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Introduction

Fourier’s law : Consider a macroscopic system in contact with
two heat baths with different temperatures T` 6= Tr . When
the system reaches its steady state < · >ss , one expects
Fourier’s law holds:

< J(q) >ss= −κ(T (q))∇(T (q)), q macroscopic point

J(q) is the energy current; T (q) the local temperature; κ(T )
the conductivity.

If system has (microscopic) size N, finite conductivity means
< J >ss∼ N−1.
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Hamiltonian microscopic models : Fermi-Pasta-Ulam
chains

H =
∑
x∈Λ

{
p2
x

2mx
+

W (qx)

2
+
∑
y∼x

V (qx − qy )

4

}
, Λ ⊂ Zd

W : pinning potential; V : interaction potential

If V (r) = α|r |2, W (q) = ν|q|2 (harmonic chain), < · >ss is
an explicit Gaussian measure and < J >ss∼ 1 : Fourier’s law
is false (Lebowitz, Lieb, Rieder ’67)

Non linearity is extremely important to have normal heat
conduction.

But it is not sufficient : It has been observed experimentally
and numerically for nonlinear chains that if d ≤ 2 and
momentum is conserved (⇔W = 0, unpinned) then
conductivity is still infinite (finite otherwise).
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Motivations/Goal

Give a rigorous derivation of Fourier’s law from the
microscopic model.

If Fourier’s law does not hold, κN ∼ Nδ, universality of the
diverging order δ of the conductivity?

Numerical simulations are not conclusive (δ ∈ [0.25; 0.47] for
the same models) and subject of intense debate.
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The Models

FPU chains are mathematically very difficult to study. We
perturb the Hamiltonian dynamics by a stochastic noise.
These stochastic perturbations simulate (qualitatively) the
long time (chaotic) effect of the deterministic nonlinear model.

FPU chains conserve total energy H. If the system is
unpinned (W = 0), it conserves also total momentum

∑
x px .

Two different noises:

Noise 1 = only energy conservative
Noise 2 = energy and momentum conservative
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The Models

The generator L (adjoint of the Fokker-Planck operator) has
two terms

L = A+ γS

A is the Liouville operator

A =
∑
x

{
∂H
∂px

∂qx −
∂H
∂qx

∂px

}

S is a diffusion on the shell of constant kinetic energy (noise
1) or of constant kinetic energy and constant momentum
(noise 2). γ > 0 regulates the strength of the noise.
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Construction of the noise

Example : Noise 1, energy conserving, mx = 1, d=1

For every nearest neigbor atoms x and x + 1, surface of
constant kinetic energy e

S1
e = {(px , px+1) ∈ R2; p2

x + p2
x+1 = e}

The following vector field Xx ,x+1 is tangent to S1
e

Xx ,x+1 = px+1∂px − px∂px+1

so X 2
x ,x+1 generates a diffusion on S1

e (Brownion motion on
the circle).
We define

S =
1

2

N−2∑
x=1

X 2
x ,x+1

Noise 2, d ≥ 1 ... are of the same type.
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Evaluation of the conductivity

NON EQUILIBRIUM SETTING : system in contact with two
heat baths (T` 6= Tr ). κN is of same order as N < J >ss .
κN ∼ Nδ, δ =?. Problem : If T` 6= Tr , we don’t know < · >ss

LINEAR RESPONSE THEORY (GREEN-KUBO):
Non-rigorous perturbative arguments predict:

lim
T`,Tr→T

lim
N→∞

κN

is given by the Green-Kubo formula κGK (T ) (space-time
variance of the current at equilibrium)
Advantage : κGK requires to consider the dynamics at
equilibrium. We know the equilibrium measure (Gibbs
measure with temperature T ).
Inconvenient : The quantity to evaluate is a dynamical
quantity.
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Green Kubo formula

Energy ex of atom x is (mx = 1 to simplify)

ex =
p2
x

2
+

W (qx)

2
+
∑
y∼x

V (qx − qy )

2

Local conservation of energy:

ex(t)− ex(0) = −
d∑

k=1

(Jx−ek ,x(t)− Jx ,x+ek
(t))

The current of energy J has the decomposition:

Jx ,x+ek
(t) =

∫ t

0
jx ,x+ek

(s)ds + Mx ,x+ek
(t)

with M martingale (mean 0 w.r.t. any initial condition)

jx ,x+ek
= −

1

2
(∇V )(qx+ek

− qx) · (px+ek
+ px)− γ∇ek

p2
x
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jx ,x+ek
= −

1

2
(∇V )(qx+ek

− qx) · (px+ek
+ px)− γ∇ek

p2
x
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Consider the system of length N. Linear response theory predicts
the following expression for the conductivity:

[κGK ]1,1 (T ) = lim
t→∞

lim
N→∞

1

2T 2
Eeq.

 1
√

tNd

∑
x∈Td

N

Jx ,x+e1(t)

2
Eeq. is the expectation w.r.t. EQUILIBRIUM, meaning the uniform
measure on the shell {H =

∑
x∈Td

N
ex = NdT}.

If the conductivity is infinite, how to obtain the diverging order of
the conductivity κN of the system of length N ?
κN ∼ κGK with truncation of the time up to time tN = N
(phononic picture).
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[κGK ]1,1 (T ) = lim
t→∞

lim
N→∞

1

2T 2Nd t
Eeq

[∑
x

∫ t

0
jx ,x+e1(s)ds

]2


+
γ

d
(Martingale contribution)
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Results : Harmonic case : V (r) = αr 2, W (q) = νq2

Noise 1: energy conserving

Momentum is NOT conserved. Homogenous chain : mx = 1

Theorem (B., Olla, JSP’05)

κGK is finite (pinned or unpinned) in any dimension.

Fourier’s law holds and linear response theory is correct:
System of length N in contact with two Langevin baths at
temperature T` and Tr in its steady state

lim
N→∞

N < jx ,x+1 >ss= κGK (Tr − T`)
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Results : Harmonic case, random masses

Numerical simulations and rigorous results (Dahr, Lebowitz,
O’Connor, Rubin-Greer...), non-equilibrium setting, disordered
chain (without noise)

Harmonic chain without pinning: κN ∼ Nδ with
δ ∈ [−1/2, 1/2] depending on the spectral properties of the
baths !!!

Harmonic chain with harmonic pinning: κN ∼ e−cN .

Anharmonic chain (with or without pinning): κN = O(1).

Theorem (B., ’08)

Harmonic system with random masses and energy conservative
noise 1.The conductivity defined by Green-Kubo formula is strictly
positive and bounded above:

0 < c− ≤ κKG ≤ C+ < +∞
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Results : Harmonic case : V (r) = αr 2, W (q) = νq2

Noise 2: energy/momentum conserving
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Results : Harmonic case : V (r) = αr 2, W (q) = νq2

Noise 2: energy/momentum conserving

Theorem (Basile, B., Olla, PRL’06)

C1,1(t) = lim
N→∞

〈(∑
x

jx ,x+e1(t)

)
, j0,e1(0)

〉
eq.

C1,1(t) =
T 2

4π2d

∫
[0,1]d

(∂k1ω(k))2e−tγψ(k)dk

where ω is the dispertion relation of the harmonic chain

ω(k) = (ν + 4α
d∑

j=1

sin2(πk j))1/2, ψ(k) ∼ k2
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Results : Harmonic case : V (r) = αr 2, W (q) = νq2

Noise 2: energy/momentum conserving

Corollary

C1,1(t) ∼ t−d/2 in the unpinned case (ν = 0)

C1,1(t) ∼ t−d/2−1 in the pinned case (ν > 0)
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Results : Harmonic case : V (r) = αr 2, W (q) = νq2

κN =
1

2T 2Nd tN
Eeq

[∑
x

∫ tN

0
jx ,x+e1(s)ds

]2
+

γ

d
, tN = N

Corollary

If the system is unpinned (ν = 0) then ”truncated” Green-Kubo
formula for κN gives:{

κN ∼ N1/2 if d = 1

κN ∼ log N if d = 2

In all other cases κN is bounded in N and converges to κGK .
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Results : Anharmonic case, Canonical version of GK

Theorem (Basile,B.,Olla’08)

For d ≥ 3, if W > 0 is ”general” or if W = 0 and
0 < c− ≤ V ” ≤ C+ < +∞ then

κN ≤ C .

For d = 2, if W = 0 and 0 < c− ≤ V ′′ ≤ C+ <∞

κN ≤ C (log N)2.

For d = 1, if W = 0 and 0 < c− ≤ V ′′ ≤ C+ <∞, then

κN ≤ C
√

N.

In any dimension, if V are quadratic and W > 0 is ”general”
then κN ≤ C .
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Anharmonic case : Numerical simulations, (EPJ’08) ,
Basile, Delfini, Lepri, Livi, Olla, Politi

Simulations (d = 1) for unpinned systems with
energy/momentum conservative noise 2. The strength of the
noise is regulate by γ. Then κN ∼ Nδ.

FPU (α) : δ = 0.35 for γ small to δ = 0.48 for γ larger.

FPU (β): δ = 0.41 for γ small to δ = 0.47 for γ larger.

Thermal conductivity increases with strength of the noise !!!

Theoretical arguments are controversial. For FPU (β):
Kinetic approach : δ = 2/5 (Perverzev, Lukkarinen and Spohn)
MCT approach : δ = 1/2 (Delfini, Lepri,Livi, Politi)
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Proof of the harmonic case

Eeq.

[∫ ∞
0

dte−λt

(∑
x

jx ,x+e1(t)

)
j0,e1(0)

]

=

∫ ∞
0

dte−λt

〈(∑
x

etLjx ,x+e1

)
, j0,e1

〉
eq.

=

〈
(λ− L)−1

(∑
x

jx ,x+e1

)
, j0,e1

〉
eq.

Solve the resolvent equation (λ− L)hλ =
∑

x jx ,x+e1 and
compute limN→∞ < j0,e1 hλ >eq..

Function hλ is local in the energy conservative case and
non-local in the energy/momentum case. For d ≥ 3 or ν > 0,
the decay of hλ is sufficient to assure a finite conductivity.
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First order correction to local equilibrium

What is h0 = limλ→0 hλ ?

Consider the system in contact with two reservoirs with
temperature T` = β−1

` and Tr = β−1
r .

If T` = Tr = β−1, NESS < · >ss is the Gibbs mesure

Z−1 exp (−βH)

Let fss the density of < · >ss w.r.t. the local equilibrium state

< · >`e= Z−1 exp (−β(x/N)H) , β(q) = β` + (βr − β`)q

If δT = Tr − T` is small

fss = 1 + δTh0 + o((δT )2)
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Anharmonic case : upper bounds

Eeq

[∫ N

0

∑
x

jx ,x+e1(s)ds

]2


≤ 10N

〈(∑
x

jx ,x+e1

)
, (N−1 − L)−1

(∑
x

jx ,x+e1

)〉
eq

≤ 10N

〈(∑
x

jx ,x+e1

)
, (N−1 − γS)−1

(∑
x

jx ,x+e1

)〉
eq

(N−1− γS)−1

(∑
x

jx ,x+e1

)
=

d∑
j=1

∑
x ,y

GN(x − y)pj
xV ′(qj

y+e1
− qj

y )

where GN(z) is the solution of the resolvent equation

N−1GN(z)− 2γ(∆GN)(z) = −
1

2
[δ0(z) + δe1(z)]
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