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Introduction

THE SETTING Hamiltonian models of quantum or classical particles in contact with

an environment having a very large number of degrees of freedom have been used

to address a great variety of questions:

Proofs of return to thermal equilibrium; Derivations of a reduced dynamics for the

particle: (generalized) Langevin, Fokker-Planck or Master equations; Conditions for

normal or anomalous diffusion; Microscopic models for dissipation and friction ;

Derivations of Ohm’s law (linear response theory) or other macroscopic laws;

Attempts to compute transport coefficients from microscopic dynamics . . .

A subclass of models deals with the case where the particles interact with

vibrational (or harmonic) degrees of freedom of the environment. This will be the

case in this talk. I will study the motion of a free particle driven by an external field

F through a periodic array of monochromatic oscillators in thermal equilibrium at

positive temperature.
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Introduction

THE SETTING Hamiltonian models of quantum or classical particles in contact with

an environment having a very large number of degrees of freedom have been used

to address a great variety of questions:

Proofs of return to thermal equilibrium; Derivations of a reduced dynamics for the

particle: (generalized) Langevin, Fokker-Planck or Master equations; Conditions for

normal or anomalous diffusion; Microscopic models for dissipation and friction ;

Derivations of Ohm’s law (linear response theory) or other macroscopic laws;

Attempts to compute transport coefficients from microscopic dynamics . . .

A subclass of models deals with the case where the particles interact with

vibrational (or harmonic) degrees of freedom of the environment. This will be the

case in this talk. I will study the motion of a free particle driven by an external field

F through a periodic array of monochromatic oscillators in thermal equilibrium at

positive temperature.

WHY? Find a Hamiltonian model in which Ohm’s law holds and prove it does!



THE MODEL : a classical Holstein molecular crystal model

or

A 1-d inelastic Lorentz gas
.D.B., P. Parris and A. Silvius (Missouri), Physica D, 208, 96-114 (2005); Phys. Rev. B 73, 014304 (2006)
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A one-dimensional periodic array (with period a) of identical oscillators of frequency

ω. The particle interacts with the oscillator at ma if it is within a distance σ < a
2

.

H =
1

2
p2 +

∑

m∈Z

1

2

(

p2
m + ω2q2

m

)

+ α
∑

m

qmnm (q) − Fq. (1)

where nm (q) vanishes outside the interaction region associated with the oscillator

at ma and is equal to unity inside it.



THE DYNAMICS (no external field: F = 0)

The particle moves at constant speed, except when entering or leaving the

interaction region, when the oscillator displacement serves as a potential barrier:

energy conservation then decides whether the particle reverses direction or not and

how its speed changes. Two examples of what may happen:
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If F > 0, the particle accelerates between collisions.



The pinball machine and Ohm’s law

• The pinball machine (or the inelastic Lorentz gas)

Does the particle acquire a constant drift speed?

If so, how does it depend on the slope?

And on the temperature (= mean vibrational energy) of the obstacles?

Towards a Hamiltonian model for Ohm’s law?



The pinball machine and Ohm’s law

• The pinball machine (or the inelastic Lorentz gas)

Does the particle acquire a constant drift speed?

If so, how does it depend on the slope?

And on the temperature (= mean vibrational energy) of the obstacles?

In other words, does this provide a Hamiltonian model for Ohm’s law?

• Ohm’s law: V = RI or ~E = ρ~j or ~v = qτ
m

~E.

m
d~v

dt
= q ~E − m

τ
~v, ~v(t) ∼ qτ

m
~E (t → ∞).



THE PLAN

STEP 1 Check whether the one-dimensional classical Holstein molecular crystal

model provides a Hamiltonian model for Ohm’s law by computing its transport

properties both when F = 0 and when F > 0 through a numerical integration of

the Hamiltonian dynamics generated by

H =
1

2
p2 +

∑

|m|≤M

1

2

(

p2
m + ω2q2

m

)

+ α
∑

|m|

qmnm (q) − Fq. (2)

for suitably large M .

STEP 2 Explain the numerical results in physical terms.

STEP 3 Make conjectures, write theorems and their proofs.



REMARKS The Hamiltonian (when F = 0) contains only two dimensionless

parameters in terms of which all relevant quantities can and must be expressed:

• EB/E0: here EB = α2

2ω2 is the binding energy and E0 = σ2ω2.

• 2σ/L: here L = a − 2σ is the size of the non-interacting region in a cell.

In addition, all computed quantities depend on the temperature T of the system.

The latter enters through the initial condition = Boltzmann distribution = Gibbs

measure. High (low) temperature means kT >> EB (kT << EB ) or

βEB << 1 (βEB >> 1) with β = (kT )−1.

Time is measured in multiples of the oscillator period 2π/ω

When F > 0 there is an extra energy scale Fa. For example small F will then

mean Fa << EB and Faβ << 1.

Many degrees of freedom, but only 4 parameters!



STEP 1 F = 0 : TO DIFFUSE OR NOT TO DIFFUSE?

We injected a thermal distribution of (103 to 105) particles at inverse temperature β

into an array of (5 × 104) oscillators, also in equilibrium at

the same temperature. We computed 〈q2(t)〉 (for t up to 5×106) and observed this:
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(a) βEB = 0.015 (c) βEB = 0.50

EB

E0

= 0.5, 2σ
L = 0.5 (triangles)

EB

E0

= 5, 2σ
L = 0.5 (cercles)

(b) βEB = 0.020 (d) βEB = 0.70

EB

E0

= 0.5, 2σ
L = 2 (diamants)

EB

E0

= 5, 2σ
L = 2 (carrés).

Certainly, 〈q2(t)〉 ∼ 2Dt. But how does D depend on βEB , EB/E0, 2σ/L?
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High temperature: D ∼ D0
H(βEB)−5/2

D0
H =

√

9EBa2

32π
EB
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Low temperature: D ∼ D0
L(βEB)−3/4

D0
L = a

2σ Γ(3/4)
√

EBa2

2π2

Diffusion with a monochromatic bath!



STEP 2 F = 0 : EXPLAINING THE POWER LAW

• At high temperatures Traversal time <<< oscillator period and the typical

potential energy barrier ∆ ∼
√

2EBkT <<< particle energy. A thermalized

particle passes through many interaction regions in succession before slowing down

and undergoing a velocity reversing (or randomizing) kick back up to thermal

velocities: relaxation time approximation.

For fast particles the energy loss per site is: ∆E = −4EBE0/p
2. As a result, a

particle of momentum p takes an average time τ(p) = p3a
12EBE0

to travel an

average distance ℓ(p) = p4a
16EBE0

= 3
4
pτ(p). This leads to a random walk with

pausing times τ(p) and steps ℓ(p) so that

D =
〈ℓ2〉
2〈τ〉 ∼ (βEB)−5/2.

Adiabatic regime: the random potential seen by the particle typically changes

adiabatically with respect to the particle’s net motion (cfr. polaron).

• Low temperatures : Traversal time >>> oscillator period.

Hopping transport.



STEP 3 F = 0 : CONJECTURES, THEOREMS AND PROOFS

Conjecture For all, EB , E0 and 0 < β < +∞,

lim
t→+∞

〈(q(t) − q(0))2〉
2t

:= D(β)

exists and satisfies

lim
β→+∞

(βEB)3/2D(β) := DL > 0, lim
β→0

(βEB)5/2D(β) := DH > 0.

. . .



TURNING ON THE FIELD: F > 0

with P. Lafitte (UST Lille, CNRS, INRIA) and P. Parris (Missouri-Rolla): JSP, to appear.

QUESTION: Does the particle reach a limiting drift velocity, defined as

vF := lim
t→+∞

vF (t) := lim
t→+∞

〈q(t, F )〉
t

and is the latter linear in F , at least for small F ?

In other words, does vF exist and if so, does the zero field mobility µ, defined by

µ := lim
F→0

vF

F

exist? In other words, is the system Ohmic?



STEP 1 F > 0 To drift or not to drift?
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CONCLUSIONS The mean displacement is clearly linear in time for very long times.

In addition, the mean drift speed vF (t) computed from the above data turns out to

be linear in the applied field and independent of t.
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CONCLUSION The low-field mobility µ is well-defined and field-independent. What

is its temperature dependence?
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Mobility µ as a function of βEB for 9 parameter sets EB and E0, each for six

different temperatures. The line is η (βEB)
−3/2

with η = 0.32. The random walk

model adapted to include the effect of the driving field explains the power law

correctly. And the constant in front?



STEP 2 F > 0 WHAT’S THE PHYSICAL PICTURE?

Since this is a Hamiltonian system in thermal equilibrium Kubo’s linear response

theory should apply. At finite times it yields

vF (t)

F
=

〈q(t, F )〉
Ft

= β
〈q2(t, F = 0)〉

2t
+ Ot(F ).

Taking F → 0, the right hand side has a limit as t tends to infinity, since in absence

of the field the motion is diffusive (as we showed before!!). This yields the Einstein

relation:

µ := lim
t→∞

lim
F→0

〈q(t, F )〉
Ft

= βD.

So the β dependence of µ should be completely determined by the one of D, which

we already understand. Let’s see if this works:



The Einstein relation: µ = βD
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STEP 3 F > 0 CONJECTURES, THEOREMS AND PROOFS

Conjecture: This system is Ohmic.

. . .



BUT THIS CAN’T QUITE BE TRUE (forever)



QUESTION: Does the particle reach a limiting speed vF and is the latter linear in

F , at least for small F ? In other words, does the system have a well-defined

low-field mobility µ that is field-independent, that is to say, is it Ohmic?

ANSWER: NO This can’t possibly be the case. Indeed, for any F > 0, you should

expect

〈q(t, F )〉 ∼ 1

2
Ft2,

for large enough t.



QUESTION: Does the particle reach a limiting speed vF and is the latter linear in

F , at least for small F ? In other words, does the system have a well-defined

low-field mobility µ that is field-independent, that is to say, is it Ohmic?

ANSWER 2: NO This can’t possibly be true. Indeed, for any F > 0, you should

expect 〈q(t, F )〉 ∼ 1
2
Ft2, for large enough t.

WHY? The decreasing energy loss ∆E ∼ v−2 of high speed particles to the

oscillators is less than the energy Fa gained from the field: the oscillators are

inefficient in slowing down fast particles. But, in a thermal distribution of particles,

there are always some that are very fast, and those won’t be slowed down by the

oscillators. There is a time tF beyond which their contribution to 〈q(t, F )〉
dominates and yields an asymptotic 1

2
Ft2 behaviour. One can estimate

tF =
vF a

√
8βEbE0π

(Fa)3/2
exp

2βEbE0

Fa
= µ

√

4πvth

vF
exp

(

vth

vF

)

Note: this is an ultraviolet problem: only fast oscillators can slow down fast particles.



“Seeing is believing”
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βEB = 0.5, EB/E0 = 5, 2σ/L = 0.5. Log-log plot of 〈qS(t, F )〉/F against t.

The parts of the graphs parallel to the dashed line correspond to behaviour linear in

time. All graphs have the same mobility, as promised! But for all forces, at large

times, the displacements are no longer linear in time.
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BACK TO STEP 3 F > 0 : CONJECTURES, THEOREMS AND PROOFS

QUESTION: Does the particle reach a limiting speed vF and is the latter linear in

F , at least for small F ? In other words, vF ∼ µF ? If so, does the Einstein relation

µ = βD hold? In fancier terms, is linear response valid in this model, and if so,

does the Kubo formula hold?

CONJECTURE: For all parameters, there exists a constant µ > 0 (called the

mobility) so that for times µ << t << tc(F ),

vF (t) = µF + o(F ),

where the error term is uniform for times satisfying µ << t << tc(F ).

In this sense you get Ohmic response from a non-Ohmic bath.



PUBLICITY

The inelastic Lorentz gas, a great model to test your favourite conjectures on:

• Equilibrium or non-equilibrium statistical mechanics

• The role of microscopic chaos on macroscopic/thermodynamic properties

• Shadowing

• Coarse graining, dimensional reduction,

• . . .

Easy to use, readily adapted to your needs, it’s the model you’ve been waiting for.

It’s FREE!! ∗

∗Just don’t forget to cite us!



Doing the numerics (Should someone ask!)

CHOOSE A SYSTEM: i.e. choose 2σ/L and EB/E0. (Nine different systems)

CHOOSE A TEMPERATURE: 10−2 ≤ βEB ≤ 5. (Six per system)

CHOOSE A FORCE: 10−5 ≤ F ≤ 10−2. (Four to ten per 2σ/L, EB/E0, βEB .)

RUN as many trajectories for as long as you can. (103 − 104 trajectories for times

between 105 and 107 oscillator periods)

GOAL: determine the drift speed of the ensemble: 〈qS(t, F )/t〉 and compute as

best you can the limit F → 0, then t → ∞.

LIMITATIONS AND DIFFICULTIES: (i) At a given time, there is a critical force Fc

beyond which there will be breakdown (accelerated motion). Stay below Fc! (ii) Fc

decreases (fast!!) if you use longer times, so need to work with very small forces.

(iii) You want to take as many values of F as possible and as small as possible, but

at low force, the drift is small and it is hard to get good statistics. Since you need to

work at long times and small fields with large numbers of trajectories, your

computers will have a hard time.


