bound to the experimental
estimates determined in micelles, on account of (i) the greater order imposed by the
detergent chains, and, (ii) the hydrophobic fraction of the system that increases with
the length of the chain [67].

Deconvolution of the PMF into free energy components illuminates two distinct
regimes controlling recognition and association. At large separations, as inter–helical
contacts vanish, the helix–helix term becomes progressively negligible, resulting es-
sentially from the interaction of two macro–dipoles. The TM segments are stabilized
by favorable helix–solvent contributions. In contrast, at short separations, helix–helix
interactions are prominent and govern the change in the free energy near the global
minimum. Association proceeds through the transient formation of early, non–native
contacts involving residues that act as recognition sites. These contacts are subse-
quently replaced by contacts in the heptad of residues responsible for association,
concomitantly with the tilt of the two α–helices from an upright position to that
characteristic of the native dimer.

7 Conclusion

Free energy calculations constitute a tangible link between theory and experiment, by
quantifying at the thermodynamic level the physical phenomena modelled by statis-
tical simulations. With twenty years of hindsight gained from methodological devel-
opment and characterization, a variety of problems of both chemical and biological
relevance can now be tackled with confidence. Among the progresses achieved in
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recent years, a significant step forward has been made in the calculation of free en-
ergies along a reaction coordinate, in particular employing the concept of an average
force acting along this coordinate [25, 26]. “Alchemical transformations” utilized to
mimic site–directed mutagenesis experiments have also benefited from advances in
the understanding of the methodology and how the latter should be applied [68]. Ef-
forts to characterize and estimate the error affecting the simulations [10, 11, 69] have
equally played an active role in turning free energy calculations into another tool in
the arsenal of computational methods available to the modeler. Put together, free
energy calculations have come of age to become a predictive approach, instead of
remaining at the stage of a mere proof of concept [70]. As has been illustrated in this
chapter, they can be applied to numerous problems, ranging from de novo drug de-
sign to the understanding of biophysical processes in lipid membranes. Free energy
calculations, however, cannot yet be considered as “black box”, routine jobs. A ro-
bust, reliable methodology does not necessarily imply that it can be used blindly. The
nature of the problem dictates the choice of the method and the associated protocol
— e.g. US vs.FEP vs.TI vs.average force, the number of intermediate λ–states along
a reaction coordinate, the pertinent choice of this reaction coordinate, the amount of
sampling per individual λ–state, a single vs.a dual topology paradigm for “alchemi-
cal transformations”, or constrained vs.unconstrained MD. Furthermore, little effort
has been hitherto devoted to the automatization of free energy calculations, through,
for instance, a user–friendly definition of the topologies representative of the initial
and the final states of a transformation. With the increased access to massively par-
allel architectures as the price/performance ratio of computer chips continues to fall
inexorably, the bottleneck of free energy calculations has shifted from a purely com-
putational aspect to a human one, due to the need of qualified modelers to set these
calculations up. This explains why their use in industry, and particularly in the phar-
maceutical world, over the past years has remained scarce. Cutting–edge applications
of free energy calculations emanate essentially from academic environments, where
the focus is not so much on high throughput, but rather on well–delineated, specific
problems that often require more human attention than computational power. Yet,
it is envisioned that in a reasonably near future, free energy methods will become
an unavoidable element of screening pipelines, discriminating between candidates
selected from cruder approaches, to retain only the best leads towards a given target.

Acknowledgments

Jérôme Hénin, Surjit Dixit, Olivier Collet, Eric Darve, Andrew Pohorille and Alan
E. Mark are gratefully acknowledged for fruitful and inspiring discussions. The au-
thor thank the Centre Informatique National de l’Enseignement Supérieur (CINES)
and the centre de Calcul Réseaux et Visualisation Haute Performance (CRVHP) for
generous provision of CPU time on their SGI Origin 3000 architectures.



Free Energy Calculations 205

References

[1] Kollman, P. A., Free energy calculations: Applications to chemical and bio-
chemical phenomena, Chem. Rev. 93, 2395–2417, 1993.

[2] Postma, J. P. M.; Berendsen, H. J. C.; Haak, J. R., Thermodynamics of cavity
formation in water: A molecular dynamics study, Faraday Symp. Chem. Soc.
17, 55–67, 1982.

[3] Warshel, A., Dynamics of reactions in polar solvents. Semiclassical trajectory
studies of electron transfer and proton transfer reactions, J. Phys. Chem. 86,
2218–2224, 1982.

[4] Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A., Free energy calcula-
tions by computer simulation, Science 236, 564–568, 1987.

[5] Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Cal-
culation of the relative change in binding free energy of a protein–inhibitor
complex, Science 235, 574–576, 1987.

[6] McQuarrie, D. A., Statistical mechanics, Harper and Row: New York, 1976.
[7] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press:

Oxford, 1987.
[8] Kirkwood, J. G., Statistical mechanics of fluid mixtures, J. Chem. Phys. 3,

300–313, 1935.
[9] Zwanzig, R. W., High–temperature equation of state by a perturbation method.

I. Nonpolar gases, J. Chem. Phys. 22, 1420–1426, 1954.
[10] Lu, N.; Singh, J. K.; Kofke, D. A.; Woolf, T. B., Appropriate methods to com-

bine forward and reverse free–energy perturbation averages, J. Chem. Phys.
118, 2977–2984, 2003.

[11] Lu, N.; Kofke, D. A.; Woolf, T. B., Improving the efficiency and reliability
of free energy perturbation calculations using overlap sampling methods, J.
Comput. Chem. 25, 28–39, 2004.

[12] Mark, A. E. Free Energy Perturbation Calculations. in Encyclopedia of com-
putational chemistry, Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger,
J.; Kollman, P. A.; Schaefer III, H. F.; Schreiner, P. R., Eds., vol. 2. Wiley and
Sons, Chichester, 1998, pp. 1070–1083.

[13] Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo
free energy estimation: Umbrella sampling, J. Comput. Phys. 23, 187–199,
1977.

[14] Pearlman, D. A.; Kollman, P. A., The overlooked bond–stretching contribution
in free energy perturbation calculations, J. Chem. Phys. 94, 4532–4545, 1991.

[15] Boresch, S.; Karplus, M., The role of bonded terms in free energy simulations:
I. Theoretical analysis, J. Phys. Chem. A 103, 103–118, 1999.

[16] Boresch, S.; Karplus, M., The role of bonded terms in free energy simulations:
II. Calculation of their influence on free energy differences of solvation, J. Phys.
Chem. A 103, 119–136, 1999.

[17] Pearlman, D. A., A comparison of alternative approaches to free energy calcu-
lations, J. Phys. Chem. 98, 1487–1493, 1994.



206 C. Chipot

[18] Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren,
W. F., Avoiding singularities and neumerical instabilities in free energy calcu-
lations based on molecular simulations, Chem. Phys. Lett. 222, 529–539, 1994.

[19] Straatsma, T. P.; Berendsen, H. J. C., Free energy of ionic hydration: Analysis
of a thermodynamic integration technique to evaluate free energy differences
by molecular dynamics simulations, J. Chem. Phys. 89, 5876–5886, 1988.

[20] Chandler, D., Introduction to modern statistical mechanics, Oxford University
Press, 1987.

[21] Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.; Rosenberg, J. M.,
The weighted histogram analysis method for free energy calculations on bio-
molecules. I. The method, J. Comput. Chem. 13, 1011–1021, 1992.

[22] Pearlman, D. A., Determining the contributions of constraints in free energy
calculations: Development, characterization, amnd recommendations, J. Chem.
Phys. 98, 8946–8957, 1993.

[23] den Otter, W. K.; Briels, W. J., The calculation of free–energy differences by
constrained molecular dynamics simulations, J. Chem. Phys. 109, 4139–4146,
1998.

[24] den Otter, W. K., Thermodynamic integration of the free energy along a re-
action coordinate in Cartesian coordinates, J. Chem. Phys. 112, 7283–7292,
2000.

[25] Darve, E.; Pohorille, A., Calculating free energies using average force, J. Chem.
Phys. 115, 9169–9183, 2001.

[26] Hénin, J.; Chipot, C., Overcoming free energy barriers using unconstrained
molecular dynamics simulations, J. Chem. Phys. 121, 2904–2914, 2004.

[27] Jorgensen, W. L.; Ravimohan, C., Monte Carlo simulation of differences in free
energies of hydration, J. Chem. Phys. 83, 3050–3054, 1985.

[28] Chipot, C.; Kollman, P. A.; Pearlman, D. A., Alternative approaches to potential
of mean force calculations: Free energy perturbation versus thermodynamic in-
tegration. Case study of some representative nonpolar interactions, J. Comput.
Chem. 17, 1112–1131, 1996.

[29] Widom, B., Some topics in the theory of fluids, J. Chem. Phys. 39, 2808–2812,
1963.

[30] Straatsma, T. P.; Berendsen, H. J. C.; Stam, A. J., Estimation of statistical errors
in molecular simulation calculations, Mol. Phys. 57, 89–95, 1986.

[31] Chipot, C.; Pohorille, A., Conformational equilibria of terminally blocked sin-
gle amino acids at the water–hexane interface. A molecular dynamics study, J.
Phys. Chem. B 102, 281–290, 1998.

[32] Chipot, C.; Millot, C.; Maigret, B.; Kollman, P. A., Molecular dynamics free
energy perturbation calculations. Influence of nonbonded parameters on the
free energy of hydration of charged and neutral species, J. Phys. Chem. 98,
11362–11372, 1994.

[33] Soriano, P.; Montgomery, C.; Geske, R.; Bradley, A., Targeted disruption of the
c–src proto–oncogene leads to osteopetrosis in mice., Cell 64, 693–702, 1991.

[34] Lange, G.; Lesuisse, D.; Deprez, P.; Schoot, B.; Loenze, P.; Benard, D.; Mar-
quette, J. P.; Broto, P.; Sarubbi, E.; Mandine, E., Principles governing the



Free Energy Calculations 207

binding of a class of non–peptidic inhibitors to the SH2 domain of src stud-
ied by X-ray analysis, J. Med. Chem. 45, 2915–2922, 2002.

[35] Lange, G.; Lesuisse, D.; Deprez, P.; Schoot, B.; Loenze, P.; Benard, D.; Mar-
quette, J. P.; Broto, P.; Sarubbi, E.; Mandine, E., Requirements for specific bind-
ing of low affinity inhibitor fragments to the SH2 domain of pp60Src are iden-
tical to those for high affinity binding of full length inhibitors, J. Med. Chem.
46, 5184–5195, 2003.

[36] Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.;
Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K., NAMD2: Greater scal-
ability for parallel molecular dynamics, J. Comput. Phys. 151, 283–312, 1999.

[37] Bhandarkar, M.; Brunner, R.; Chipot, C.; Dalke, A.; Dixit, S.; Grayson, P.;
Gullingsrud, J.; Gursoy, A.; Humphrey, W.; Hurwitz, D. et al. NAMD users
guide, version 2.5. Theoretical biophysics group, University of Illinois and
Beckman Institute, 405 North Mathews, Urbana, Illinois 61801, September
2003.

[38] Carrupt, P.; Testa, B.; Gaillard, P. Computational approaches to lipophilicity:
Methods and applications. in Reviews in Computational Chemistry, Lipkowitz,
K.; Boyd, D. B., Eds., vol. 11. VCH, New York, 1997, pp. 241–345.

[39] Wohnsland, F.; Faller, B., High–throughput permeability pH profile and high–
throughput alkane–water log P with artificial membranes, J. Med. Chem. 44,
923–930, 2001.

[40] Bas, D.; Dorison-Duval, D.; Moreau, S.; Bruneau, P.; Chipot, C., Rational de-
termination of transfer free energies of small drugs across the water–oil inter-
face, J. Med. Chem. 45, 151–159, 2002.

[41] Rivail, J. L.; Rinaldi, D., A quantum chemical approach to dielectric solvent
effects in molecular liquids, Chem. Phys. 18, 233–242, 1976.

[42] Chipot, C., Rational determination of charge distributions for free energy cal-
culations, J. Comput. Chem. 24, 409–415, 2003.

[43] Pohorille, A.; Wilson, M.A.; New, M.H.; Chipot, C., Concentrations of anes-
thetics across the water–membrane interface; The Meyer–Overton hypothesis
revisited, Toxicology Lett. 100, 421–430, 1998.

[44] Takeda, S.; Haga, T.; Takaesu, H.; Mitaku, S., Identification of G protein–
coupled receptor genes from the human genome sequence, FEBS Lett. 520,
97–101, 2002.

[45] Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox,
B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto,
M.; Miyano, M., Crystal structure of rhodopsin: A G protein–coupled receptor,
Science 289, 739–745, 2000.

[46] Archer, E.; Maigret, B.; Escrieut, C.; Pradayrol, L.; Fourmy, D., Rhodopsin
crystal: New template yielding realistic models of G–protein–coupled recep-
tors ?, Trends Pharmacol. Sci. 24, 36–40, 2003.

[47] Talkad, V. D.; Fortune, K. P.; Pollo, D. A.; Shah, G. N.; Wank, S. A.; Gardner,
J. D., Direct demonstration of three different states of the pancreatic cholecys-
tokinin receptor, Proc. Natl. Acad. Sci. USA 91, 1868–1872, 1994.



208 C. Chipot

[48] Moroder, L.; Wilschowitz, L.; Gemeiner, M.; Göhring, W.; Knof, S.; Scharf,
R.; Thamm, P.; Gardner, J. D.; Solomon, T. E.; Wünsch, E., Zur Syn-
these von Cholecystokinin–Pankreozymin. Darstellung von [28–Threonin, 31–
Norleucin]– und [28–Threonin, 31–Leucin]– Cholecystokinin–Pankreozymin–
(25–33)–Nonapeptid, Z. Physiol. Chem. 362, 929–942, 1981.

[49] Gigoux, V.; Escrieut, C.; Fehrentz, J. A.; Poirot, S.; Maigret, B.; Moroder, L.;
Gully, D.; Martinez, J.; Vaysse, N.; Fourmy, D., Arginine 336 and Asparagine
333 of the human cholecystokinin–A receptor binding site interact with the
penultimate aspartic acid and the C–terminal amide of cholecystokinin, J. Biol.
Chem. 274, 20457–20464, 1999.

[50] Gigoux, V.; Escrieut, C.; Silvente-Poirot, S.; Maigret, B.; Gouilleux, L.;
Fehrentz, J. A.; Gully, D.; Moroder, L.; Vaysse, N.; Fourmy, D., Met–195 of
the cholecystokinin–A interacts with the sulfated tyrosine of cholecystokinin
and is crucial for receptor transition to high affinity state, J. Biol. Chem. 273,
14380–14386, 1998.

[51] Gigoux, V.; Maigret, B.; Escrieut, C.; Silvente-Poirot, S.; Bouisson, M.;
Fehrentz, J. A.; Moroder, L.; Gully, D.; Martinez, J.; Vaysse, N.; Fourmy,
D., Arginine 197 of the cholecystokinin–A receptor binding site interacts with
the sulfate of the peptide agonist cholecystokinin, Protein Sci. 8, 2347–2354,
1999.

[52] Daggett, V., Long timescale simulations, Curr. Opin. Struct. Biol. 10, 160–164,
2000.
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