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I. WHY DOES MOLECULAR DYNAMICS WORK?

A. Introduction

Classical molecular dynamics (MD) can be characterized in terms of Hamiltonian equa-

tions of motion

q̇ = M−1p, ṗ = −∇V (q) (1)
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with atomistic positions q ∈ R3N and momenta p ∈ R3N , N the number of atoms, M ∈

R3N×3N the (diagonal) mass matrix, and V : R3N → R the potential energy function.

The system of equations (1) can be written more compactly as

ż = J∇H(z) (2)

with state variable z = (qT , pT )T , Hamiltonian

H(z) =
1

2
pT M−1p + V (q) (3)

and structure matrix

J =

 0 I

−I 0

 . (4)

Alternatively, we may derive the equivalent Euler-Lagrange equation

Mq̈ +∇V (q) = 0 (5)

by extremizing the functional (action)

L[q] =

∫ T

0

{
1

2
q̇T Mq̇ − V (q)

}
dt (6)

over all paths q(t), 0 ≤ t ≤ T , with fixed endpoints q(0) = qa and q(T ) = qb.

The flow map of a differential equation (DE)

ż = f(z) = J∇H(z) (7)

is denoted by

z(t) = φt,f (z0) (8)

or, in case of Hamiltonian DEs,

z(t) = φt,H(z0), (9)

respectively, where z0 = z(0). We consider numerical approximations using one-step meth-

ods of order k ≥ 1, i.e.

zn+1 = Ψ∆t(z
n), Ψ∆t(z)− φ∆t,f (z) = O(∆tk+1). (10)
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Example. Störmer-Verlet (SV) method:

pn+1/2 = pn−∆t

2
∇V (qn), qn+1 = qn+∆tM−1pn+1/2, pn+1 = pn+1/2−∆t

2
∇V (qn+1), (11)

which is equivalent to the position-only two-step leapfrog formulation

M
(
qn+1 − 2qn + qn−1

)
= −∆t2∇V (qn). (12)

�

The SV method is symplectic and time-reversible. A map Ψ : R6N → R6N is called sym-

plectic if the Jacobian DΨ(z) satisfies

DΨ(z)T J−1DΨ(z) = J−1. (13)

A map Ψ is called time-reversible with respect to the involution ẑ = Sz, defined by q̂ = q,

p̂ = −p, if

SΨ(Sz) = Ψ−1(z). (14)

The leapfrog formulation of the SV method extremizes a discrete functional (action)

L[{qn}] =
N−1∑
n=0

{
1

2

(
qn+1 − qn

∆t

)T

M

(
qn+1 − qn

∆t

)
− 1

2

(
V (qn+1) + V (qn)

)}
∆t. (15)

Here again variations are taken with both end points q0 = qa and qN = qb, N = T/∆t, held

fixed. This puts the leapfrog method into the context of boundary value problems (BVP).

B. Modified equation analysis and conservation of energy

Conservation of a modified energy can be concluded quite easily for the leapfrog formu-

lation

M
qn+1 − 2qn + qn−1

∆t2
= −∇V (qn). (16)

We note that
qn+1 − 2qn + qn−1

∆t2
= q̈(tn) +

∆t2

12
q(iv)(tn) +O(∆t4) (17)

and, hence, obtain a modified equation

Mq̈ +
∆t2

12
Mq(iv) = −∇V (q) (18)
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up to terms of order ∆t4. Furthermore, multiplication by q̇T yields

d

dt

[
1

2
q̇T Mq̇ + V (q)

]
= −∆t2

12
q̇T Mq(iv) (19)

= −∆t2

12

d

dt

[
q̇T Mq(iii) − 1

2
q̈T Mq̈

]
(20)

and, finally, the modified energy

E∆t =
1

2
q̇T Mq̇ + V (q) +

∆t2

12

[
q̇T Mq(iii) − 1

2
q̈T Mq̈

]
. (21)

This formula can easily be generalized to higher-order approximations and can be verified

along numerical trajectories by replacing time derivatives by high-order finite-difference

approximations. We will come back to this observation in the third lecture on hybrid Monte

Carlo methods.

A more sophisticated approach is to define a modified DE

ż = f̃∆t(z) (22)

such that

Ψ∆t(z) ≈ φ∆t,f̃∆t
(z). (23)

In case of a symplectic method, such as the SV method, the modified DE is Hamiltonian,

i.e.

ż = f̃∆t(z) = J∇H̃∆t(z). (24)

In case of analytic functions, Cauchy’s estimate and a bit of sweating leads to an estimate

of type

‖Ψ∆t(z)− φ∆t,f̃∆t
(z)‖ ≤ c1e

−c2/∆t. (25)

Since

H̃∆t(z)−H(z) = O(∆tk), (26)

near conservation of H(zn) over exponentially long simulation intervals follows.

We now take a step back and consider a non-autonomous modified DE defined by

ż =
d

dt
Ψt(z0) (27)

=

[
∂

∂t
Ψt

]
◦Ψ−1

t (z) (28)

= f(z) + R∆t(z, t) =: f̃∆t(z, t) (29)
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for 0 ≤ t ≤ ∆t. We clearly have by construction that

φ∆t,f̃∆t
= Ψ∆t (30)

(exact embedding into a flow map). By periodic extension of f̃∆t(x, t) for all t ≥ 0, we

obtain

φn∆t,f̃∆t
= Ψn

∆t. (31)

Unfortunately, f̃∆t(z, t) is not continuous in t. A more sophisticated embedding works with

Ψ̂t := φt−∆tξ(t/∆t),f ◦Ψ∆tξ(t/∆t) (32)

and

f̃∆t :=

[
∂

∂t
Ψ̂t

]
◦ Ψ̂−1

t , (33)

where ξ(s) satisfies ξ(0) = 0, ξ(1) = 1, ξ(m)(0) = ξ(m)(1) = 0 for m ≥ 1. Note that

Ψ̂∆t = Ψ∆t. More work is needed to make f̃∆t analytic in t (see P.C. Moan).

An alternative embedding has been suggested for the SV method (and general splitting

methods) by J. Wisdom. He uses

Mq̈ = −2π
m=+∞∑
m=−∞

δ

(
2πt

∆t
− 2πm

)
∇V (q) = −

m=+∞∑
m=−∞

cos

(
2πm

∆t
t

)
∇V (q) (34)

with modified time-dependent Hamiltonian

H̃∆t =
1

2
pT M−1p +

m=+∞∑
m=−∞

cos

(
2πm

∆t
t

)
V (q). (35)

For a symplectic time-stepping method the non-autonomous DE is Hamiltonian, i.e.

ż = J∇H̃∆t(z, t) = J∇ (H(z) + R∆t(z, t)) . (36)

The drift in energy is given by

H̃∆t(z(t), t) = H̃∆t(z(0), 0) +

∫ t

0

∂

∂s
R∆t(z(s), s) ds. (37)

Suppose now that z(t) is quasi-periodic, i.e.

z(t) = Re

{∑
k∈Zd

zm ei(ω·k)t

}
, (38)
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with frequency vector ω ∈ Rd. Then∫ t

0

∂

∂s
R∆t(z(s), s) ds =

∑
m6=0,k∈Zd

rm,k

∫ t

0

ei(k·ω+2πm/∆t) s ds (39)

=
∑

m6=0,k∈Zd

rm,k
ei(k·ω+2πm/∆t) s

i(k · ω + 2πm/∆t)
. (40)

Numerically induced drift in energy can be expected for

k · ω +
2πm

∆t
≈ 0 (41)

(numerical resonances). Not relevant for ∆t → 0 as the Fourier coefficients rm,k decay expo-

nentially fast for analytic functions and standard backward error analysis can be recovered

by averaging over time. However, non-autonomous modified equation analysis is relevant

for large (multiple) time stepping methods.

C. Shadowing

Given a numerical trajectory {zn}L
n=0, can we find an exact solution z(t) of the given DE

such that, roughly speaking,

‖z(tn)− zn‖ ≤ δ (42)

for all 0 ≤ n ≤ L? This shadowing property holds for hyperbolic systems and for Hamilto-

nian systems that are hyperbolic on hyper-surfaces of constant energy.

For Hamiltonian systems, shadowing can be rephrased as follows: Given a numerical

trajectory zn = ((qn)T , (pn)T )T computed with the SV method, can we find a solution of the

Lagrangian variational problem

L[q] =

∫ T

0

[
1

2
q̇T Mq̇ − V (q)

]
dt (43)

subject to the boundary conditions q(0) = q0 and q(T ) = qN , T = ∆tN? A necessary

condition is that any point in coordinate space can be connected to another point by a

solution of the corresponding Euler-Lagrange equation. Furthermore, convexity would imply

that the boundary value problem is well-posed. Under these conditions shadowing would

be possible. Positive results are available over short time intervals (see work by Müller &

Ortiz, 2004).
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Shadowing combined with backward error analysis can be used to show that a symplectic

time-stepping method will ’shadow’ trajectories of the modified equations over exponentially

long time periods implying, for example, that time averages (expectation values) can be

computed reliably for mixing systems (Reich, SINUM, 1999).

D. The Liouville picture

Let us now consider the noise-driven DE

ż = f(z) + γ(z)Ẇ , (44)

where W (t) denotes standard multivariate Brownian motion.

If we consider initial data distributed according to a measure with density ρ0(z), then

the density of solutions z(t) satisfies the Fokker-Plank equation

ρt = L∗ρ. (45)

The generator L is defined by

Lφ = f · ∇φ +
1

2
Γ : ∇(∇φ) (46)

and its dual by 〈Lφ, ρ〉 = 〈φ,L∗ρ〉. Here 〈., .〉 is the standard L2 inner product, A : B =

trace (AT B) denotes the inner product on the space of d × d matrices, Γ(z) = γ(z)γ(z)T ,

and (∇v)ij = ∂vi/∂zj.

The spectrum of L∗ encodes all relevant dynamic information such as rate of mixing,

meta-stable states, invariant density. Most theoretical results (see survey by Weinan E &

Eric Vanden-Eijnden) are available for

q̇ = −∇V (q) + γẆ (47)

while very little is known for deterministic Hamiltonian systems γ(z) ≡ 0 except for hyper-

bolic systems (see work by Liverani).

Maps such as Ψ∆t and φ∆t,H also generate linear operators (called Frobenius-Perron

operators), which characterize the propagtion of densities of solutions. The spectrum of

such FP operators could be compared to assess the properties of exact dynamics versus

numerical approximations. This is probably one of the big challenges in numerical ODE

theory.
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Another, entirely different, approach to molecular dynamics is to discretized phase space

into ’boxes’ and to computed transition probabilities between ’boxes’. This amounts ef-

fectively to discretizing the operator L∗ and to compute the eigenvalues of the resulting

truncation. This approach is not feasible, in general, due to the inherent computational

complexity. Attempts have been made to find a reduced phase space over which a Markovian

assumption is still valid and, hence, to reduce the computational complexity (Grubmüller,

Schütte et al, Stuart, Swope et al, Pande et al, Kevrekidis).

II. OSCILLATORY SYSTEMS

’Stochastic’ (exponential decay of correlation) behavior for deterministic dynamics can

be shown for hyperbolic systems. This lecture will introduce another way to obtain stochas-

tic behavior in deterministic systems. This approach is based on introducing a limit of

infinitely many oscillatory degrees of freedom and a subsequent reduction to a single distin-

guished degrees of freedom. Most of the presentation is based on a survey article by Givon,

Kupfermann & Stuart in Nonlinearity, 2004.

We consider deterministic Hamiltonian systems and introduce a splitting of the state

variable z into (x, y) ∈ X × Y with dim Y →∞. We are interested in situations where the

solution ρ(x, y, t) of the Liouville equations (Fokker-Plank with Γ ≡ 0)

ρt = L∗ρ (48)

can be approximated by

ρ(x, y, t) ≈ ρ(x, y) ρ̄(x, t) (49)

for finite times 0 ≤ t ≤ T , where T is large enough to study meta-stable behavior and where

ρ̄ satisfies a Fokker-Plank equations with Γ 6= 0.

A. Trigonometric approximation of Gaussian processes

Mean zero Gaussian processes Ξ(t) are completely characterized by their auto-covariance

function

R(τ) = E [Ξ(t)Ξ(t + τ)] . (50)
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We consider the approximation of Gaussian processes by finite series of the form

ΞK(t) =
1

Kb

K∑
j=1

F (ωj) [ξj cos ωjt + ηj sin ωjt] (51)

where ξj, ηj, j = 1, . . . , K, are mutually independent i.i.d. sequences with ξj, ηj ∼ N (0, 1).

One finds that

RK(τ) = E [ΞK(t) ΞK(t + τ)] (52)

=
1

K2b

K∑
j=1

F 2(ωj) cos ωjτ. (53)

Example. If a ∈ (0, 1), 2b = 1− a, ωj = Nαζj, {ζj} is an i.i.d. sequence with ζj ∼ U [0, 1],

∆ω = Na/N , then

RK(τ) =
K∑

j=1

F 2(ωj) cos(ωjτ) ∆ω, (54)

which, as K →∞, is a Monte Carlo approximation to the Fourier-cosine transform of F 2(ω):

R(τ) =

∫ ∞

0

F 2(ω) cos(ωτ) dω. (55)

Under suitable decay conditions on F 2(ω), RK(τ) converges to R(τ) point-wise and in

L1[0, T ], T > 0 arbitrary. As a specific example consider

F 2(ω) =
2α/π

α2 + ω2
, α > 0, (56)

then

R(τ) = e−α|τ | (57)

and Ξ(t) becomes an OU process, i.e.

Ξ̇ = −αΞ + (2α)1/2Ẇ . (58)

�

B. Hamiltonian systems and heat baths

Consider the model problem

H(Q,P, q, p) =
1

2
P 2 + V (Q) +

1

2

K∑
j=1

p2
j/mj +

1

2

K∑
j=1

kj (qj −Q)2 , (59)
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where Q,P, qj, pj ∈ R. The equations of motion are

Q̈ + V ′(Q) =
K∑

j=1

(qj −Q), (60)

q̈j + ω2
j (qj −Q) = 0, (61)

where ω2
j = kj/mj. Here (Q0, P0) are given while the initial conditions (q0

j , p
0
j) are drawn

from a distribution with density proportional to exp(−βH), i.e.

q0
j = Q0 + (1/βkj)

1/2ξj, p0
j = (mj/β)1/2ηj. (62)

Equation (61) can be integrated out and we obtain an integro-differential equation for Q:

Q̈ + V ′(Q) +

∫ t

0

RK(t− s) Q̇(s) ds = β−1/2ΞK(t), (63)

where

RK(τ) =
K∑

j=1

kj cos ωjτ (64)

and

ΞK(t) =
K∑

j=1

k
1/2
j [ξ cos ωjt + ηj sin ωjt] . (65)

Under appropriate conditions (63) converges weakly on any bounded time interval to the

stochastic integro-differential equation

Q̈ + V ′(Q) +

∫ t

0

R(t− s) Q̇(s) ds = β−1/2Ξ(t). (66)

If R(τ) = e−α|τ |, then

Q̈ + V ′(Q) = s, (67)

ṡ + α s = −P + (2α/β)1/2Ẇ . (68)

The analysis becomes much nicer if a single particle is coupled to a Hamiltonian wave

equation. See work by Eckmann et al. Cotter has applied this theory to particle methods

coupled to Hamiltonian wave equations to derive sub-grid (turbulence) models.

C. Multiple time stepping methods and numerical resonances

Heat bath models and indeed molecular dynamics introduce nearly harmonic oscillations

of very high frequency compared to the time-scales of interest. How can one design efficient

numerical time-stepping methods for such systems?
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The basic idea of multiple-time stepping is to integrate the fast degrees of motion (e.g.,

equation (61) with fixed Q) with a small inner time step ∆τ , while the remaining equations

are solved with a larger outer time-step ∆t = K ·∆τ . In principle, one can take K →∞ and

∆τ → 0, i.e., keep ∆t fixed. Then a time-stepping method Ψ∆t is obtained for which ωj∆t

is not necessarily small. Autonomous backward error analysis breaks down in this context

and one has to use an embedding into a non-autonomous Hamiltonian system (provided

the method Ψ∆t is symplectic. However, following (37), we now have to struggle with

numerically induced resonances for any pair k ∈ Zd and m ∈ Z, m 6= 0 for which

k · (ω∆t) + 2πm ≈ 0. (69)

unless the corresponding Fourier coefficient rm,k simultaneously vanishes!

D. Mollified methods and regularized equations

Skeel and co-workers have developed two methods called MOLLY and EQUILIBRIUM

that eliminates the troublesome numerical drift introduced by near resonances of the form

(69). The idea is to average the slow forces along fast oscillations, i.e., roughly speaking, a

slow potential energy contribution Vslow(q) is replaced by Vslow(A(q)), where A is a mollifier

that maps the instantaneous value of q(t) to its locally time-averaged value 〈q〉(t).

The mollifier A(q) may be viewed as a form of regularization. Similar types of regular-

ization appear in computational fluid dynamics (CFD) and numerical weather prediction

(NWP). However, large time step methods for NWP most often use the implicit midpoint

rule to approximate fast waves/oscillations. This effectively results in a slowing down of

oscillations with frequency ω to a numerical value Ω = (∆t)−1 tan−1(ω∆t) and the most

severe numerical resonances are avoided since Ω∆t ≤ π. See Wood, Staniforth & Reich for

more results.

For CFD and NWP these methods are a huge success story. The speed-up in the context

of MD is much less spectacular (perhaps a factor of 10). Implicit time-stepping methods are

not in use.

See also the work by Hairer, Lubich & Hochbruck on exponential integrators and filtering.
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III. HYBRID MONTE CARLO METHODS

A. Generalized hybrid Monte Carlo (GHMC) algorithm

We describe the generalized hybrid Monte Carlo (GHMC) algorithm of Kennedy &

Pendleton for a molecular Hamiltonian (energy function)

H(q, p) =
1

2
pT M−1p + V (q). (70)

We begin by recalling that a Markov process will converge to some distribution of con-

figurations if it is constructed out of updates each of which has the desired distribution as a

fixed point, and which taken together are ergodic. The GHMC algorithm for the generation

of the canonical density function

ρcan(q, p) =
1

Z
exp(−βH(q, p)), with β = 1/kBT, Z =

∫
exp(−βH(q, p)) dqdp, (71)

is constructed of two such steps.

1. Molecular dynamics Monte Carlo (MDMC)

This in turn consists of three parts:

(i) Molecular dynamics (MD): an approximate integration of Hamilton’s equations of

motion

q̇ = M−1p, ṗ = F (q), F (q) := −∇qV (q), (72)

with the leapfrog/Störmer-Verlet method over L steps and step-size ∆t. The resulting

map Uτ : (q, p) → (q′, p′), τ = L∆t, is exactly area preserving and time-reversible.

(ii) A momentum flip F : (q, p) → (q,−p).

(iii) Monte Carlo (MC): a Metropolis accept/reject test

(q′, p′) =

 F · Uτ (q, p) with probability min(1, exp(−β δH))

(q, p) otherwise
, (73)

with

δH := H(Uτ (q, p))−H(q, p) = H(F · Uτ (q, p))−H(q, p). (74)

Molecular dynamics Monte Carlo (MDMC) satisfies detailed balance since (F ·Uτ )
2 = id

and Uτ is volume conserving.
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2. Partial momentum refreshment

We first apply an extra momentum flip F so that the trajectory is reversed upon an MC

rejection instead of on an acceptance. For high rejection rates this momentum flip leads to

an undesirable Zitterbewegung (going forward and backward) in the molecular trajectories.

The momenta p are now mixed with a normal (Gaussian) i.i.d. distributed noise vector

Ξ ∈ R3N and the complete partial momentum refreshment step is given by p′

Ξ′

 =

 cos(φ) sin(φ)

− sin(φ) cos(φ)

 · F

 p

Ξ

 (75)

where

Ξ = β−1/2M1/2ξ, ξi ∼ N(0, 1), i = 1, . . . , 3N (76)

and 0 ≤ φ ≤ π/2. Here N(0, 1) denotes the normal distribution with zero mean and unit

variance.

If p and Ξ are both distributed according to the same normal (Gaussian) distribution, then

so are p′ and Ξ′. This special property of Gaussian random variables under an orthogonal

transformation (75) makes it possible to conduct the partial momentum refreshment step

without a Metropolis accept/reject test.

3. Special cases of GHMC

Several well-known algorithms are special cases of GHMC:

• The usual hybrid Monte Carlo (HMC) algorithm is the special case where φ = π/2.

The momentum flips may be ignored in this case since p′ = Ξ in (75) and the previous

value of p is entirely discarded.

• The choice φ = 0 corresponds to constant energy molecular dynamics under the as-

sumption that the propagator Uτ conserves energy exactly.

• Langevin Monte Carlo algorithms correspond to L = 1; i.e., a single MD time-step

with τ = ∆t and an arbitrary 0 < φ ≤ π/2. The single step (L = 1) may be replaced

by a small number of MD steps (L = 10, . . . , 100). Langevin Monte Carlo recovers

stochastic Langevin molecular dynamics

q̇ = M−1p, ṗ = F (q)− γp + σẆ , (77)
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provided φ = (2γ∆t)1/2, γ > 0 a constant and σ is determined by the standard

fluctuation-dissipation relation. In this regime, we find that (75) without the momen-

tum flip F reduces to

p′ ≈ (1− γ∆t) p + (2γ∆t)1/2Ξ (78)

and one may view the GHMC algorithm as a mean to simulate stochastic molecular

dynamics (instead of using GHMC as a pure sampling device).

4. Applications of hybrid Monte Carlo methods

A main application of HMC algorithms is provided by free energy calculations. It can

be used to implement blue-moon sampling as well as metadynamics (see survey by E &

Vanden-Eijnden).

B. Targeted shadow hybrid Monte Carlo (TSHMC) algorithm

A high acceptance rate is a desirable property of any Monte Carlo scheme. In fact, one of

the reasons for the introduction of the HMC method was its vastly superior acceptance rate

over standard Monte Carlo methods. However the acceptance rate of HMC degrades with the

size of the simulated molecular system. Furthermore, in light of the modified Hamiltonian,

it would appear that essentially no rejections are necessary at all for a symplectic integration

method such as Störmer-Verlet. In fact, that is indeed the case up to a small rejection rate

caused by the truncation of a modified Hamiltonian H̃∆t after a finite number of terms. A

practical HMC algorithm based on modified Hamiltonians was first proposed by Izaguirre

& Hampton. Akhmatskaya & Reich proposed a variant of their SHMC method with two

important modifications:

(i) a simplified evaluation of the modified energy (Hamiltonian),

(ii) a modified and more flexible momentum update.

The resulting TSHMC method avoids, in particular, the introduction of a factor c in the

modified energy used for SHCM, which is difficult to tune.
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1. Molecular dynamics step and modified energies

The probability of a change in energy β δH having the value ξ when averaged over the

equilibrium distribution of starting points on phase space is

PδH(ξ) =
1

Z

∫
exp(−β H) δ(ξ − β δH) dqdp (79)

≈ 1

4πβ〈δH〉
exp

[
−(ξ − β〈δH〉)2

4β〈δH〉

]
(80)

as a expected from the central limit theorem. The average acceptance rate for the MDMC

part of the GHMC method is given by

Pacc = 〈min(1, exp(−β δH))〉 (81)

=

∫ +∞

−∞
PδH(ξ) min(1, exp(−ξ) dξ (82)

= erfc

(
1

2

√
β〈δH〉

)
(83)

where 〈δH〉 denotes the expectation value of energy fluctuations in the Hamiltonian H (in

case of the standard hybrid Monte Carlo method) or the modified Hamiltonian H∆t in case

of SHMC/TSHMC. It should be kept in mind that δH denotes fluctuations in the energy

after L MD steps with step-size ∆t. Theoretical results for a chain of harmonic oscillators

and numerical evidence suggest that

〈δH〉 = O(V ∆t4) (84)

for the Störmer-Verlet method and

〈δH〉 = O(V ∆t2k) (85)

for a k-th order modified Hamiltonian H̃∆t, where V is the volume of the simulation domain.

It follows that the efficiency gain due to a higher acceptance rate in the molecular dy-

namics Monte Carlo step with fixed molecular dynamics trajectory length τ = L∆t = const.

is proportional to V 1/4 for modified Hamiltonians H∆t of sufficiently high order.

Results by Takaishi furthermore imply that the optimal acceptance rate for a k-th order

method is given by

〈Pacc〉opt = exp(−1/k). (86)
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The following fourth-order modified energy (Hamiltonian) for the leapfrog/Störmer-Verlet

method has been given by Skeel & Hardy:

E∆t = H(qn, pn) +
1

4
δ2Un +

∆t

6
(pn)T M−1µδF n +

5∆t2

24
(F n)T M−1F n +

∆t2

12
(F n)T M−1δ2F n.

(87)

Here a superscript n denotes evaluation at qn, the centered difference operator is defined by

δwn = wn+1/2−wn−1/2, the averaging operator is defined by µwn = 1
2
wn+1/2 + 1

2
wn−1/2, and

values qn±1 are defined in terms of (qn, pn) by the leapfrog/Störmer-Verlet method.

Another option is to numerical evaluate the modified energy (21). For the SV method

this is probably the most straightforward way to obtain modified energies. But the approach

does not in an obvious manner extend to other symplectic methods.

The standard Metropolis acceptance/rejection criterion for the MDMC part of the GHMC

algorithm is now replaced by

min (1, exp [−β{E∆t(q
′, p′)− E∆t(q, p)}]) . (88)

Note that time averages need to include the factor

wm = eβ(Êm
∆t−Em), (89)

where Em is the value of the given energy after completion of the mth SHMC/TSHMC step

and Em
∆t is the modified energy, respectively, i.e., averages of an observable Ω are computed

according to the formula:

〈Ω〉 =
1
M

∑M
m=1 Ω(qm, pm) wm

1
M

∑M
m=1 wm

. (90)

This is a standard re-weighting procedure for simulations in modified ensembles.

To avoid the Zitterbewegung caused by the momentum reversal necessary for rejected MD

steps, it is desirable to pick a step-size ∆t such that the rejection rate after L MD steps is

kept sufficiently small (e.g. below 10%).

2. Alternative momentum updates

We already discussed that it is not necessary to completely re-sample the momenta as

done in the standard HMC scheme. Instead one may take the set of given momenta p and

modifies it by a vector Ξ to obtain a new set given by

p′ = p + σ Ξ. (91)
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Here σ > 0 is a free parameter and Ξ is sampled from a Boltzmann distribution, i.e., Ξ

is a vector of independent Gaussian random variables with mean zero and variance kBT .

Smaller values of σ lead to smaller perturbations in the momenta.

Following work by Cotter & Reich on dissipative particle dynamics (DPD), the following

more general update has been suggested: (91):

p′ = p + σ
K∑

k=1

∇hk(q) Ξk, (92)

where σ and Ξ = (Ξ1, . . . , ΞK)T are defined as before, and the functions hk(q), k = 1, . . . , K,

can be chosen quite arbitrarily. The particular choice

hk(q) = φ(rij), rij = ‖qi − qj‖, (93)

k = 1, . . . , (N−1)N/2, φ a given function of inter-particle distances rij, transforms (92) into

an update very similar to what is used in dissipative particle dynamics (DPD). An attractive

feature of such an update is its conservation of linear and angular momenta:

N∑
i=1

pi =
N∑

i=1

p′i,
N∑

i=1

qi × pi =
N∑

i=1

q′i × p′i. (94)

Given a new set of momenta p′, we need to evaluate the corresponding modified energy

E∆t(q, p
′). This step requires time-stepping the equations of motion two steps forward and

backward in time and, hence, two additional force field evaluations are needed. We then

apply (88) in its slightly modified form:

min (1, exp [−β{E∆t(q, p
′)− E∆t(q, p)}]) . (95)

It is again easily verified that the momentum update (92) combined with the Metropolis

criterion (95) satisfies detailed balance and preserves the canonical density corresponding to

Ê∆t. Hence we may conclude that the TSHMC method (without re-weighting) constitutes

a Markov chain Monte Carlo method which samples from the canonical density ρcan ∼

exp(−βÊ∆t).

C. Sampling aspects

In this section, we look at means to assess the sampling efficiency of Monte Carlo methods.
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Let (q1, q1, q2, . . . , qM) be a sequence of molecular configurations generated by an equili-

brated Monte Carlo simulation, and let 〈Ω(q)〉 denote the expectation value of some ’observ-

able’ Ω for q distributed according to the canonical ensemble. For simplicity we assume that

〈Ω(q)〉 = 0. We may define an unbiased estimator Ω̄ over the finite sequence of configurations

by

Ω̄ :=
1

M

M∑
m=1

Ω(qm), (96)

so 〈Ω̄〉 = 〈Ω〉 = 0.

Let

CΩ(l) :=
〈Ω(q1+l) Ω(q1)〉
〈(Ω(q1)2〉

denote the autocorrelation function for Ω. If the Markov process is ergodic, then for large l,

|CΩ(l)| ≤ λl
max := el/Mexp ,

where λmax is the second-largest eigenvalue of the Markov matrix and Mexp is the exponential

autocorrelation time. If M � Mexp then

〈(Ω̄)2〉 = {1 + 2AΩ}
〈(Ω)2〉

M
[1 +O(Mexp/M)] , (97)

where

AΩ :=
∞∑
l=1

CΩ(l) (98)

is the integrated autocorrelation function of the operator Ω.

This result tells us that on average 1+2AΩ correlated measurements are needed to reduce

the variance by the same amount as a single truly independent measurement. The quantity

AΩ provides a good measurement for the efficiency of a Monte Carlo algorithm (assuming

nearly identical work to generate the sequence {qm}M
m=1 of molecular conformations).

Work is underway to improve the quality of the momentum refreshment step for TSHMC.
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Method numerical 〈Vtors〉 theoretical 〈Vtors〉 〈AΩ〉 AR

HMC 2.6322 ± 0.0575 2.6313 67.7950 ± 11.1430 78%

SHMC 2.6370 ± 0.0587 2.6313 56.3774 ± 10.6648 98%

TSHMC 2.6336 ± 0.0156 2.6313 46.0230 ± 7.4815 99%

TABLE I: Simulation results for a single butane molecule with ∆t = 6 fs and τ = 600 fs. The

modified Hamiltonian is fourth order.

20


