A Chemist view on Reaction Path

P. Fleurat-Lessard Laboratoire de Chimie Ecole Normale Supérieure de Lyon

Outline

- Why is the chemist view special ?
- Different sets of coordinates
- Applications
- Conclusions

Main concern of the chemist

Bond breaking and forming

- Quantum approach is needed
- Cost a lot !
 - Size : 100 QM, 50000 QM/MM
 - Time scale : 10 ps
- Environment is important
 - Protein, solvent
 - Temperature

Textbook example: HCN

• HCN \rightarrow CNH

- Reactants and products are known
- Generate an initial Path connecting the two
- Optimize it

Textbook example: HCN

• HCN \rightarrow CNH

Result:

But... description is discrete

- How to choose the points ?
 - Equidistant, constant density...
- How to ensure good sampling of the path ?
 - Nudge Elastic Band:
 - Spring between 2 points

G. Mills, H. Jónsson PRL **1994**, 72, 1124

- String method:
 - Reparameterization

W. E, W. Ren, E. Vanden-Eijnden PRB 2002, 66, 052301

But...

Realistic Potential Energy Surface is much more complicated:

But...

PES is unkown: we are in the dark

It can get worse...

Actual experiments:

- Constant T, P: needs MD or MC
- Environment: lots of objects (atoms, coarse grain...)
- ⇒ Cannot afford high dimensionality for Reaction Coordinate
 - Usually 2 or 3

• We really need:

- A good initial path: rough idea of the RCs
- A good optimizer: we cannot afford 1000 iterations

Coordinates systems

- Lots of discussions for geometries
- Mainly two families:
 - Cartesian coordinates
 - Internal coordinates:
 - Z-Matrix
 - Natural Coordinates
 - Redundant coordinates
 - Baker coordinates

Coordinates systems

- Lots of discussions for geometries
- Mainly two families:
 - Cartesian coordinates
 - Internal coordinates:
 - Z-Matrix
 - Natural Coordinates
 - Redundant coordinates
 - Baker coordinates

Cartesian coordinates

Very general

Easy to compute, store, manipulate

But

- No chemical meaning
- Overall rotation and translation not suppressed

Z-Matrix

- Based on internal coordinates:
 - bond distances, bond angles and dihedrals
- 3N-6 degree of freedom
- С
- $H_a C dCH_a$
- ${\rm H_b}~{\rm C}~{\rm dCH_b}~{\rm H_a}~{\rm \alpha H_a CH_b}$
- $\rm H_{c}~C~dCH_{c}~H_{a}~\alpha H_{a}CH_{c}~H_{b}$ DH1
- ${\rm H_d}~{\rm C}~{\rm dCH_d}~{\rm H_a}~{\alpha}{\rm H_a}{\rm CH_d}~{\rm H_b}$ DH2

Z-Matrix

- Based on internal coordinates:
 - bond distances, bond angles and dihedrals
- 3N-6 degree of freedom

С

- \leftarrow Origin of the frame
- $H_a C dCH_a \leftarrow z axis$
- H_{b} C dCH_b H_{a} αH_{a} CH_b \leftarrow xz plane
- $\rm H_{c}~C~dCH_{c}~H_{a}~\alpha H_{a}CH_{c}~H_{b}$ DH1
- ${\rm H_d}~{\rm C}~{\rm dCH_d}~{\rm H_a}~{\alpha}{\rm H_a}{\rm CH_d}~{\rm H_b}$ DH2

Z-Matrix

But

Non unique

How to choose the order of the atoms ?

Z-Matrix

But

Non unique

- How to choose the order of the atoms ?
- Problem for cycles

Z-Matrix

But

- Not unique
 - How to choose the order of the atoms ?
 - Problem for cycles
- Not easy to compute
- Extension: Natural coordinates (Pulay)
 - Use deformations for cycles, combination of distances...
 - Codes of 1000s lines...

Baker coordinates

Idea

- Generalize Z-Matrix and natural
- Based on internal coordinates: q_i
- Keep only the non-redundant combinations

 $\mathbf{G}_{ij} = \sum_{k} \frac{\partial q_k}{\partial x_j} \frac{\partial q_k}{\partial x_j}$

• Compute Wilson B matrix
$$B_{ij} = \frac{CQ_j}{\partial x_i}$$

- Compute G matrix $G = B^t B$
- Diagonalize G
 - 3N-6 non 0 eigenvalues
 - U is the matrix of the eigenvectors

- Cartesian coordinates
 - Same description for all images
 - But
 - Problem of stretched/compressed bonds

Cartesian coordinates

- Same description for all images
- But
 - Problem of stretched/compressed bonds
 - Stupid path
 - HCN \rightarrow CNH might lead to

Easy to check for HCN...

Cartesian coordinates But not in real life !

- Z-Matrix coordinates
 - Less problem of distorted bonds
 - But
 - Which Z-matrix ?

Baker coordinates

- Uses internal from all geometries
 - Less problems of distorted bonds
 - No problem of choosing internal coordinates
- But
 - Which eigenvectors ?
 - Same U for all geometries
 - Some kind of interpolation
 - Technical problems:
 - Angles becoming close to π
 - Conversion to cartesian...

Conclusion

- Baker coordinates disappointing
- Good description achieved by mixing cartesian and internal

Applications: Back to HCN

Initial geometries

Computational details

- Newton-Raphson optimizer with BFGS update
- Displacement orthogonal to tangents

Applications: Back to HCN

- Zmat: 8 iterations
- Cart: 12 iterations

CH₃⁻ inversion

Catalytic hydrogenation on Pt

Initial paths

Cart

Zmat

Catalytic hydrogenation

Energies

Catalytic hydrogenation

We add some chemical intuition for the TS

Catalytic hydrogenation

Reading math book is not useless...

Conclusions

On the PES (OK)

- Mixing cart+Zmat for initial path
- Good optimizer
- Baker ?

On the FES (300K)

- Hopefully our procedure can help us choosing RCs
- More to come...

Acknowledgements

People

- P. Dayal: Baker coordinates
- J. Garrec, C. Dupont, F. Delbecq, D. Loffreda: beta testers.
- Money

. . .

ANR

Région Rhônes Alpes

Thank you for your attention !