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Abstract. No quantum measurement can give full information on the state of a quantum system;
hence any quantum feedback control problem is neccessarily one with partial observations, and can
generally be converted into a completely observed control problem for an appropriate quantum filter
as in classical stochastic control theory. Here we study the properties of controlled quantum filtering
equations as classical stochastic differential equations. We then develop methods, using a combination
of geometric control and classical probabilistic techniques, for global feedback stabilization of a class
of quantum filters around a particular eigenstate of the measurement operator.
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1. Introduction. Though they are both probabilistic theories, probability the-
ory and quantum mechanics have historically developed along very different lines.
Nonetheless the two theories are remarkably close, and indeed a rigorous develop-
ment of quantum probability [18] contains classical probability theory as a special
case. The embedding of classical into quantum probability has a natural interpre-
tation that is central to the idea of a quantum measurement: any set of commuting

quantum observables can be represented as random variables on some probability
space, and conversely any set of random variables can be encoded as commuting ob-
servables in a quantum model. The quantum probability model then describes the
statistics of any set of measurements that we are allowed to make, whereas the sets of
random variables obtained from commuting observables describe measurements that
can be performed in a single realization of an experiment. As we are not allowed to
make noncommuting observations in a single realization, any quantum measurement
yields even in principle only partial information about the system.

The situation in quantum feedback control [10, 11] is thus very close to classical
stochastic control with partial observations [3]. A typical quantum control scenario,
representative of experiments in quantum optics, is shown in Fig. 1.1. We wish to
control the state of a cloud of atoms, e.g. we could be interested in controlling their
collective angular momentum. To observe the atoms, we scatter a laser probe field
off the atoms and measure the scattered light using a homodyne detector (a cavity
can be used to increase the interaction strength between the light and the atoms).
The observation process is fed into a controller which can feed back a control signal
to the atoms through some actuator, e.g. a time-varying magnetic field. The entire
setup can be described by a Schrödinger equation for the atoms and the probe field,
which takes the form of a “quantum stochastic differential equation” in a Markovian
limit. The controller, however, only has access to the observations of the probe. The
laser probe itself contributes quantum fluctuations to the observations, hence the
observation process can be considered as a noisy observation of an atomic variable.

As in classical stochastic control we can use the properties of the conditional
expectation to convert the output feedback control problem into one with complete
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Fig. 1.1. A typical feedback control scenario in quantum optics. A probe laser scatters off a

cloud of atoms in an optical cavity, and is ultimately detected. The detected signal is processed by a

controller which feeds back to the system through a time varying magnetic field.

observations. The conditional expectation πt(X) of an observable X given the ob-
servations {Ys : 0 ≤ s ≤ t} is the least mean square estimate of Xt (the observable
X at time t) given Ys≤t. One can obtain a quantum filtering equation [2, 4, 5] that
propagates πt(X), or alternatively the conditional density matrix ρt defined by the
relation πt(X) = Tr[ρtX ]. This is the quantum counterpart of the classical Kushner-
Stratonovich equation, due to Belavkin [2], and plays an equivalent role in quantum
stochastic control. In particular, as

�
Xt =

�
πt(X) we can control the expectations of

observables by designing a state feedback control law based on the filter.
Note that as the observation process Ys≤t is measured in a single experimental

realization, it is equivalent to a classical stochastic process (i.e. the observables Yt

commute with each other at different times). But as the filter depends only on the
observations, it is thus equivalent to a classical stochastic equation; in fact, the filter
can be expressed as a classical (Itô) stochastic differential equation for the conditional
density matrix ρt. Hence ultimately any quantum control problem of this form is
reduced to a classical stochastic control problem for the filter.

In this paper we consider a class of quantum control problems of the following
form. Rather than specifying a cost function to minimize, as in optimal control the-
ory, we desire to asymptotically prepare a particular quantum state ρf in the sense
that

�
Xt → Tr[ρfX ] as t → ∞ for all X (for a deterministic version see e.g. [21]).

As
�
Xt =

�
πt(X), this comes down to finding a feedback control that will ensure the

convergence ρt → ρf of the conditional density ρt. In addition to this convergence,
we will show that our controllers also render the filter stochastically stable around
the target state, which suggests some degree of robustness to perturbations. In §4 we
will discuss the preparation of states in a cloud of atoms where the z-component of
the angular momentum has zero variance, whereas in §5 we will discuss the prepa-
ration of correlated states of two spins. Despite their relatively simple description
the creation of such states is not simple. Quantum feedback control may provide
a desirable method to reliably prepare such states in practice (though other issues,
e.g. the reduction of quantum filters [9] for efficient real-time implementation, must
be resolved before such schemes can be realized experimentally; we refer to [7] for a
state-of-the-art experimental demonstration of a related quantum control scenario.)

Though we have attempted to indicate the origin of the control problems studied
here, a detailed treatment of either the physical or mathematical considerations behind
our models is beyond the scope of this paper; for a rigorous introduction to quantum
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probability and filtering we refer to [5]. Instead we will consider the quantum filtering
equation as our starting point, and investigate the classical stochastic control problem
of feedback stabilization of this equation. In §2 we first introduce some tools from
stochastic stability theory and stochastic analysis that we will use in our proofs. In
§3 we introduce the quantum filtering equation and study issues such as existence
and uniqueness of solutions, continuity of the paths, etc. In §4 we pose the problem
of stabilizing an angular momentum eigenstate and prove global stability under a
particular control law. It is our expectation that the methods of §4 are sufficiently
flexible to be applied to a wide class of quantum state preparation scenarios. As an
example, we use in §5 the techniques developed in §4 to stabilize particular entangled
states of two spins. Additional results and numerical simulations will appear in [20].

2. Geometric tools for stochastic processes. In this section we briefly re-
view two methods that will allow us to apply geometric control techniques to stochastic
systems. The first is a stochastic version of the classical Lyapunov and LaSalle invari-
ance theorems. The second, a support theorem for stochastic differential equations,
will allow us to infer properties of stochastic sample paths through the study of a
related deterministic system. We refer to the references for proofs of the theorems.

2.1. Lyapunov and LaSalle invariance theorems. The Lyapunov stability
theory and LaSalle’s invariance theorem are important tools in the analysis of and
control design for deterministic systems. Similarly, their stochastic counterparts will
play an essential role in what follows. The subject of stochastic stability was studied
extensively by Has’minskĭı [12] and by Kushner [15]. We will cite a small selection of
the results that will be needed in the following: a Lyapunov (local) stability theorem
for Markov processes, and the LaSalle invariance theorem of Kushner [15, 16, 17].

Definition 2.1. Let xz
t be a diffusion process on the metric state space X, started

at x0 = z, and let z̃ denote an equilibrium position of the diffusion, i.e. xz̃
t = z̃. Then

1. the equilibrium z̃ is said to be stable in probability if

lim
z→z̃

� (

sup
0≤t<∞

‖xz
t − z̃‖ ≥ ε

)

= 0 ∀ε > 0. (2.1)

2. the equilibrium z̃ is globally stable if it is stable in probability and additionally

� (

lim
t→∞

xz
t = z̃

)

= 1 ∀z ∈ X. (2.2)

In the following theorems we will make the following assumptions.
1. The state space X is a complete separable metric space and xz

t is a homoge-
neous strong Markov process on X with continuous sample paths.

2. V (·) is a nonnegative real-valued continuous function on X .
3. For λ > 0, let Qλ = {x ∈ X : V (x) < λ} and assume Qλ is nonempty. Let
τλ = inf{t : xz

t 6∈ Qλ} and define the stopped process x̃z
t = xz

t∧τλ
.

4. Aλ is the weak infinitesimal operator of x̃t and V is in the domain of Aλ.
The following theorems can be found in Kushner [15, 16, 17].

Theorem 2.2 (Local stability). Let AλV ≤ 0 in Qλ. Then the following hold:

1. limt→∞ V (x̃z
t ) exists a.s., so V (xz

t ) converges for a.e. path remaining in Qλ.

2.
�
-limt→∞AλV (x̃z

t ) = 0, so AλV (xz
t ) → 0 in probability as t→ ∞ for almost

all paths which never leave Qλ.

3. For z ∈ Qλ and α ≤ λ we have the uniform estimate

� (

sup
0≤t<∞

V (xz
t ) ≥ α

)

=
� (

sup
0≤t<∞

V (x̃z
t ) ≥ α

)

≤ V (z)

α
. (2.3)

3



4. If V (z̃) = 0 and V (x) 6= 0 for x 6= z̃, then z̃ in stable in probability.

The following theorem is a stochastic version of the LaSalle invariance theorem.
Recall that a diffusion xz

t is said to be Feller continuous if for fixed t,
�
G(xz

t ) is
continuous in z for any bounded continuous G.

Theorem 2.3 (Invariance). Let AλV ≤ 0 in Qλ. Suppose Qλ has compact

closure, x̃z
t is Feller continuous, and that

�
(‖x̃z

t − z‖ > ε) → 0 as t → 0 for any

ε > 0, uniformly for z ∈ Qλ. Then x̃z
t converges in probability to the largest invariant

set contained in Cλ = {x ∈ Qλ : AλV (x) = 0}. Hence xz
t converges in probability to

the largest invariant set contained in Cλ for almost all paths which never leave Qλ.

2.2. The support theorem. In the nonlinear control of deterministic systems
an important role is played by the application of geometric methods, e.g. Lie algebra
techniques, to the vector fields generating the control system. Such methods can usu-
ally not be directly applied to stochastic systems, however, as the processes involved
are not (sufficiently) differentiable. The support theorem for stochastic differential
equations, in its original form due to Stroock and Varadhan [24], connects events of
probability one for a stochastic differential equation to the solution properties of an
associated deterministic system. One can then apply classical techniques to the latter
and invoke the support theorem to apply the results to the stochastic system; see e.g.
[13] for the application of Lie algebraic methods to stochastic systems.

We quote the following form of the theorem [14, 13].
Theorem 2.4. Let M be a connected, paracompact C∞-manifold and let Xk,

k = 0 . . . n be C∞ vector fields on M such that all linear sums of Xk are complete.

Let Xk =
∑

l X
l
k(x)∂l in local coordinates and consider the Stratonovich equation

dxt = X0(xt) dt+

n
∑

k=1

Xk(xt) ◦ dW k
t , x0 = x. (2.4)

Consider in addition the associated deterministic control system

d

dt
xu

t = X0(x
u
t ) +

n
∑

k=1

Xk(xu
t )uk(t), xu

0 = x (2.5)

with uk ∈ U , the set of all piecewise constant functions from � + to � . Then

Sx = {xu
· : u ∈ U n} ⊂ Wx (2.6)

where Wx is the set of all continuous paths from � + to M starting at x, equipped with

the topology of uniform convergence on compact sets, and Sx is the smallest closed

subset of Wx such that
�
({ω ∈ Ω : x·(ω) ∈ Sx}) = 1.

3. Solution properties of quantum filters. The purpose of this section is to
introduce the dynamical equations for a general quantum system with feedback and
to establish their basic solution properties.

We will consider quantum systems with finite dimension 1 < N < ∞. The state
space of such a system is given by the set of density matrices

S = {ρ ∈ � N×N : ρ = ρ∗, Tr ρ = 1, ρ ≥ 0} (3.1)

where ρ∗ denotes Hermitian conjugation. In noncommutative probability the space P
is the analog of the set of probability measures of an N -state random variable. Finite-
dimensional quantum systems are ubiquitous in contemporary quantum physics; a
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system with dimension N = 2n, for example, can represent the collective state of n
qubits in the setting of quantum computing, and N = 2J + 1 represents a system
with fixed angular momentum J . The following lemma describes the structure of S:

Lemma 3.1. S is the convex hull of {ρ ∈ � N×N : ρ = vv∗, v ∈ � N , v∗v = 1}.
Proof. The statement is easily verified by diagonalizing the elements of P .
We now consider continuous measurement of such a system, e.g. by weakly cou-

pling it to an optical probe field and performing a diffusive observation of the field.
When the state of the system is conditioned on the observation process we obtain the
following matrix-valued Itô equation for the conditional density, which is a quantum
analog of the Kushner-Stratonovich equation of nonlinear filtering [2, 4, 10]:

dρt = −i(Htρt − ρtHt) dt+ (cρtc
∗ − 1

2 (c∗cρt + ρtc
∗c)) dt

+
√
η (cρt + ρtc

∗ − Tr[(c+ c∗)ρt]ρt) dWt.
(3.2)

Here we have introduced the following quantities:
• The Wiener process Wt is the innovation dWt = dyt −

√
ηTr[(c + c∗)ρt]dt.

Here yt, a continuous semimartingale with quadratic variation 〈y, y〉t = t, is
the observation process obtained from the system.

• Ht = H∗
t is a Hamiltonian matrix which describes the action of external forces

on the system. We will consider Ht of the form Ht = F + utG with F = F ∗,
G = G∗ and the (real) scalar control input ut.

• ut is a bounded real càdlàg process that is adapted to Fy
t = σ(ys, 0 ≤ s ≤ t),

the filtration generated by the observations up to time t.
• c is a matrix which determines the coupling to the external (readout) field.
• 0 < η ≤ 1 is the detector efficiency.

Let us begin by studying a different form of the equation (3.2). Consider the linear
Itô equation

dρ̃t = −i(Htρ̃t − ρ̃tHt) dt+ (cρ̃tc
∗ − 1

2 (c∗cρ̃t + ρ̃tc
∗c)) dt+

√
η (cρ̃t + ρ̃tc

∗) dyt, (3.3)

which is the quantum analog of the Zakai equation. As it obeys a global (random)
Lipschitz condition, this equation has a unique strong solution ([23], pp. 249–253).

Lemma 3.2. The set of nonnegative nonzero matrices is a.s. invariant for (3.3).
Proof. We begin by expanding ρ̃0 into its eigenstates, i.e. ρ̃0 =

∑

i λiv
i
0v

i∗
0 with

vi
0 ∈ � N being the ith eigenvector and λi the ith eigenvalue. As ρ̃0 is nonnegative all

the λi are nonnegative. Now consider the set of equations

dρi
t = −i(Htρ

i
t − ρi

tHt) dt+ (cρi
tc

∗ − 1
2 (c∗cρi

t + ρi
tc

∗c)) dt+ (cρi
t + ρi

tc
∗) dW ′

t (3.4)

with ρi
0 = vi

0v
i∗
0 . Here we have extended our probability space to admit a Wiener

process Ŵt that is independent of yt, and W ′
t =

√
η yt +

√
1 − η Ŵt. The process ρ̃t

is then equivalent in law to
�
[ρ′t|Fy

t ], where ρ′t =
∑

i λiρ
i
t.

Now note that the solution of the set of equations

dvi
t = −iHtv

i
t dt− 1

2c
∗c vi

t dt+ c vi
t dW

′
t , vi

t ∈ � N (3.5)

satisfies ρi
t = vi

tv
i∗
t , as is readily verified by Itô’s rule. By [23], pp. 326 we have that

vi
t = Utv

i
0 where the random matrix Ut is a.s. invertible for all t. Hence a.s. vi

t 6= 0
for any finite time unless vi

0 = 0. Thus clearly ρ′t is a.s. a nonnegative nonzero matrix
for all t, and the result follows.

Proposition 3.3. Eq. (3.2) has a unique strong solution ρt = ρ̃t/Tr ρ̃t in S.
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Clearly this must be satisfied if (3.2) is to propagate a density.
Proof. As the set of nonnegative nonzero matrices is invariant for ρ̃t, this implies

in particular that Tr ρ̃t > 0 for all t a.s. Thus the result follows simply from application
of Itô’s rule to (3.3), and from the fact that if M =

∑

i λivi is a nonnegative nonzero
matrix, then M/TrM =

∑

i(λi/
∑

j λj)vi ∈ S.
Proposition 3.4. The following uniform estimate holds for (3.2):

� (

sup
0≤δ≤∆

‖ρt+δ − ρt‖ > ε

)

≤ C∆(1 + ∆) ∀ε > 0 (3.6)

where 0 < C < ∞ depends only on ε and ‖ · ‖ is the Frobenius norm. Hence the

solution of (3.2) is stochastically continuous uniformly in t and ρ0.

Proof. Write ρt = ρ0 + Φt + Ξt where

Φt =

∫ t

0

[

−i(Hsρs − ρsHs) + (cρsc
∗ − 1

2 (c∗cρs + ρsc
∗c))

]

ds, (3.7)

Ξt =

∫ t

0

√
η (cρs + ρsc

∗ − Tr[(c+ c∗)ρs]ρs) dWs. (3.8)

For Ξt we have the estimate ([1], pp. 81)

� (

sup
0≤δ≤∆

‖Ξt+δ − Ξt‖2

)

≤ 4η

∫ t+∆

t

� ‖cρs + ρsc
∗ − Tr[(c+ c∗)ρs]ρs‖2 ds. (3.9)

As the integrand is bounded clearly this expression is bounded by C1∆ for some
positive constant C1 <∞. For Φt we can write

� (

sup
0≤δ≤∆

‖Φt+δ − Φt‖2

)

≤ �
[

sup
0≤δ≤∆

∫ t+δ

t

‖Gs‖ ds
]2

=
�

[

∫ t+∆

t

‖Gs‖ ds
]2

(3.10)

where Gs denotes the integrand of (3.7). As ‖Gs‖ is bounded we can estimate this
expression by C2∆

2 with C2 <∞. Using ‖A+B‖2 ≤ 2(‖A‖2 + ‖B‖2) we can write

sup
0≤δ≤∆

‖ρt+δ − ρt‖2 ≤ 2

(

sup
0≤δ≤∆

‖Φt+δ − Φt‖2 + sup
0≤δ≤∆

‖Ξt+δ − Ξt‖2

)

. (3.11)

Finally, Chebychev’s inequality gives

� (

sup
0≤δ≤∆

‖ρt+δ − ρt‖ > ε

)

≤ 1

ε2
� (

sup
0≤δ≤∆

‖ρt+δ − ρt‖2

)

≤ 2C1∆ + 2C2∆
2

ε2
(3.12)

from which the result follows.
Remark. The statistics of the observation process yt should of course depend both

on the control ut that is applied to the system and on the initial state ρ0. We will
always assume that the filter initial state ρ0 matches the state in which the system is
initially prepared (i.e. we do not consider “wrongly initialized” filters) and that the
same control ut is applied to the system and to the filter (see Fig. 1.1). Quantum
filtering theory then guarantees that the innovation Wt is a Wiener process. To
simplify our proofs, we make from this point on the following choice: for all initial
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states and control policies, the corresponding observation processes are defined in such
a way that they give rise to the same innovation process Wt

1.

We now specialize to the following case:

• ut = u(ρt) with u ∈ C1(S, � ).

In this simple feedback case we can prove several important properties of the solutions.
First, however, we must show existence and uniqueness for the filtering equation with
feedback: it is not a priori obvious that the feedback ut = u(ρt) results in a well-
defined càdlàg control.

Proposition 3.5. Eq. (3.2) with ut = u(ρt), u ∈ C1 and ρ0 = ρ ∈ S has a

unique strong solution ρt ≡ ϕt(ρ, u) in S, and ut is a continuous bounded control.

Proof. As S is compact, we can find an open set T ⊂ � N×N such that S is
strictly contained in T . Let C(ρ) : � N×N → [0, 1] be a smooth function with compact
support such that C(ρ) = 1 for ρ ∈ T , and let U(ρ) be a C1( � N×N , � ) function such
that U(ρ) = u(ρ) for ρ ∈ S. Then the equation

dρ̄t = −iC(ρ̄t)[F + U(ρ̄t)G, ρ̄t] dt+ C(ρ̄t)(cρ̄tc
∗ − 1

2 (c∗cρ̄t + ρ̄tc
∗c)) dt

+ C(ρ̄t)
√
η (cρ̄t + ρ̄tc

∗ − Tr[(c+ c∗)ρ̄t]ρ̄t) dWt,

where [A,B] = AB − BA, has global Lipschitz coefficients and hence has a unique
strong solution in � N×N and a.s. continuous adapted sample paths [23]. Moreover
ρ̄t must be bounded as C(ρ) has compact support. Hence Ut = U(ρ̄t) is an a.s.
continuous, bounded adapted process.

Now consider the solution ρt of (3.2) with ut = U(ρ̄t) and ρ0 = ρ̄0 ∈ S. As both
ρt and ρ̄t have a unique solution, the solutions must coincide up to the first exit time
from T . But we have already established that ρt remains in S for all t > 0, so ρ̄t can
certainly never exit T . Hence ρ̄t = ρt for all t > 0, and the result follows.

In the following, we will denote by ϕt(ρ, u) the solution of (3.2) at time t with
the control ut = u(ρt) and initial condition ρ0 = ρ ∈ S.

Proposition 3.6. If V (ρ) is continuous, then
�
V (ϕt(ρ, u)) is continuous in ρ;

i.e., the diffusion (3.2) is Feller continuous.

Proof. Let {ρn ∈ S} be a sequence of points converging to ρ∞ ∈ S. Let us write
ρn

t = ϕt(ρ
n, u) and ρ∞t = ϕt(ρ

∞, u). First, we will show that

� ‖ρn
t − ρ∞t ‖2 → 0 as n→ ∞. (3.13)

where ‖ · ‖ is the Frobenius norm (‖A‖2 = (A,A) with the inner product (A,B) =

1This is quite contrary to the usual choice in stochastic control theory: there the system and
observation noise are chosen to be fixed Wiener processes, and every initial state and control policy
give rise to a different innovation (Wiener) process. However, in the quantum case the system and
observation noise do not even commute with the observations process, and thus we cannot use them
to fix the innovations. In fact, the observation process yt that emerges from the quantum probability
model is only defined in a “weak” sense as a ∗-isomorphism between an algebra of observables and
a set of random variables on (Ω,F , � ) [5]. Hence we might as well choose the isomorphism for each
initial state and control in such a way that all observations yt[ρ0, ut] give rise to the fixed innovations
process Wt, regardless of ρ0, ut. That such an isomorphism exists is evident from the form of the
filtering equation at least in the case that ut is a functional of the innovations (e.g. if ut = u(ρt)):
if we calculate the strong solution of (3.2) given a fixed driving process Wt, ρ0, and ut[W ], then
dyt = dWt +

√
η Tr[(c + c∗)ρt]dt must have the same law as yt[ρ0, ut].

Note that the only results that depend on the precise choice of yt[ρ0, ut] on (Ω,F , � ) are joint
statistics of the filter sample paths for different initial states or controls. However, such results are
physically meaningless as the corresponding quantum models generally do not commute.
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Tr (A∗B)). We will write δn
t = ρn

t − ρ∞t . Using Itô’s rule we obtain

� ‖δn
t ‖2 = ‖δn

0 ‖2 +

∫ t

0

η
�
Tr

(

(cδn
s + δn

s c
∗ − Tr[(c+ c∗)ρn

s ]ρn
s + Tr[(c+ c∗)ρ∞s ]ρ∞s )2

)

ds

+

∫ t

0

2
� [

Tr ((i[ρn
s , H(ρn

s )] − i[ρ∞s , H(ρ∞s )])δn
s ) + Tr

(

cδn
s c

∗δn
s − c∗c(δn

s )2
)]

ds

(3.14)

where [A,B] = AB −BA. Let us estimate each of these terms. We have

Tr
(

c∗c(δn
t )2

)

= ‖cδn
t ‖2 ≤ C1‖δn

t ‖2

Tr (cδn
t c

∗δn
t ) = (δn

t c, cδ
n
t ) ≤ ‖δn

t c‖ ‖cδn
t ‖ ≤ C2‖δn

t ‖2
(3.15)

where we have used the Cauchy-Schwartz inequality and the fact that all the operators
are bounded. Next we tackle

Tr ((i[ρn
t , H(ρn

t )] − i[ρ∞t , H(ρ∞t )])δn
t ) ≤ ‖i[ρn

t , H(ρn
t )] − i[ρ∞t , H(ρ∞t )]‖ ‖δn

t ‖. (3.16)

Now note that S(ρ) = i[ρ,H(ρ)] = i[ρ, F + u(ρ)G] is C1 in the matrix elements of ρ,
and its derivatives are bounded as S is compact. Hence S(ρ) is Lipschitz continuous,
and we have

‖S(ρn
t ) − S(ρ∞t )‖ ≤ C3‖ρn

t − ρ∞t ‖ = C3‖δn
t ‖ (3.17)

which implies

Tr ((i[ρn
t , H(ρn

t )] − i[ρ∞t , H(ρ∞t )])δn
t ) ≤ C3‖δn

t ‖2. (3.18)

Finally, we have ‖cδn
t + δn

t c
∗‖ ≤ C4‖δn

t ‖ due to boundedness of multiplication with
c, and a similar Lipschitz argument as the one above can be applied to S ′(ρ) =
Tr[(c+ c∗)ρ]ρ, giving

‖Tr[(c+ c∗)ρn
t ]ρn

t − Tr[(c+ c∗)ρ∞t ]ρ∞t ‖ ≤ C5‖δn
t ‖. (3.19)

We can now use ‖A + B‖2 ≤ ‖A‖2 + 2‖A‖ ‖B‖ + ‖B‖2 to estimate the last term in
(3.14) by C6‖δn

t ‖2. Putting all these together, we obtain

� ‖δn
t ‖2 ≤ ‖δn

0 ‖2 + C

∫ t

0

� ‖δn
s ‖2ds (3.20)

and thus by Gronwall’s lemma

� ‖δn
t ‖2 ≤ eCt‖δn

0 ‖2 = eCt‖ρn − ρ∞‖2. (3.21)

As t is fixed, Eq. (3.13) follows.
We have now proved that ρn

t → ρ∞t in mean square as n → ∞, which implies
convergence in probability. But then for any continuous V , V (ρn

t ) → V (ρ∞t ) in
probability ([8], pp. 60). As S is compact, V is bounded and we have

�
V (ρ∞t ) =

�
[

�
-lim

n→∞
V (ρn

t )] = lim
n→∞

�
V (ρn

t ) (3.22)

by dominated convergence ([8], pp. 72). But as this holds for any convergent sequence
ρn, the result follows.
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Proposition 3.7. ϕt(ρ, u) is a strong Markov process in S.

Proof. The proof of the Markov property in [22], pp. 109–110, carries over to our
case. But then the strong Markov property follows from Feller continuity [15].

Proposition 3.8. Let τ be the first exit time of ρt from an open set Q ⊂ S
and consider the stopped process ρQ

t = ϕt∧τ (ρ, u). Then ρQ
t is also a strong Markov

process in S. Furthermore, for V s.t. A V exists and is continuous, where A is the

weak infinitesimal operator associated to ϕt(ρ, u), we have AQV (x) = A V (x) if x ∈ Q

and AQV (x) = 0 if x 6= Q for the weak infinitesimal operator AQ associated to ρQ
t .

Proof. This follows from [15], pp. 11–12, and Proposition 3.4.

4. Angular momentum systems. In this section we consider a quantum sys-
tem with fixed angular momentum J (2J ∈ � ), e.g. an atomic ensemble, which is
detected through a dispersive optical probe [11]. After conditioning, such systems are
described by an equation of the form (3.2) where

• The Hilbert space dimension N = 2J + 1;
• c = βFz , F = 0 and G = γFy with β, γ > 0.

Here Fy and Fz are the (self-adjoint) angular momentum operators defined as follows.
Let {ψk : k = 0 . . . 2J} be the standard basis in � N , i.e. ψi is the vector with a single
nonzero element ψi

i = 1. Then [19]

Fyψk = ick−Jψk+1 − icJ−kψk−1,

Fzψk = (k − J)ψk

(4.1)

with cm = 1
2

√

(J −m)(J +m+ 1). Without loss of generality we will choose β =
γ = 1, as we can always rescale time and ut to obtain any β, γ.

Let us begin by studying the dynamical behavior of the resulting equation,

dρt = −iut[Fy , ρt] dt− 1
2 [Fz , [Fz, ρt]] dt+

√
η (Fzρt + ρtFz − 2 Tr[Fzρt]ρt) dWt (4.2)

without feedback ut = 0.
Proposition 4.1 (Quantum state reduction). For any ρ0 ∈ S, the solution ρt

of (4.2) with ut = 0 converges a.s. as t→ ∞ to one of ψmψ
∗
m.

Proof. We will apply Theorem 2.2 with Qλ = S. Consider the Lyapunov function
v(ρ) = Tr[F 2

z ρ]− (Tr[Fzρ])
2. One easily calculates A v(ρ) = −4η v(ρ)2 ≤ 0 and hence

�
v(ρt) = v(ρ0) − 4η

∫ t

0

�
v(ρs)

2 ds (4.3)

by using the Itô rules. Note that v(ρ) ≥ 0, so

4η

∫ t

0

�
v(ρs)

2 ds = v(ρ0) −
�
v(ρt) ≤ v(ρ0) <∞. (4.4)

Thus we have by monotone convergence

� ∫ ∞

0

v(ρs)
2 ds <∞ =⇒

∫ ∞

0

v(ρs)
2 ds <∞ a.s. (4.5)

By Theorem 2.2 the limit of v(ρt) as t → ∞ exists a.s., and hence Eq. (4.5) implies
that v(ρt) → 0 a.s. But the only states ρ that satisfy v(ρ) = 0 are ρ = ψmψ

∗
m.

The main goal of this section is to provide a feedback control law that globally
stabilizes (4.2) around the equilibrium solution (ρt ≡ ρf , u ≡ 0), where we select a
target state ρf = vfv

∗
f from one of vf = ψm.
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Stabilization of quantum state reduction for low-dimensional angular momentum
systems has been studied in [10]. It is shown that the main challenge in such a sta-
bilization problem is due to the geometric symmetry hidden in the state space of the
system. Many natural feedback laws fail to stabilize the closed-loop system around the
equilibrium point ρf because of this symmetry: the ω-limit set contains points other
than ρf . The approach of [10] uses computer searches to find continuous control laws
that break this symmetry and globally stabilize the desired state. Unfortunately, the
method is computationally involved and can only be applied to low-dimensional sys-
tems. Additionally, it is difficult to prove stability in this way for arbitrary parameter
values, as the method is not analytical.

Here we present a different approach which avoids the unwanted limit points by
changing the feedback law around them. The approach is entirely analytical and
globally stabilizes the desired target state for any dimension N and 0 < η ≤ 1. The
main result of this section can be stated as follows:

Theorem 4.2. Consider the system (4.2) evolving in the set S. Let ρf = vf v
∗
f

where vf is one of ψm, and let γ > 0. Consider the following control law:

1. ut = −Tr (i[Fy, ρt]ρf ) if Tr (ρtρf ) ≥ γ;
2. ut = 1 if Tr (ρtρf ) ≤ γ/2;
3. If ρt ∈ B = {ρ : γ/2 < Tr (ρρf ) < γ}, then ut = −Tr (i[Fy, ρt]ρf ) if ρt last

entered B through the boundary Tr (ρρf ) = γ, and ut = 1 otherwise.

Then ∃γ > 0 s.t. ut globally stabilizes (4.2) around ρf and
�
ρt → ρf as t→ ∞.

Throughout the proofs we use the “natural” distance function

V (ρ) = 1 − Tr (ρρf ) : S → [0, 1]

from the state ρ to the target state ρf . For future reference, let us define for each
α ∈ [0, 1] the level set Sα to be

Sα = {ρ ∈ S : V (ρ) = α}.

Furthermore, we define the following sets:

S>α = {ρ ∈ S : α < V (ρ) ≤ 1},
S≥α = {ρ ∈ S : α ≤ V (ρ) ≤ 1},
S<α = {ρ ∈ S : 0 ≤ V (ρ) < α},
S≤α = {ρ ∈ S : 0 ≤ V (ρ) ≤ α}.

The proof of Theorem 4.2 proceeds in four steps:
1. In the first step we show that when the initial state lies in the set S1, the

constant control field u = 1 ensures the exit of the trajectories (at least) in
expectation from the level set S1.

2. In the second step we use the result of step 1 to show that there exists a γ > 0
such that whenever the initial state lies inside the set S>1−γ and the control
field is taken to be u = 1, the expectation value of the first exit time from
this set takes a finite value. Thus if we start the controlled system in the set
S>1−γ , it will exit this set in finite time with probability one.

3. In the third step we show that whenever the initial state lies inside the set
S≤1−γ and the control is given by the feedback law u(t) = −Tr (i[Fy, ρt]ρf ),
the sample paths never exit the set S<1−γ/2 with a probability uniformly
larger than a strictly positive value. We also show that almost all paths that
never leave S<1−γ/2 converge to the equilibrium point ρf .
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4. In the final step, we prove that there is a unique solution ρt under the
control ut by piecing together the solutions with fixed controls u = 1 and
u = −Tr (i[Fy, ρt]ρf ). Combining the results of the second and the third
step, we show that the resulting trajectories of the system eventually con-
verge toward the equilibrium state ρf with probability one.

Step 1. Let us take a fixed time T > 0 and define the nonnegative function

χ(ρ) = min
t∈[0,T ]

�
V (ϕt(ρ, 1)), ρ ∈ S.

Recall that ϕt(ρ, 1) denotes the solution of (4.2) at time t with the control ut = 1 and
initial condition ρ0 = ρ. The goal of the first step is to show the following result:

Lemma 4.3. χ(ρ) < 1 ∀ρ ∈ S1.
To prove this statement we will first show the following deterministic result.
Lemma 4.4. Consider the deterministic differential equation

d

dt
vt = (−iFy − F 2

z + CFz)vt, v0 ∈ � N \ {0}. (4.6)

For sufficiently large C � 1, vt exits the set {v : v∗vf = 0} in the interval [0, T ], i.e.

there exists t ∈ [0, T ] such that v∗t vf 6= 0.
Proof. The matrices Fz and Fy are of the form

Fz =















∗ 0
∗

. . .

∗
0 ∗















, Fy =















0 ∗ 0
∗ 0 ∗

. . .
. . .

. . .

∗ 0 ∗
0 ∗ 0















where Fz has no repeated diagonal entries (Fz has a nondegenerate spectrum) and
the starred elements directly above and below the diagonal of Fy are all nonzero.

Now choose a constant κ so that the matrix

A = −iFy − F 2
z + κFz

admits distinct eigenvalues. This is always possible by choosing sufficiently large κ,
as Fz has nondegenerate eigenvalues and the eigenvalues of A depend continuously2

on κ. For k ∈ {1, .., N} define the matrices Ak−1 and Ãk+1 to be:

Ak−1 = [Aij ]1≤i,j≤k−1, Ãk+1 = [Aij ]k+1≤i,j≤N .

The fact that the matrices [(Fz)ij ]1≤i,j≤k−1 and [(Fz)ij ]k+1≤i,j≤N have different eigen-

values then imply that for sufficiently large κ the matricesAk−1 and Ãk+1 have disjoint
spectra as well.

Suppose that the solution of

v̇ = Av, v|t=0 = v0

never leaves the set {v : v∗vf = 0} in the interval t ∈ [0, T ]. Then in particular

dn

dtn
v∗vf |t=0 = (Anv0)

∗vf = 0, n = 0, 1, . . .

2Note that the coefficients of the characteristic polynomial of A are continuous functions of κ,
and the roots of a polynomial depend continuously on the polynomial coefficients.
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The matrix A is diagonalizable as it has distinct eigenvalues, i.e. A = PDP−1 where
D is a diagonal matrix. Thus

(Dnṽ0)
∗ṽf = 0, n = 0, 1, . . . (4.7)

where ṽ0 = P−1v0 and ṽf = P ∗vf . Eq. (4.7) implies that Mṽ0 = 0 where

M =















(ṽf )∗1 . . . (ṽf )∗N
(ṽf )∗1D11 . . . (ṽf )∗NDNN

(ṽf )∗1D
2
11 . . . (ṽf )∗ND

2
NN

...
...

...

(ṽf )∗1D
N−1
11 . . . (ṽf )∗ND

N−1
NN















.

The determinant of this Vandermonde matrix is

detM = (ṽf )∗1 · · · (ṽf )∗N
∏

i>j

(Dii −Djj).

As the matrix A has distinct eigenvalues, all the entries D11, D22, ..., DNN are differ-
ent. Thus if we can show that all the entries of the vector ṽf are non-zero then the
matrix M must be invertible. But then Mṽ0 = 0 implies that ṽ0 = 0 and hence v0 = 0
is the only initial state for which the dynamics does not leave the set {v : v∗vf = 0}
in the interval t ∈ [0, T ], proving our assertion.

Let us thus show that in fact all elements of ṽf are nonzero. Note that

(ṽf )k = (P ∗vf )k = P ∗
fk,

so it suffices to show that the eigenvectors of the matrix A have only nonzero elements.
Suppose that an eigenvector Ξ of A admits a zero entry, i.e.

AΞ = λΞ, Ξk = 0 for some k ∈ {1, .., N}.

Defining χk−1 = [Ξj ]j=1,..,k−1 and χ̃k+1 = [Ξj ]j=k+1,..,N , a straightforward computa-
tion shows that due to the structure of the matrix A

Ak−1χk−1 = λχk−1 and Ãk+1χ̃k+1 = λχ̃k+1.

But by the discussion above Ak−1 and Ãk+1 have disjoint spectra, so Ξ can only be
an eigenvector if either χk−1 = 0 or χ̃k+1 = 0.

Let us consider the case where χk−1 = 0; the treatment of the second case follows
an identical argument. Let j > k be the first non-zero entry of Ξ, i.e.

Ξ1 = Ξ2 = ... = Ξj−1 = 0 and Ξj 6= 0. (4.8)

As AΞ = λΞ, we have that

0 = λΞj−1 = Aj−1,j−2Ξj−2 +Aj−1,j−1Ξj−1 +Aj−1,jΞj = Aj−1,jΞj = −i(Fy)j−1,jΞj .

As (Fy)j−1,j 6= 0 this relation ensures that Ξj = 0. But this is in contradiction
with (4.8) and so Ξ cannot admit any zero entry. This completes the proof.

Proof of Lemma 4.3. We begin by restating the problem as in the proof of Lemma
3.2. We can write ϕt(ρ, 1) = ρ̃t/Tr ρ̃t with ρ̃t =

∑

i λi
�
[vi

tv
i∗
t |Fy

t ], where λi are convex
weights and vi

t are given by the equations

dvi
t = −iFyv

i
t dt− 1

2F
2
z v

i
t dt+ Fzv

i
t dW

′
t , vi

0 ∈ � N \ {0}. (4.9)
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Note that
�
Tr[ϕt(ρ, 1)ρf ] = 0 iff

�
Tr[ρ̃tρf ] =

∑

i λi
�
[vi∗

t ρfv
i
t] = 0. But as vi∗

t ρfv
i
t ≥ 0,

we obtain
�
V (ϕt(ρ, 1)) = 1 iff vi∗

t vf = 0 a.s. for all i.
To prove the assertion of the Lemma, it suffices to show that there exists a

t ∈ [0, T ] such that
�
V (ϕt(ρ, 1)) < 1. Thus it is sufficient to prove that

∃t ∈ [0, T ] s.t.
�
(v∗t vf 6= 0) > 0 (4.10)

where vt is the solution of an equation of the form (4.9). To this end we will use the
support theorem, Theorem 2.4, together with Lemma 4.4.

To apply the support theorem we must first take care of two preliminary issues.
First, the support theorem in the form of Theorem 2.4 must be applied to stochastic
differential equations with a Wiener process as the driving noise, whereas the noise
W ′

t of Eq. (4.9) is a Wiener process with (bounded) drift:

dW ′
t =

√
η dyt +

√

1− η dŴt = 2ηTr[Fzρt]dt+
√
η dWt +

√

1 − η dŴt. (4.11)

Using Girsanov’s theorem, however, we can find a new measure � that is equivalent
to

�
, such that W ′

t is a Wiener process under � on the interval [0, T ]. But as the two
measures are equivalent,

∃t ∈ [0, T ] s.t. � (v∗t vf 6= 0) > 0 (4.12)

implies (4.10). Second, the support theorem refers to an equation in the Stratonovich
form; however, we can easily find the Stratonovich form

dvt = −iFyvt dt− F 2
z vt dt+ Fzvt ◦ dW ′

t (4.13)

which is equivalent to (4.9). It is easily verified that this linear equation satisfies all
the requirements of the support theorem.

To proceed, let us suppose that (4.12) does not hold true. Then

� (v∗t vf = 0) = 1 ∀t ∈ [0, T ]. (4.14)

Recall the following sets: Wv0
is the set of continuous paths starting at v0, and Sv0

is the smallest closed subset of Wv0
such that � ({ω ∈ Ω : v·(ω) ∈ Sv0

}) = 1. Now
denote by Tv0,t the subset of Wv0

such that v∗t vf = 0, and note that Tv0,t is closed in
the compact uniform topology for any t. Then (4.14) would imply that Sv0

⊂ Tv0,t

for all t ∈ [0, T ]. But by the support theorem the solutions of (4.6) are elements of
Sv0

, and by Lemma 4.4 there exists a time t ∈ [0, T ] and a constant C such that the
solution of (4.6) is not an element of Tv0,t. Hence we have a contradiction, and the
assertion is proved.

Step 2. We begin by extending the result of Lemma 4.3 to hold uniformly in a
neighborhood of the level set S1.

Lemma 4.5. There exists γ > 0 such that χ(ρ) < 1 − γ for all ρ ∈ S≥1−γ .

Proof. Suppose that for every ξ > 0 there exists a matrix ρξ ∈ S>1−ξ such that

1 − ξ < χ(ρξ) ≤ 1.

By extracting a subsequence ξn ↘ 0 and using the compactness of S, we can assume
that ρξn

→ ρ∞ ∈ S1 and that χ(ρξn
) → 1. But by Lemma 4.3 χ(ρ∞) = 1 − ε < 1.

Now choose s ∈ [0, T ] such that

�
V (ϕs(ρ∞, 1)) = 1 − ε.
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Using Feller continuity, Prop. 3.6, we can now write

1 = lim
n→∞

χ(ρξn
) ≤ lim

n→∞

�
V (ϕs(ρξn

, 1)) =
�
V (ϕs(ρ∞, 1)) = 1 − ε < 1.

which is a contradiction. Hence there exists ξ > 0 such that χ(ρ) ≤ 1 − ξ for all
ρ ∈ S>1−ξ . The result follows by choosing γ = ξ/2.

The following Lemma is the main result of the second step.
Lemma 4.6. Let τρ(S>1−γ) be the first exit time of ϕt(ρ, 1) from S>1−γ . Then

sup
ρ∈S>1−γ

�
τρ(S>1−γ) <∞.

Proof. The following result can be found in Dynkin ([6], pp. 111, Lemma 4.3):

�
τρ(S>1−γ) ≤ T

1 − supζ∈S
� {τζ(S>1−γ) > T} .

We will show that

sup
ζ∈S

� {τζ(S>1−γ) > T} < 1. (4.15)

This holds trivially for ζ ∈ S≤1−γ , as then τζ(S>1−γ) = 0. Let us thus suppose that

∀ε > 0 ∃ζε ∈ S>1−γ such that
� {τζε

(S>1−γ) > T} > 1 − ε.

Then for all s ∈ [0, T ], we have that

�
V (ϕs(ζε, 1)) > (1 − ε) inf

ρ∈S>1−γ

V (ρ) = (1 − ε)(1 − γ).

By compactness there exists a sequence εn ↘ 0 and ζ∞ ∈ S≥1−γ such that ζεn
→ ζ∞

as n→ ∞. Thus by Prop. 3.6

�
V (ϕs(ζ∞, 1)) > 1 − γ ∀s ∈ [0, T ].

But this is in contradiction with result of Lemma 4.5. Hence there exists an ε > 0
such that supζ∈S

� {τζ(S>1−γ) > T} = 1 − ε, and we obtain

�
(τρ(S>1−γ)) ≤ T

1 − (1 − ε)
=
T

ε
<∞

uniformly in ρ. This completes the proof.

Step 3. In this step we deal with the situation where the initial state lies inside
the set S≤1−γ . We will denote by u1(ρ) = −Tr (i[Fy, ρ]ρf ) and by ϕt(ρ, u1) the
solution of (4.2) with ρ0 = ρ and with ut = u1(ρt). Denote by A the weak infinitesimal
operator of ϕt(ρ, u1). We will apply the stochastic Lyapunov theorems with Qλ = S.

We begin by showing that there is a non-zero probability p > 0 that whenever the
initial state lies inside S≤1−γ the trajectories of the system never exit the set S<1−γ/2.

Lemma 4.7. For all ρ ∈ S≤1−γ

� [

sup
0≤t<∞

V (ϕt(ρ, u1)) ≥ 1 − γ/2

]

≤ 1 − p =
1 − γ

1 − γ/2
< 1.
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Proof. This follows from Theorem 2.2 and A V (ρ) = −u1(ρ)
2 ≤ 0.

We now restrict ourselves to the paths that never leave S<1−γ/2. We will first
show that these paths converge toward ρf in probability. We then extend this result
to prove almost sure convergence.

Lemma 4.8. The sample paths of ϕt(ρ, u1) that never exit the set S<1−γ/2 con-

verge in probability to ρf as t → ∞.

Proof. Consider the Lyapunov function

V(ρ) = 1 − Tr (ρρf )
2
.

It is easily verified that V(ρ) ≥ 0 for all ρ ∈ S and that V(ρ) = 0 iff ρ = ρf . A
straightforward computation gives

A V(ρ) = −2u1(ρ)
2 Tr (ρρf ) − 4η (λf − Tr (ρFz))

2 Tr (ρρf )2 ≤ 0

where λf is the eigenvalue of Fz associated to vf . Now note that all the conditions
of Theorem 2.3 are satisfied by virtue of Prop. 3.6 and 3.4. Hence ϕt(ρ, u1) converges
in probability to the largest invariant set contained in C = {ρ ∈ S : A V(ρ) = 0}.

In order to satisfy the condition A V(ρ) = 0, we must have u1(ρ)
2 Tr (ρρf ) = 0 as

well as (λf − Tr (ρFz))
2 Tr (ρρf )

2
= 0. The latter implies that

either Tr (ρρf ) = 0 or Tr (ρFz) = λf .

Let us investigate the largest invariant set contained in C ′ = {ρ ∈ S : Tr (ρFz) = λf}.
Clearly this invariant set can only contain ρ ∈ C ′ for which Tr (ϕt(ρ, u1)Fz) is constant.
Using Itô’s rule we obtain

dTr (ρtFz) = −iu1(ρt) Tr ([Fy , ρt]Fz) dt+ 2
√
η (Tr

(

F 2
z ρt

)

− Tr (Fzρt)
2
) dWt.

Hence in order for Tr (ϕt(ρ, u1)Fz) to be constant, we must at least have

Tr
(

F 2
z ρ

)

− Tr (Fzρ)
2

= 0.

But as in the proof of Prop. 4.1, this implies that ρ = ψmψ
∗
m for some m, and thus

the only possibilities are V (ρ) = 0 (for ρ = vf v
∗
f ) or V (ρ) = 1.

From the discussion above it is evident that the largest invariant set contained
in C must be contained inside the set {ρf} ∪ S1. But then the paths that never exit
S<1−γ/2 must converge in probability to ρf . Thus the assertion is proved.

Lemma 4.9. ϕt(ρ, u1) converges to ρf as t → ∞ for almost all paths that never

exit the set S<1−γ/2.

Proof. Define the event P ρ
<1−γ/2 = {ω ∈ Ω : ϕt(ρ, u1) never exits S<1−γ/2}.

Then Lemma 4.8 implies that

lim
t→∞

� (

‖ϕt(ρ, u1) − ρf‖ > ε
∣

∣

∣
P ρ

<1−γ/2

)

= 0 ∀ε > 0.

By continuity of V , this also implies

lim
t→∞

� (

V (ϕt(ρ, u1)) > ε
∣

∣

∣P
ρ
<1−γ/2

)

= 0 ∀ε > 0.

As V (ρ) ≤ 1, we have

� (

V (ϕt(ρ, u1))
∣

∣

∣P
ρ
<1−γ/2

)

≤ � (

V (ϕt(ρ, u1)) > ε
∣

∣

∣P
ρ
<1−γ/2

)

+ ε
[

1 − � (

V (ϕt(ρ, u1)) > ε
∣

∣

∣P
ρ
<1−γ/2

)]

.
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Thus

lim sup
t→∞

� (

V (ϕt(ρ, u1))
∣

∣

∣P
ρ
<1−γ/2

)

≤ ε ∀ε > 0

which implies

lim
t→∞

� (

V (ϕt(ρ, u1))
∣

∣

∣P
ρ
<1−γ/2

)

= 0.

But we know by Theorem 2.2 that V (ϕt(ρ, u1)) converges almost surely. As V is
bounded, we obtain by dominated convergence

� (

lim
t→∞

V (ϕt(ρ, u1))
∣

∣

∣P
ρ
<1−γ/2

)

= 0

from which the result follows immediately.

Step 4. It remains to combine the results of Steps 2 and 3 to prove existence,
uniqueness and global stability of the solution ρt. We will denote by u the control
law of Theorem 4.2 and by ϕt(ρ, u) the associated solution. Note that ϕt(ρ, u) is not
a Markov process, as the control u depends on the past history of the solution. We
will construct ϕt(ρ, u) by pasting together the strong Markov processes ϕt(ρ, 1) and
ϕt(ρ, u1) at the times where the control switches.

Lemma 4.10. There is a unique solution ϕt(ρ, u) for all t ∈ � +. Moreover, for

almost every sample path of ϕt(ρ, u) there exists a time T < ∞ after which the path

never exits the set S<1−γ/2 and the active control law is u1.

Proof. Fix the initial state ρ. We begin by constructing a solution ϕt∧n(ρ, u) up
to (at most) an integer time n ∈ � . To this end, define the predictable stopping time

τn
1 = inf{t ≥ 0 : ϕt(ρ, 1) ∈ S≤1−γ} ∧ n.

Then we can define ρτn
1

= ϕτn
1
(ρ, 1) and ϕt∧n(ρ, u) = ϕt(ρ, 1) for t < τn

1 . In the
following, we will need the two-parameter solution ϕs,t(ρ, u

′) of the filtering equation
under the simple control u′, given the initial state ρ at time s. Define

σn
1 = inf{t ≥ τn

1 : ϕτn
1

,t(ρτn
1
, u1) ∈ S≥1−γ/2} ∧ n.

We can extend our solution by

ϕt∧n(ρ, u) = χt<τn
1
ϕt(ρ, 1) + χτn

1
≤t<σn

1
ϕτn

1
,t(ρτn

1
, u1), t < σn

1

where χA is the indicator function on the set A. To extend the solution further, we
continue again with the control law u = 1. Recursively, we define an entire sequence
of predictable stopping times

σn
k = inf{t ≥ τn

k : ϕτn
k

,t(ρτn
k
, u1) ∈ S≥1−γ/2} ∧ n,

τn
k = inf{t ≥ σn

k−1 : ϕσn
k−1

,t(ρσn
k−1

, 1) ∈ S≤1−γ} ∧ n,

where

ρσn
k

= ϕτn
k

,σn
k
(ρτn

k
, u1), ρτn

k
= ϕσn

k−1
,τn

k
(ρσn

k−1
, 1).
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We can use these times to construct the solution

ϕt∧n(ρ, u) = χt<τn
1
ϕt(ρ, 1) +

∞
∑

k=1

[

χτn
k
≤t<σn

k
ϕτn

k
,t(ρτn

k
, u1) + χσn

k
≤t<τn

k+1
ϕσn

k
,t(ρσn

k
, 1)

]

for all times t < Σn = limk→∞ σn
k ≤ n (the limit exists, as σk is a nondecreasing

sequence of stopping times.) Moreover, the solution is a.s. unique, as the segments
between each two stopping times are a.s. uniquely defined.

Now note that as anticipated by the notation, it is not difficult to verify that
ϕt∧(n+1)(ρ, u) = ϕt∧n(ρ, u) a.s. for t < Σn, and moreover Σn = Σ ∧ n, τn

k = τk ∧ n,
σn

k = σk ∧ n where Σ = limt→∞ Σn etc. Hence we can let n → ∞ to obtain the
unique solution ϕt(ρ, u) defined up to the accumulation time Σ, where τk, σk are the
consecutive times at which the control switches. It remains to prove that the solution
exists for all time, i.e. that Σ = ∞ a.s. In particular, this uniquely defines a càdlàg
control ut, so that by uniqueness ϕt(ρ, u) must coincide with the solution of (3.2) with
the control ut. Below we will prove that a.s., only finitely many σk are finite. This is
sufficient to prove not only existence, but also the second statement of the Lemma.

To proceed, we use the fact that the strong Markov property holds on each seg-
ment between consecutive switching times τn ≤ t < σn or σn ≤ t < τn+1. Thus

�
(σn <∞ and τn <∞) =

∫

χτn<∞(ω̃)
�
(ϕt(ρτn

(ω̃), u1) exits S<1−γ/2 in finite time)
�
(dω̃)

which implies

�
(σn <∞| τn <∞) =

∫ �
(ϕt(ρτn

(ω̃), u1) exits S<1−γ/2 in finite time)
�
(dω̃ | τn <∞).

But ρτn
∈ S≤1−γ on a set Ωτn

with
�
(Ωτn

| τn <∞) = 1. Hence by Lemma 4.7

�
(σn <∞| τn <∞) ≤ 1 − p.

Through a similar argument, and using Lemma 4.6, we obtain

�
(τn <∞|σn−1 <∞) = 1.

But note that by construction

�
(τn <∞|σn <∞) =

�
(σn−1 <∞| τn <∞) = 1.

Hence we obtain
�
(σn <∞)�

(σn−1 <∞)
=

�
(τn <∞|σn <∞)

�
(σn <∞)�

(τn <∞)

�
(σn−1 <∞| τn <∞)

�
(τn <∞)�

(σn−1 <∞)

=
�
(σn <∞| τn <∞)

�
(τn <∞|σn−1 <∞) ≤ 1 − p.

But
�
(σ1 <∞) =

�
(σ1 <∞| τ1 <∞) ≤ 1 − p as τ1 <∞ a.s. Hence

�
(σn <∞) ≤ (1 − p)n
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and thus

∞
∑

n=1

�
(σn <∞) ≤

∞
∑

n=1

(1 − p)n =
1 − p

p
<∞.

By the Borel-Cantelli lemma, we conclude that

�
(σn <∞ for infinitely many n) = 0.

Hence Σ = ∞ a.s. and for almost every sample path, there exists an integer N < ∞
such that σn = ∞ (and hence also τn+1 = ∞) for all n ≥ N , and such that σn < ∞
(and hence also τn+1 <∞) for all n < N , which implies the assertion.

Finally, we can now put together all the ingredients and complete the proof of
Theorem 4.2.

Proof of Theorem 4.2. We must check three things: that the target state ρf is
(locally) stable in probability; that almost all sample paths are attracted to the target
state as t → ∞; and that this is also true in expectation. Existence and uniqueness
of the solution follows from Lemma 4.10.

(i) To study local stability, we can restrict ourselves to the stopped process

ϕt∧τ̃ (ρ, u) = ϕt∧τ̃ (ρ, u1), τ̃ = inf{t : ϕt(ρ, u) 6∈ S<1−γ/2}.

Denote by Ã the weak infinitesimal operator of ϕt∧τ̃ (ρ, u1), and note that Prop.
3.8 allows us to calculate Ã V from (4.2) in the usual way. In particular, we find
Ã V (ρ) = −u1(ρ)

2 ≤ 0 for ρ ∈ S<1−γ/2. Hence we can apply Theorem 2.2 with
Qλ = S<1−γ/2 to conclude stability in probability.

(ii) From Lemmas 4.9 and 4.10, it follows that ϕt(ρ, u) → ρf a.s. as t→ ∞.
(iii) We have shown that

� [

lim
t→∞

V (ϕt(ρ, u))
]

= V (ρf ) = 0.

But as V is uniformly bounded, we obtain by dominated convergence

V
(

lim
t→∞

�
ϕt(ρ, u)

)

= lim
t→∞

�
[V (ϕt(ρ, u))] = 0

where we have used that V is linear and continuous. Hence
�
ϕt(ρ, u) → ρf .

5. Two-qubit systems. The methods employed in the previous section can be
extended to other quantum feedback control problems. As an example, we treat the
case of two qubits in a symmetric dispersive interaction with an optical probe field.
Qubits, i.e. two-level quantum systems (having a Hilbert space of dimension two), and
in particular correlated (entangled) states of multiple such qubits, play an important
role in quantum information processing. Here we investigate the stabilization of two
such states in the two-qubit system.

We begin by defining the Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

and we define the basis ψ↑ = (1 0)∗ and ψ↓ = (0 1)∗ in � 2. A system of two qubits
lives on the 4-dimensional space � 2 ⊗ � 2 with the standard basis {ψ↑↑ = ψ↑ ⊗ ψ↑,
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ψ↑↓ = ψ↑ ⊗ψ↓, ψ↓↑ = ψ↓ ⊗ψ↑, ψ↓↓ = ψ↓ ⊗ψ↓}. We denote by σ1
x,y,z = σx,y,z ⊗ � and

σ2
x,y,z = � ⊗ σx,y,z the Pauli matrices on the first and second qubit, respectively, and

by Fx,y,z = σ1
x,y,z +σ2

x,y,z the (unnormalized) collective angular momentum operators.
The quantum filtering equation for the two-qubit system is given by an equation

of the form (3.2):

dρt = −iu1(t)[σ
1
y , ρt] dt− iu2(t)[σ

2
y , ρt] dt

− 1
2 [Fz , [Fz, ρt]] dt+

√
η (Fzρt + ρtFz − 2 Tr (Fzρt) ρt) dWt

(5.1)

where u1 and u2 are two independent controls acting as local magnetic fields in the
y-direction on each of the qubits. The main goal of this section is two stabilize this
system around two interesting target states,

ρs =
1

2
(ψ↑↓ + ψ↓↑)(ψ↑↓ + ψ↓↑)

∗, ρa =
1

2
(ψ↑↓ − ψ↓↑)(ψ↑↓ − ψ↓↑)

∗.

Here ρs is a symmetric and ρa is an antisymmetric qubit state.
Theorem 5.1. Consider the following control law:

1. u1(t) = 1 − Tr
(

i[σ1
y , ρt]ρa

)

, u2(t) = 1 − Tr
(

i[σ2
y, ρt]ρa

)

if Tr (ρρa) ≥ γ;
2. u1(t) = 1, u2(t) = 0 if Tr (ρρa) ≤ γ/2;
3. If ρt ∈ Ba = {ρ : γ/2 < Tr (ρρa) < γ}, then take u1(t) = 1 − Tr

(

i[σ1
y, ρt]ρa

)

,

u2(t) = 1 − Tr
(

i[σ2
y, ρt]ρa

)

if ρt last entered the set Ba through the boundary

Tr (ρρa) = γ, and u1(t) = 1, u2(t) = 0 otherwise.

Then ∃γ > 0 s.t. (5.1) is globally stable around ρa and
�
ρt → ρa as t→ ∞. Similarly,

1. u1(t) = 1 − Tr
(

i[σ1
y , ρt]ρs

)

, u2(t) = −1− Tr
(

i[σ2
y, ρt]ρs

)

if Tr (ρρs) ≥ γ;
2. u1(t) = 1, u2(t) = 0 if Tr (ρρs) ≤ γ/2;
3. If ρt ∈ Bs = {ρ : γ/2 < Tr (ρρs) < γ}, then take u1(t) = 1 − Tr

(

i[σ1
y, ρt]ρs

)

,

u2(t) = −1−Tr
(

i[σ2
y, ρt]ρs

)

if ρt last entered the set Bs through the boundary

Tr (ρρs) = γ, and u1(t) = 1, u2(t) = 0 otherwise.

stabilizes the system around the symmetric state ρs.

We will prove the result for the antisymmetric case; the proof for the symmetric
case may be done exactly in the same manner. We proceed in the same way as in the
proof of Theorem 4.2.

Step 1. The proof of Lemma 4.3 carries over directly to the two qubit case. The
proof of Lemma 4.4 also carries over after minor modifications; in particular, in the
two qubit case we can explicitly compute that

A = −iσ1
y − F 2

z + 2Fz =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 −8









admits the diagonlization A = PDP−1 with

P =









1 1 0 0
−i i 0 0
0 0 1 1
0 0 .1270 7.8730









, D =









i 0 0 0
0 −i 0 0
0 0 −.1270 0
0 0 0 −7.8730









.

Hence the matrix A has a nondegenerate spectrum and moreover

ṽa = 1√
2
P ∗(ψ↑↓ − ψ↓↑) = 1√

2
(i − i − 1 − 1)∗

has only nonzero entries. The remainder of the proof is identical to that of Lemma 4.3.
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Step 2. The proofs of Lemmas 4.5 and 4.6 carry over directly.

Step 3. The proofs of Lemmas 4.7 and 4.9 carry over directly. The following re-
places Lemma 4.8. We denote by U1(ρ) = 1−Tr

(

i[σ1
y, ρ]ρa

)

, U2(ρ) = 1−Tr
(

i[σ2
y, ρ]ρa

)

and by ϕt(ρ, U1, U2) the associated solution of (5.1).
Lemma 5.2. The sample paths of ϕt(ρ, U1, U2) that never exit the set S<1−γ/2

converge in probability to ρa as t→ ∞.

Proof. Consider the Lyapunov function

V(ρ) = 1 − Tr (ρρa)
2
.

It is easily verified that V(ρ) ≥ 0 for all ρ ∈ S and that V(ρ) = 0 iff ρ = ρa. A
straightforward computation gives

A V(ρ) = −2
[

(U1(ρ) − 1)2 + (U2(ρ) − 1)2
]

Tr (ρρa) − 4ηTr (ρFz)
2

Tr (ρρa)
2 ≤ 0

where A is the weak infinitesimal operator associated to ϕt(ρ, U1, U2) (here we have
used [Fy, ρa] = 0 in calculating this expression). Now note that all the conditions of
Theorem 2.3 are satisfied by virtue of Prop. 3.6 and 3.4. Hence ϕt(ρ, U1, U2) converges
in probability to the largest invariant set contained in C = {ρ ∈ S : A V(ρ) = 0}.

In order to satisfy the condition A V(ρ) = 0 we must have at least

either Tr (ρρa) = 0 or Tr (ρFz) = 0.

Let us investigate the largest invariant set contained in C ′ = {ρ ∈ S : Tr (ρFz) = 0}.
Clearly this invariant set can only contain ρ ∈ C ′ for which Tr (ϕt(ρ, U1, U2)Fz) is
constant. Using Itô’s rule we obtain

dTr (ρtFz) = −
2

∑

j=1

Uj(ρt) Tr
(

i[σj
y, ρt]Fz

)

dt+ 2
√
η (Tr

(

F 2
z ρt

)

− Tr (Fzρt)
2
) dWt.

Hence in order for Tr (ϕt(ρ, U1, U2)Fz) to be constant, we must at least have

Tr
(

F 2
z ρ

)

− Tr (Fzρ)
2

= 0

which implies that ρ must be an eigenstate of Fz . The latter can only take one of the
following forms: either ρ = ψ↑↑ψ

∗
↑↑ or ρ = ψ↓↓ψ

∗
↓↓, or ρ is any state of the form

ρ = αψ↑↓ψ
∗
↑↓ + βψ↑↓ψ

∗
↓↑ + β∗ψ↓↑ψ

∗
↑↓ + (1 − α)ψ↓↑ψ

∗
↓↑. (5.2)

Let us investigate in particular the latter case. Note that any density matrix of the
form (5.2) satisfies Fzρ = ρFz = 0. Suppose that (5.1) with u1 = U1, u2 = U2 leaves
the set (5.2) invariant; then the solution at time t of

d

dt
ρt = −i[Fy, ρt] (5.3)

must coincide with ϕt(ρ, U1, U2) when ρ is of the form (5.2), and in particular (5.3)
must leave the set (5.2) invariant (here we have used that U1(ρ) = U2(ρ) = 1 for ρ
of the form (5.2)). We claim that this is only the case if ρ = ρa, which implies that
of all states of the form (5.2) only ρa is in fact invariant. To see this, note that by
Lemma 3.1 we can write any ρ of the form (5.2) as a convex combination

∑

i λiψ
iψi∗
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of unit vectors ψi ∈ span{ψ↑↓, ψ↓↑}. Thus the solution of (5.3) at time t is given by
∑

i λiψ
i
tψ

i∗
t with

d

dt
ψi

t = −iFyψ
i
t, ψi

0 = ψi.

But Fyψ
i 6∈ span{ψ↑↓, ψ↓↑} unless ψi ∝ ψ↑↓ − ψ↓↑, which implies the assertion.

From the discussion above it is evident that the largest invariant set contained
in C must be contained inside the set {ρa} ∪ S1. But then the paths that never exit
S<1−γ/2 must converge in probability to ρa. Thus the Lemma is proved.

Step 4. The remainder of the proof of Theorem 5.1 carries over directly.
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