#### Mapping equilibrium and non-equilibrium entropy landscapes : the path-sampling approach

Manuel Athènes

Service de Recherches de Métallurgie Physique - CEA Saclay

Gilles Adjanor, EDF, Les Renardières

Florent Calvo, Laboratoire de Physique Quantique, Toulouse

### Introduction

Statistical mechanics in ensembles of paths rather than of states

Transition-path sampling implicitely computes entropies

« migration » entropies, Sinai-Kolmogorov entropy
 Extentions to compute entropies in various contexts
 Adequate to compute non-equilibrium entropies
 Efficicient in rugged energy landscapes
 Built-in diagnosing tools in methods based on non-equilibrium work theorems

#### Non-equilibrium and equilibrium entropy

•N particle system state  $\chi = (\mathbf{r}, \mathbf{p})$  with hamiltonian  $H(\mathbf{r}, \mathbf{p})$ 



- définition of ensemble : phase space + associated probabilities
- entropy  $S_t^{neq} = -\int \rho^{neq}(\chi, t) \ln \rho^{neq}(\chi, t) d\chi$
- equilibrium :Boltzmann  $\rho^{eq}(\chi) = \exp\left[-\beta H(\chi) + F\right]$

$$S^{eq} = -\int \rho^{eq}(\chi) \ln \rho^{eq}(\chi) d\chi = \int \rho^{eq}(\chi) \left[ \beta H(\chi) - \beta F \right] d\chi = \beta \langle H \rangle - \beta F$$
$$\beta F = -\ln \int \exp \left[ -\beta H(\chi) \right] d\chi = -\ln Z$$

#### Nonequilibrium Entropy



order parameter q



#### Nonequilibrium Entropy





# Space-time thermodynamic integrations $\sigma_{\theta} = \theta \sigma_1 + (1 - \theta) \sigma_0$ Method 1 $S_{t=\tau}^{neq} = -\left\langle \ln\left\langle \exp\left[-\sigma_{1}+\sigma_{0}\right]\right\rangle_{0}\right\rangle_{t=\tau} = -\left\langle \ln\frac{\int \exp\left[-\sigma_{\theta=1}\right] Dz}{\int \exp\left[-\sigma_{\theta=0}\right] Dz}\right\rangle_{t=\tau}$ $= -\left\langle \int_{\Omega}^{1} d\theta \cdot \partial_{\theta} \ln \int \exp[-\sigma_{\theta}] Dz \right\rangle = \int_{\Omega}^{1} d\theta \left\langle \left\langle \partial_{\theta} \sigma_{\theta} \right\rangle_{\chi} \right\rangle_{t=\tau} \quad \text{Method 2}$ $= \left[ \left\langle \theta \left\langle \partial_{\theta} \sigma_{\theta} \right\rangle_{\chi} \right\rangle_{t=\tau} \right]_{0}^{1} - \int_{\Omega}^{1} \theta d\theta \left\langle -\operatorname{var}_{\chi} \left( \partial_{\theta} \sigma_{\theta} \right) \right\rangle_{t=\tau} \text{ Integration by part}$ $= S_{t=0} + \beta \langle Q \rangle + \int_{\Omega}^{1} \theta d\theta \langle \operatorname{var}(\partial_{\theta} \sigma_{\theta}) \rangle_{t=\tau}$ Method 3

Implies second law

Analogy with equilibrium thermodynamics  $m(\boldsymbol{\chi},t) = \int \boldsymbol{\theta} d\boldsymbol{\theta} \operatorname{var}_{\boldsymbol{\chi}_t} \left( \boldsymbol{\partial}_{\boldsymbol{\theta}} \boldsymbol{\sigma}_{\boldsymbol{\theta}} \right)$  $= \int \theta d\theta \left\langle \operatorname{var}(\partial_{\theta} \sigma_{\theta}) \right\rangle_{\chi_{t}}$ 0.30  $\Pr_{x,0}(\Sigma) \\ \Pr_{x,1}(\Sigma)$ 0.25  $\langle \sigma(z) \rangle_{x,1} \quad s(x,\tau)$ 0.20  $S_{\beta_{1}}^{eq} - S_{\beta_{0}}^{eq} = \int_{0}^{\beta_{1}} \beta d\beta \operatorname{var}(\partial_{\beta}(\beta H))$ 0.15  $m(x,\tau)$ 0.10 0.05 0.00 -15 -10 -5 5 0 10 Σ

15

20

25

#### Brownian tube proposal

acceptance rate

 $P_{\rm acc}(\tilde{z}) = \min\left(1 \exp\left[-\theta\left(\sigma(\tilde{z}) - \sigma(z)\right)\right]\right).$ 

G. Stoltz, J. Comp. Phys. 2007



### First and second moment integration



11

#### Three path-sampling methods



$$S_{t=\tau}^{neq}$$

$$= -\left\langle \ln \left\langle \exp[-\Delta \varphi] \right\rangle_{0} \right\rangle_{t=\tau}$$

$$= \int_{0}^{1} d\alpha \left\langle \left\langle \Delta \varphi \right\rangle_{\alpha} \right\rangle_{t=\tau}$$

$$= S_{t=0} + \beta \left\langle Q \right\rangle + \int_{0}^{1} \theta d\theta \left\langle \operatorname{var}_{\theta} \left( \Delta \varphi \right) \right\rangle_{t=\tau}$$

$$S^{eq}(\beta_1) - S^{eq}(\beta_0) = \int_{\beta_0}^{\beta_1} \beta d\beta \operatorname{var}_{\beta}(H)$$

# Non-equilibrium entropy

25 20 10 15 %  $s^{\mathrm{ex}}_{\lambda_t}(r)$ Η 10 8 Ρ 8 FCI 5 SCI n  $\infty$  $s^{\mathrm{ex}}(r,t)$ 6 4 0.2 0.4 2 3  $rac{t}{ au} = \lambda_t$  0.6 2 0 0 0.8 -1 -2 2 4 0 -2 -4 -3 T1 -4 r

Non-equilibrium entropy

## Perspectives

N-particle system Entropy at glass transition Formalism for non-conservative dissipative systems

# Free energy calculations in path ensembles

$$\tilde{Z}_{0} = \frac{1}{h^{3N}N!} \int Dz N_{0}(\chi_{i}) P_{\text{cond}}^{+}(z)$$

$$\tilde{Z}_{0} = \frac{1}{h^{3N}N!} \int d\chi_{i} N_{0}(\chi_{i}) \int_{\Omega_{i}} Dz P_{\text{cond}}^{+}(z)$$

$$\tilde{Z}_{0} = \frac{1}{h^{3N}N!} \int d\chi_{i} N_{0}(\chi_{i}) = Z_{0}$$

$$\tilde{Z}_{1} = Z_{1} \qquad \exp[-\beta\Delta F] = \frac{\tilde{Z}_{1}}{\tilde{Z}_{0}}$$



#### The 38-atom cluster $\ll LJ_{38} \gg$



## $\Lambda(Q_4-E)$

Q<sub>4</sub>-Energy contour plots at decreasing temperatures





# Comparison with state-sampling methods (F. $C_{2.5}$

Calvo) 2.0 T=0.12 Λ (Q<sub>4</sub>, T) [u.r. 1.5 •Wang-Landau method: 1.0 auxiliary potential  $\propto \ln (E)$ 0.5 0.0 •parallel tempering : 5.0 4.5 Monte-Carlo exchanges between N replica T=0.05 4.0 of the system at various temperatures 3.5 Λ (Q<sub>4</sub>,T) 3.0 2.5 2.0 1.5 1.0 paths 0.5 parallel tempering 0.0 Wang-Landau method 0.00 0.04 80.0 0.12 0.16 0.20 Q₄

# Comparison with harmonic superpositionapproximationharmonic approximation<br/>paths N=2·103

•harmonic superposition

approximation in class D



→validation of the path-sampling approach

Adjanor, Athènes and Calvo, EPJB (2006)



#### Work distribution



Athènes EPJB (2004), Oberhofer, Geissler and Dellago JPCB(2005), Adjanor and Athènes, JCP (2005) Ytreberg, Zuckerman and Swendsen JCP(2006) Lechner and Dellago J. Stat. Phys. (2007)

#### **Optimal bias distribution**

Oberhofer and Dellago (2007)



