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1 Basic probability theory

Let Ω be endowed with a probability measure P.

Definition 1.1. We say that a random vector X : Ω → R
d has the density p where

p : R
d → R+ is such that

∫

�
d p(x)dx = 1 if

∀A ⊂ R
d, P(X ∈ A) =

∫

A

p(x)dx⇔ ∀f : R
d → R bounded , E(f(X)) =

∫

�
d

f(x)p(x)dx.

Intuitively P(X ∈ [x, x+ dx]) = p(x)dx.

Example 1.2. The real random variable U is uniformly distributed on the interval [a, b]

where a < b if it has the density p(u) =
1{a<u<b}
b− a

.

Definition 1.3. A real random variable X with density p is

1. integrable if
∫

� |x|p(x)dx < +∞ and then its expectation is

E(X) =

∫

�
xp(x)dx,

2. square integrable if E(X2) =
∫

� x2p(x)dx < +∞ and then its variance is

Var (X) = E
[

(X − E(X))2
]

= E(X2) − (E(X))2.

The standard deviation of X is σ(X) =
√

Var (X).

Example 1.4. We say that the real variable X is Gaussian (or normal) with parameter
(µ, σ2) with (µ, σ) ∈ R × R

∗
+ and denote X ∼ N (µ, σ2) if X possesses the density

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .
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Then X is square integrable and

E(X) =

∫

�
xe−

(x−µ)2

2σ2
dx

σ
√

2π
= µ+

∫

�
(x− µ)e−

(x−µ)2

2σ2
dx

σ
√

2π
= µ−

[

σ√
2π
e−

(x−µ)2

2σ2

]+∞

−∞
= µ.

Using this result, then the change of variable y = (x− µ)/σ, one obtains

Var (X) = E
[

(X − E(X))2
]

=

∫

�
(x− µ)2e−

(x−µ)2

2σ2
dx

σ
√

2π
= σ2

∫

�
y × ye−

y2

2
dy√
2π

= σ2





[

−ye
− y2

2√
2π

]+∞

−∞

+

∫

�
e−

y2

2
dy√
2π



 = σ2.

Hence the expectation and the variance of X are respectively µ and σ2. By a computation
similar to the variance, one obtains

E
[

(X − E(X))4
]

= σ4

∫

�
y3 × ye−

y2

2
dy√
2π

= 3σ4

∫

�
y2 × ye−

y2

2
dy√
2π

= 3σ4. (1)

Proposition 1.5. The expectation is linear : if X and Y are integrable real random
variables and λ ∈ R then X + λY is integrable and

E(X + λY ) = E(X) + λE(Y ).

The concept of independence plays a key role in probability theory.

Definition 1.6. We say that the real random variables X1, . . . , Xn are independent if

∀A1, . . . , An ⊂ R, P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) . . .P(Xn ∈ An).

Independence of X1, . . . , Xn implies that for all functions fi : R → R such that fi(Xi)
is integrable for i ∈ {1, . . . , n}, then

∏n
i=1 fi(Xi) is integrable and

E

[

n
∏

i=1

fi(Xi)

]

=
n
∏

i=1

E [fi(Xi)] .

In case each Xi has the density pi, this means that the random vector (X1, . . . , Xn) has
the density p(x1, . . . , xn) =

∏n
i=1 pi(xi).

Proposition 1.7. If X1, . . . , Xn are independent square integrable real variables, then
X1 + . . .+Xn is square integrable and

Var (X1 + . . .+Xn) =
n
∑

i=1

Var (Xi).
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Proof :

Var (X1 + . . .+Xn) = E

[( n
∑

i=1

(Xi − E(Xi))

)2]

=

n
∑

i,j=1

E [(Xi − E(Xi))(Xj − E(Xj))] by linearity of E,

=
n
∑

i=1

E
[

(Xi − E(Xi))
2
]

+
∑

1≤i6=j≤n
E[Xi − E(Xi)]E[Xj − E(Xj)] by independence,

=
n
∑

i=1

Var (Xi) + 0.

�

Let us recall the two fundamental convergence theorems in probability theory : the strong
law of large numbers and the central limit theorem. We assume that (Xi)i≥1 is a sequence
of real random variables such that for each n ≥ 1,

∀A1, . . . , An ⊂ R, P(X1 ∈ A1 . . . , Xn ∈ An) = P(X1 ∈ A1)P(X1 ∈ A2) . . .P(X1 ∈ An).

In other words, the variables (Xi)i≥1 are independent and identically distributed. When
X1 has the density p(x1) this means that (X1, . . . , Xn) has the density q(x1, . . . , xn) =
p(x1) . . . p(xn).
The strong law of large numbers states the convergence of the empirical mean

X̄n =
1

n

n
∑

i=1

Xi

to the expectation E(X1) common to the variables Xi as n→ +∞.

Theorem 1.8. If the random variables Xi are integrable then

P

(

lim
n→+∞

X̄n = E(X1)

)

= 1.

The strong law of large numbers justifies the Monte-Carlo method which consists in
approximating E(X1) =

∫

xp(x)dx by the empirical mean X̄n. The central limit theorem
gives the precision of this approximation.

Theorem 1.9. Assume that the random variables Xi are square integrable. Then, as
n→ +∞, the distribution of

√
n(E(X1) − X̄n) converges to N (0,Var (X1)).

When Var (X1) > 0 this means that

∀a < b ∈ R, P(a ≤ √
n(E(X1) − X̄n) ≤ b) →

∫ b

a

exp

(

− y2

2Var (X1)

)

dy
√

2πVar (X1)
.

For each n ≥ 1, the expectation of the random variable
√
n(E(X1) − X̄n) is 0 and

according to Proposition 1.7

Var (
√
n(E(X1) − X̄n)) = E

[

n(X̄n − E(X1))
2
]

=
1

n
E

[

( n
∑

i=1

Xi − nE(X1)

)2
]

=
1

n
Var

(

n
∑

i=1

Xi

)

=
1

n

n
∑

i=1

Var (Xi) = Var (X1).
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Hence the expectation and the variance of the limit distribution N (0,Var (X1)) are not
surprising.

Remark 1.10. Choosing b = −a = 1.96
√

Var (X1) gives the following confidence interval
for the Monte-Carlo approximation of E(X1) :

P

(

E(X1) ∈
[

X̄n −
1.96

√

Var (X1)√
n

, X̄n +
1.96

√

Var (X1)√
n

])

'
∫ 1.96

−1.96

e−z
2/2 dz√

2π
= 0.95.

Of course in general when one wants to compute E(X1), one does not know Var (X1).
But Var (X1) can be replaced by the following approximation Vn = 1

n

∑n
i=1X

2
i − (X̄n)

2

which is convergent according to the strong law of large numbers. The derived confidence
interval gives the precision of the Monte-Carlo computation with no supplementary cost.
In order to obtain a better precision for fixed n, one can compute the empirical mean Ȳn
of random variables Yi with the same expectation as X1 but smaller variance. This is the
principle of variance reduction techniques.

2 Brownian motion

Let us first consider the simple symmetric random walk on the set of integers Z. The
walker starts at time 0 at the origin. From time n to time n+1, it moves from its present
location to one of its 2 nearest neighbours with equal probabilities 1/2. The mathematical
formalization of this walk is based on a sequence (ξi)i≥1 of independent and identically
distributed variables such that P(ξi = 1) = P(ξi = −1) = 1

2
. The variable ξn+1 represents

the move of the walker from time n to time n+1. By induction, the position of the walker
at time n is

Sn =
n
∑

i=1

ξi (Convention : S0 = 0).

The Brownian motion is obtained by a suitable renormalization of this random walk :

∀t ∈ [0,+∞[, Bk
t =

1√
k
Sbktc

where k ∈ N
∗ and for x ∈ R, bxc denotes the integer part of x.

Let t > 0. Setting Xi =
√
tξi and X̄n = 1

n

∑n
i=1Xi, one obtains

Bk
t =

1√
kt

(

bktcX̄bktc
)

=

√

bktc
kt

(

√

bktcX̄bktc

)

.

By symmetry E(X1) = E(ξ1) = 0 and since ξ2
1 = 1, Var (X1) = E(X2

1 ) = E(tξ2
1) = t.

Hence the central limit theorem 1.9 implies that as k tends to ∞,
√

bktcX̄bktc converges

in distribution to a random variable Bt ∼ N (0, t). As
√

bktc
kt

converges to 1, one deduces

that Bk
t converges in distribution to Bt.

Now if s > t, by a similar reasoning one obtains the distribution of Bk
s −Bk

t converges to

N (0, s− t). Since Bk
s − Bk

t = 1√
k

∑bksc
i=bktc+1 ξi, this random variable is independent from

Bk
t . In the limit k → +∞, independence is preserved. Hence (Bk

t , B
k
s −Bk

t ) converges in
distribution to (Bt, Bs−Bt) where Bt ∼ N (0, t) and Bs−Bt ∼ N (0, s−t) are independent
random variables.
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More generally when 0 = t0 ≤ t1 ≤ . . . ≤ tn, the vector (Bk
t1 , B

k
t2 − Bk

t1 , . . . , B
k
tn − Bk

tn−1
)

converges in distribution to (Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1) where for i ∈ {0, . . . n− 1},
the random variables Bti+1

− Bti are independent and respectively distributed according
to N (0, ti+1 − ti).
In fact the whole family (Bk

t )t≥0 converges in distribution to the standard Brownian
motion.

Definition 2.1. We say that a family (Bt)t≥0 is a standard Brownian motion if

1. B0 = 0,

2. For 0 = t0 ≤ t1 ≤ . . . ≤ tn, the random variables Bti+1
− Bti , i ∈ {0, . . . n− 1} are

independent and respectively distributed according to N (0, ti+1 − ti),

3. the sample-paths t ∈ [0,+∞[→ Bt are continuous :

P(t ∈ [0,+∞[→ Bt continuous) = 1.

Remark 2.2.

• The Brownian motion is a continuous (see 3) process with independent and
stationary increments (see 2).

• Continuity of the sample-paths is of course not obtained by the renormalization
of the symmetric random walk described above. In fact, one can prove that the
sample-paths of the Brownian motion are locally Hölder continuous with exponent
α < 1/2 but nowhere differentiable.

The following property concerning the quadratic variation of the Brownian path is the
key to understandind the specificity of stochastic differential calculus.

Proposition 2.3. Let t > 0, n ∈ N
∗ and tk = kt

n
for k ∈ {0, . . . , n}.

E





(

n−1
∑

k=0

(Btk+1
− Btk)

2 − t

)2


 =
2t2

n
.

Proof : Since Btk+1
− Btk ∼ N (0, t

n
),

E((Btk+1
− Btk)

2) = Var (Btk+1
−Btk) =

t

n
.

By linearity of the expectation one deduces that E
[
∑n−1

k=0(Btk+1
− Btk)

2
]

= t. Hence

E





(

n−1
∑

k=0

(Btk+1
−Btk)

2 − t

)2


 = Var

(

n−1
∑

k=0

(Btk+1
− Btk)

2

)

=
n−1
∑

k=0

Var ((Btk+1
− Btk)

2),

by independence of the Brownian increments and Proposition 1.7. Since according to (1),

Var ((Btk+1
− Btk)

2) = E
[

(Btk+1
− Btk)

4
]

−
(

E
[

(Btk+1
− Btk)

2
]

)2

=
3t2

n2
− t2

n2
=

2t2

n2
,
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one easily concludes. �

One has

Btk(Btk+1
−Btk) =

1

2

(

B2
tk+1

− B2
tk
− (Btk+1

− Btk)
2
)

.

Summing this equality for k ∈ {0, . . . , n− 1}, one obtains

n−1
∑

k=0

Btk(Btk+1
−Btk) =

1

2

(

B2
t −

n−1
∑

k=0

(Btk+1
−Btk)

2

)

.

According to Proposition 2.3, the right-hand-side converges to 1
2
(B2

t − t), as n→ +∞. So
does the Riemann sum in the left-hand-side. Since we are going to define the stochastic
integral

∫ t

0
BsdBs as the limit of this sum, we obtain

∫ t

0

BsdBs =
1

2
(B2

t − t). (2)

Notice that when g is a C1 function on [0, t] then

n−1
∑

k=0

(g(tk+1) − g(tk))
2 ≤

n−1
∑

k=0

sup
s∈[0,t]

(g′(s))2 t
2

n2
=

sups∈[0,t](g
′(s))2t2

n

n→+∞−→ 0.

Therefore
∫ t

0
g(s)dg(s) = 1

2
(g2(t) − g2(0)).

On this simple example, we can see the main difference between usual and stochastic
integral calculus. The lack of regularity of the Brownian path with respect to the time
variable implies that the quadratic variation of this path does not vanishes as n → +∞.
As a consequence a supplementary term (− 1

2
t in the above example) appears.

3 Stochastic integrals and Itô’s formula

3.1 Construction of stochastic integrals with respect to (Bt)t≥0

In order to define Itô’s stochastic integral
∫ t

0
HsdBs we have to assume that for s ≥ 0, Hs

does not depend on the increments of the Brownian motion posterior to s.

Definition 3.1. We say that the process (Ht)t≥0 is adapted if for each t ≥ 0, Ht is
independent from the future increments (Bs − Bt)s≥t of the Brownian motion.

Example 3.2. The process (Bt)t≥0 is adapted but (Bt+1)t≥0 is not.
If X0 is independent from the Brownian motion and for each t ≥ 0, Ht = ft(X0, (Bs)s≤t)
for a determinic function ft, then (Ht)t≥0 is adapted. For instance, (g(X0,maxs∈[0,t]Bs))t≥0

is an adapted process.

To construct Itô’s stochastic integral we fix a time-horizon T > 0 and proceed with
three steps.

First step : Let (Ht)t∈[0,T ] be a simple process of the form

Ht =
n−1
∑

k=0

Zk1]tk,tk+1](t)
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where 0 = t0 ≤ t1 ≤ . . . ≤ tn = T and for k ∈ {0, . . . , n − 1}, Zk is a bounded
random variable independent from (Bs − Btk)s≥tk .
For t ∈]tk, tk+1] with k ∈ {0, . . . , n− 1}, we set

∫ t

0

HsdBs =

k−1
∑

j=0

Zj(Btj+1
−Btj ) + Zk(Bt −Btk).

Now if for s ≥ 0, s ∧ t = min(s, t), one has

E

(∫ t

0

HsdBs

)

=

k−1
∑

j=0

E(Zj)E(Btj+1
− Btj ) + E(Zk)E(Bt − Btk) = 0,

E

[

(∫ t

0

HsdBs

)2
]

= E

[

( k
∑

j=0

Zj(Btj+1∧t − Btj∧t)

)2
]

=
k
∑

j=0

E(Z2
j )E

[

(Btj+1∧t −Btj∧t)
2)
]

+ 2
∑

1≤j<l≤k
E
[

Zj(Btj+1∧t − Btj∧t)Zl
]

E(Btl+1∧t − Btl∧t)

=
k
∑

j=0

E(Z2
j )(tj+1 ∧ t− tj ∧ t) =

k−1
∑

j=0

E(Z2
j )(tj+1 − tj) + E(Z2

k)(t− tk)

The two equalities write

∀t ∈ [0, T ], E

[
∫ t

0

HsdBs

]

= 0 and E

[

(
∫ t

0

HsdBs

)2
]

= E

[
∫ t

0

H2
sds

]

. (3)

The isometry equality which follows from the adaptation of the process (Ht)t∈[0,T ]

is the key property which permits to generalize the construction.

Second step : Let (Ht)t∈[0,T ] be an adapted process such that E

(

∫ T

0
H2
sds
)

< +∞.

Then there is a sequence of simple processes (Hp
t )t∈[0,T ], p ≥ 1 such that

limp→+∞ E

(

∫ T

0
(Hs −Hp

s )
2ds
)

= 0. By (3), for any t ∈ [0, T ],
∫ t

0
Hp
sdBs converges

to a limit satisfying (3) and the limit does not depend of the approximating sequence
of simple processes. We define

∫ t

0
HsdBs as this limit.

Last step : Let (Ht)t∈[0,T ] be an adapted process such that P

(

∫ T

0
H2
sds < +∞

)

= 11.

For m ∈ N
∗ we set

τm = inf

{

t ∈ [0, T ] :

∫ t

0

H2
sds ≥ m

}

(convention inf ∅ = T ).

Now (Hm
t = 1{t≤τm}Ht)t∈[0,T ] is an adapted process such that E

(

∫ T

0
(Hm

s )2ds
)

≤ m.

Moreover the sequence (τm)m≥1 is non-decreasing and for m large enough τm is equal
to T . Then for t ∈ [0, T ], we define

∫ t

0

HsdBs =

{

∫ t

0
H1
sdBs if t ≤ τ1

∫ t

0
Hm
s dBs where m ≥ 2 is such that τm−1 < t ≤ τm otherwise

.

1Notice that E

(

∫ T

0
H2

s ds
)

< +∞ ⇒ P

(

∫ T

0
H2

s ds < +∞
)

= 1 but the converse is not true.
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Proposition 3.3. Let (Ht)t∈[0,T ] be an adapted process such that P

(

∫ T

0
H2
sds < +∞

)

= 1.

Then (
∫ t

0
HsdBs)t∈[0,T ] is an adapted continuous process. Moreover if E

(

∫ T

0
H2
sds
)

<

+∞, then (3) holds.

Remark 3.4. When (Hs)s∈[0,T ] is a simple process and for 0 ≤ r ≤ t ≤ T , Y is a bounded
random variable independent from (Bs −Br)s≥r, then one easily checks2 that

E

(

Y

∫ t

0

HsdBs

)

= E

(

Y

∫ r

0

HsdBs

)

.

This equality is a simple formulation of the so-called martingale property of the stochastic

integral. It is preserved for the adapted processes (Hs)s∈[0,T ] such that E

(

∫ T

0
H2
sds
)

<

+∞, which have been considered in the second step of the construction.

3.2 Itô’s formula

The contruction of the stochastic integral by an approximating procedure based on the
isometry property (3) does not really give intuition about this integral. The main tool
which permits to understand stochastic integration is Itô’s formula.

Proposition 3.5. Let f(t, x) be a C1,2 function (globally C1 and C2 with respect to x)
on [0,+∞[×R. Then

∀t ≥ 0, f(t, Bt) = f(0, 0) +

∫ t

0

∂f

∂s
(s, Bs)ds+

∫ t

0

∂f

∂x
(s, Bs)dBs +

1

2

∫ t

0

∂2f

∂x2
(s, Bs)ds.

Proof : The proof is based on Taylor expansions. Let n ∈ N
∗ and tk = kt/n for

k ∈ {0, . . . , n}.

f(t, Bt) − f(0, 0) =
n−1
∑

k=0

(

f(tk+1, Btk+1
) − f(tk, Btk)

)

=
n−1
∑

k=0

∂f

∂s
(tk, Btk)(tk+1 − tk) +

n−1
∑

k=0

∂f

∂x
(tk, Btk)(Btk+1

−Btk)

+
1

2

n−1
∑

k=0

∂2f

∂x2
(tk, Btk)(Btk+1

− Btk)
2 +Rn

t

The usual Riemann sum
∑n−1

k=0
∂f
∂s

(tk, Btk)(tk+1 − tk) converges to
∫ t

0
∂f
∂s

(s, Bs)ds as n
tends to +∞. The second term of the right-hand-side tends to the stochastic integral
∫ t

0
∂f
∂x

(s, Bs)dBs. By a generalization of Proposition 2.3, one checks that the third term

converges to 1
2

∫ t

0
∂2f
∂x2 (s, Bs)ds. The remainder Rn

t vanishes when n→ +∞. �

We see that the term 1
2

∫ t

0
∂2f
∂x2 (s, Bs)ds which would not appear in usual differential

calculus comes from the non-zero quadratic variation of the Brownian path.
For the choice f(t, x) = 1

2
x2, since ∂f

∂t
= 0, ∂f

∂x
= x and ∂2f

∂x2 = 1, one recovers (2).

In order to generalize Itô’s formula, we introduce Itô’s processes.

2We assume that t ∈]tk, tk+1] and that r = tl with l ≤ k (if necessary, we add r to {t0, . . . , tn}). Then

E(Y
∫ t

0
HsdBs) = E(Y

∑l−1

j=0
Zj(Btj+1

− Btj
)) +

∑k−1

j=l−1
E(Y Zj)E(Btj+1

− Btj
) + E(Y Zj)E(Bt − Btk

) =

E(Y
∫ r

0
HsdBs) + 0 + 0.
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Definition 3.6. We say that (Xt)t≥0 is an Itô’s process if

∀t ≥ 0, Xt = X0 +

∫ t

0

HsdBs +

∫ t

0

Ksds where

1. X0 is independent from (Bt)t≥0,

2. (Ht)t≥0 is an adapted process such that ∀t ≥ 0, P

(

∫ t

0
H2
sds < +∞

)

= 1,

3. (Kt)t≥0 is an adapted process such that ∀t ≥ 0, P

(

∫ t

0
|Ks|ds < +∞

)

= 1.

An Itô’s process is a continuous and adapted process. In addition since the quadratic
variation of the usual integral with respect to ds vanishes whereas the one of the stochastic
integral does not, one can check uniqueness of the decomposition of Itô’s processes (i.e.
uniqueness of (Ht, Kt)t≥0).

By generalizing the proof of Proposition 3.5, one obtains

Theorem 3.7. Let Xt = X0 +
∫ t

0
HsdBs +

∫ t

0
Ksds be an Itô’s process and f a C1,2

function on [0,+∞[×R. Then

∀t ≥ 0, f(t, Xt) = f(0, X0)+

∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)dXs+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)H

2
sds,

(4)
where of course dXs = HsdBs +Ksds.

One easily deduces the following integration by parts formula :

Corollary 3.8. Let Xt = X0 +
∫ t

0
HX
s dBs+

∫ t

0
KX
s ds and Yt = Y0 +

∫ t

0
HY
s dBs +

∫ t

0
KY
s ds

denote two Itô’s processes. Then

∀t ≥ 0, XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs +

∫ t

0

HX
s H

Y
s ds.

Proof : Applying Itô’s formula (4) to the processes Zt = Xt + Yt, Xt and Yt for the

choice f(t, x) = 1
2
x2 (∂f

∂t
= 0, ∂f

∂x
= x and ∂2f

∂x2 = 1), one obtains

1

2
(Xt + Yt)

2 =
1

2
(X0 + Y0)

2 +

∫ t

0

(Xs + Ys)(dXs + dYs) +
1

2

∫ t

0

(HX
s +HY

s )2ds

1

2
X2
t =

1

2
X2

0 +

∫ t

0

XsdXs +
1

2

∫ t

0

(HX
s )2ds

1

2
Y 2
t =

1

2
Y 2

0 +

∫ t

0

YsdYs +
1

2

∫ t

0

(HY
s )2ds.

One concludes by subtracting the last two equalities to the first one. �

Let now (B1
t )t≥0, . . . , (B

d
t )t≥0 denote d independent standard real Brownian motions.

Then Wt = (B1
t , . . . , B

d
t ) is a so-called d-dimensional Brownian motion. For (Ht)t≥0

and (Kt)t≥0 adapted processes with respective values in R
n×d and R

n such that ∀t ≥ 0,

9



P

(

∫ t

0
‖Hs‖2 + ‖Ks‖ds < +∞

)

= 1 and X0 an R
n-valued random vector independent of

(Wt)t≥0, then

Xt = X0 +

∫ t

0

HsdWs +

∫ t

0

Ksds

is an R
n-valued Itô’s process. The previous equality means

∀t ≥ 0, ∀i ∈ {1, . . . , n}, X i
t = X i

0 +

d
∑

k=1

∫ t

0

H ik
s dB

k
s +

∫ t

0

Ki
sds.

One can generalize Itô’s formula to such multidimensional processes :

Theorem 3.9. Let f(t, x) be a C1,2 function on [0,+∞[×R
n. Then

∀t ≥ 0, f(t, Xt) =f(0, X0) +

∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

∇xf(s,Xs)dXs

+
1

2

∫ t

0

n
∑

i,j=1

(

d
∑

k=1

H ik
s H

jk
s

∂2f

∂xi∂xj
(s,Xs)

)

ds. (5)

4 Stochastic differential equations and partial differ-

ential equations

4.1 Stochastic differential equations

The following theorem states existence and uniqueness for stochastic differential equations
of the form

dXt = σ(t, Xt)dWt + b(t, Xt)dt. (6)

It assumes a Lipschitz regularity property on the coefficients σ and b. Like the Cauchy-
Lipschitz theorem for ordinary differential equations, this result is obtained by a fixed-
point approach.

Theorem 4.1. Let T > 0, X0 be an R
n-valued random vector independent from the

Brownian motion Wt = (B1
t , . . . , B

d
t ) and σ : [0, T ]×R

n → R
n×d and b : [0, T ]×R

n → R
n

denote coefficients such that

∃K > 0, ∀t ∈ [0, T ]

{

∀x ∈ R
n, ‖σ(t, x)‖ + ‖b(t, x)‖ ≤ K(1 + ‖x‖)

∀x, y ∈ R
n, ‖σ(t, x) − σ(t, y)‖ + ‖b(t, x) − b(t, y)‖ ≤ K‖x− y‖ .

(7)
Then there exists a unique R

n-valued Itô’s process (Xt)t∈[0,T ] such that

∀t ∈ [0, T ], Xt = X0 +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds.

In addition, when E(‖X0‖2) < +∞, then E
(

supt∈[0,T ] ‖Xt‖2
)

< +∞.

Example 4.2. The unique solution of the stochastic differential equation

dXt = dWt − cXtdt where c ∈ R

is the Ornstein-Ulhenbeck process Xt = e−ct
(

X0 +
∫ t

0
ecsdWs

)

.
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4.2 Link with parabolic partial differential equations

From now on, we assume that (7) holds. Let us introduce the infinitesimal generator At

of the stochastic differential equation at time t that is the differential operator defined for
smooth functions ϕ : R

n → R by

Atϕ(x) =
1

2

n
∑

i,j=1

aij(t, x)
∂2ϕ

∂xi∂xj
(x)+

n
∑

i=1

bi(t, x)
∂ϕ

∂xi
(x) where aij(t, x) =

d
∑

k=1

σikσjk(t, x).

The following probabilistic representation of the solution of the partial differential equa-
tion

{

∂u
∂t

(t, x) + Atu(t, x) + v(x)u(t, x) = 0, (t, x) ∈ [0, T ] × R
n

u(T, x) = f(x), x ∈ R
n

(8)

is known as the Feynman-Kac formula.

Proposition 4.3. Assume that v : R
n → R is bounded from above and that u is a C1,2

solution of (8) such that ∇xu is bounded on [0, T ]×R
n. Then for any (t, x) ∈ [0, T ]×R

n,

u(t, x) = E

(

e
� T

t
v(Xt,x

s )dsf(X t,x
T )
)

where

{

dX t,x
s = σ(s,X t,x

s )dWs + b(s,X t,x
s )ds, s ∈ [t, T ]

X t,x
t = x

.

Proof : Appling Itô’s formula (5), to the Itô’s process (X t,x
s ,
∫ s

t
v(X t,x

r )dr)t≤s≤T with
the function f : (s, x, y) ∈ [t, T ] × R

n × R → eyu(s, x), one has

e
� T

t
v(Xt,x

r )dru(T,X t,x
T ) − u(t, X t,x

t ) =

∫ T

t

e
� s

t
v(Xt,x

r )dr

(

∂u

∂s
+ Asu+ vu

)

(s,X t,x
s )ds

+

∫ T

t

e
� s

t
v(Xt,x

r )dr∇xu(s,X
t,x
s ).σ(s,X t,x

s )dWs

Using (8), X t,x
t = x and taking expectations, one deduces that

E

(

e
� T

t
v(Xt,x

r )drf(X t,x
T )
)

− u(t, x) = E

(
∫ T

t

e
� s

t
v(Xt,x

r )dr∇xu(s,X
t,x
s ).σ(s,X t,x

s )dWs

)

.

Now using (7) and the hypotheses on functions u and v, one has

E

(
∫ T

t

e2
� s

t
v(Xt,x

r )dr‖σ∗(s,X t,x
s )∇xu(s,X

t,x
s )‖2ds

)

≤ Ce2T sup � n v‖∇xu‖2
∞

(

1 + sup
s∈[t,T ]

E(‖X t,x
s ‖2)

)

.

The right-hand-side is finite according to the last assertion in Theorem 4.1. Therefore
by (3), the expectation of the stochastic integral is 0. �

Remark 4.4. When σ and b and therefore A do not depend on the time variable t and
u is a smooth solution of

∂u

∂t
(t, x) = Au(t, x) + v(x)u(t, x), (t, x) ∈ [0, T ] × R

n with u(0, x) = f(x), x ∈ R
n

then u(t, x) = E

(

f(X0,x
t )e

� t

0
v(X0,x

s )ds
)

. This equality is proved by applying Itô’s formula

to (X0,x
s ,
∫ s

0
v(X0,x

r )dr)s∈[0,t] with f(s, x, y) = eyu(t− s, x) and taking expectations.
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In case d = n, σ = In where In denotes the identity matrix and b = ∇xψI

ψI
where ψI :

R
n → R, one has

∂u

∂t
=

1

2
∆xu+

∇xψI
ψI

.∇xu+ vu.

As

ψ2
I

(

1

2
∆u+

∇xψI
ψI

.∇xu

)

=
1

2

(

ψ2
I∇x.∇xu+ ∇xψ

2
I .∇xu

)

=
1

2
∇x.(ψ

2
I∇xu)

=
1

2
∆x(ψ

2
Iu) −∇x.(ψI∇xψIu),

one has formally

∂(ψ2
Iu)

∂t
=

1

2
∆x(ψ

2
Iu) −∇x.

(∇xψI
ψI

(ψ2
Iu)

)

+ v(ψ2
Iu).

Therefore q(t, x) = ψ2
I (x)E

(

e
� t

0
v(X0,x

s )ds
)

solves

∂q

∂t
=

1

2
∆xq −∇x. (bq) + vq, (t, x) ∈ R+ × R

n, q(0, x) = ψ2
I (x), x ∈ R

n.

This remark is the key to understand the Diffusion Monte-Carlo method in quantum
chemistry.

Let us now introduce the adjoint A∗
t of the infinitesimal generator :

A∗
tϕ(x) =

1

2

n
∑

i,j=1

∂2

∂xi∂xj
(aij(t, x)ϕ(x)) −

n
∑

i=1

∂

∂xi
(bi(t, x)ϕ(x)) .

Proposition 4.5. Assume that for any t ∈ [0, T ], the solution Xt of (6) has the density
p(t, x). If p, σ and b are respectively C1,2, C0,2 and C0,1 on [0, T ]×R

n, then p is a classical
solution to the Fokker-Planck partial differential equation

∂p

∂t
(t, x) = A∗

tp(t, x), (t, x) ∈ [0, T ] × R
n. (9)

Proof : Let ϕ(t, x) denote a C1,2 function with compact support on [0, T ] × R
n. By

Itô’s formula (5), one has

ϕ(T,XT ) = ϕ(0, X0) +

∫ T

0

(

∂ϕ

∂t
+ Atϕ

)

(t, Xt)dt+

∫ T

0

∇xϕ(t, Xt).σ(t, Xt)dWt.

Since ϕ is compactly supported, E

(

∫ T

0
‖σ∗(t, Xt)∇xϕ(t, Xt)‖2dt

)

< +∞. Hence by (3),

the expectation of the stochastic integral is zero. Therefore taking expectations, one has

E(ϕ(T,XT )) = E(ϕ(0, X0)) + E

[
∫ T

0

(

∂ϕ

∂t
+ Atϕ

)

(t, Xt)dt

]

.
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Since for any t ∈ [0, T ], Xt has the density p(t, x), one deduces

∫

�
n

(

ϕ(T, x)p(T, x) − ϕ(0, x)p(0, x) −
∫ T

0

∂ϕ

∂t
(t, x)p(t, x)dt

)

dx

=

∫ T

0

(
∫

�
n

Atϕ(t, x)p(t, x)dx

)

dt. (10)

One makes integration by parts with respect to the time variable in the left-hand-side
and to the spatial variables in the right-hand-side to deduce

∫

[0,T ]×�
n

ϕ(t, x)
∂p

∂t
(t, x)dtdx =

∫

[0,T ]×�
n

ϕ(t, x)A∗
tp(t, x)dtdx.

One concludes since ϕ is arbitrary and both sides of (9) are continuous functions. �

Remark 4.6. If for any t ∈ [0, T ], Xt has the density p(t, x) but the functions p, σ and
b do not meet the regularity assumptions in Proposition 4.5, (10) still means that p is a
weak solution to (9).
In fact, to obtain a weak solution it is not even necessary to assume the existence of den-
sities. Indeed, denoting by Pt(dx) the probability law of Xt (∀f : R

n → R bounded,
E(f(Xt)) =

∫

�
n f(x)Pt(dx)), the reasoning made to obtain (10) always ensures that

Pt(dx)dt is a weak solution to (9).

5 Bibliography

For a simple introduction to stochastic integration with respect to the Brownian motion
we refer to [2] in french and [3] in english. The books [1], [5] and [6] present more
advanced properties and deal with stochastic integration with respect to continuous semi-
martingales. A notion of solutions to stochastic differential equations weaker than the
one presented above is developped in [7]. Last, [4] deals with the very general theory of
stochastic integrals with respect to possibly discontinuous semi-martingales.
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