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Motivation

Biological function depends on conformation’s flexibility.

1.3µs simulation of dodeca-alanine at T = 300K
(implicit solvent, GROMOS96 force field)
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Conformational flexibility

The microscopic dynamics (molecule & solvent) is
generated by the nonlinear Hamiltonian

H : T ∗Q → R, Q ⊆ R3n, H = pTM−1p + V (q) ,

with initial conditions distributed according to exp(−βH).

We suppose that the dynamics within a conformation
can be approximated by the linear Langevin equation

ẋ(t) = (J − D)∇Hlin(x(t)) + SẆ (t)

where Hlin = 1
2xT

2 M̄−1x2 + 1
2xT

1 L̄x1 and

J =

(
0 1
−1 0

)
, D =

(
0 0
0 γ

)
, S =

(
0
σ

)
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Conformational flexibility, cont’d

For γ s.p.d, the system is stable, i.e., all eigenvalues of
A = (J − D)∇2Hlin have strictly negative real part.

The system satisfies Hörmander’s condition. If further
2γ = βσσT , this entails ergodicity with respect to

dµ(x) ∝ exp(−βHlin(x))dx .

The Gaussian distribution exp(−βHlin) indicates that all
modes are flexible. Which are the most flexible ones?

Often the most flexible modes are thought of as having
the largest variance. But: variance is not always most
important to the dynamics.
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Conformational flexibility as a control problem

Key observations

1 Not all modes are equally stiff; moreover noise and friction
may not be spatially isotropic.

2 Not all modes are observed (e.g., generalized momenta).

We may consider flexibility as the property of being
sensitive to excitations due to the noise (controllability).

A sensible notion of flexibility should take into account
what can be measured experimentally (observability).

Determining the flexibility of a conformation therefore
amounts to identifying a low-dimensional subspace of
easily controllable and highly observable modes
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Linear control systems

For the moment let us replace the white noise by a
smooth control function u ∈ L2([0,T ]), i.e.,

ẋ(t) = Ax(t) + Su(t) , x(0) = 0

y(t) = Cx(t) ,

where A = (J − D)∇2Hlin ∈ R2d×2d and y ∈ Rk is a
linear observable (e.g., all configurations y = x1).

VoP yields the transfer function (input-output relation),

G : L2([0,T ]) → Rk , y(t) = C

∫ t

0
e

A(t − s)
Su(s)ds .
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Model reduction by balanced truncation

For the stable linear system ẋ = Ax + Su, y = Cx
compute controllability and observability Gramians

Q =

∫ ∞

0
exp(At)SST exp(AT t)dt

P =

∫ ∞

0
exp(AT t)CTC exp(At)dt .

Balancing: find a transformation x 7→ Tx , such that

T−1QT−T = TTPT = diag(σ1, . . . , σ2d) .

Truncation: Project onto the first m columns of T .

Moore 1981
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Properties of balanced truncation

Interpretation of the controllability Gramian Q: x ∈ R2d

is “more controllable” than x ′ ∈ R2d if

xTQx > x ′TQx ′ (|x | = |x ′| = 1).

Interpretation of the observability Gramian P: given an
initial state x(0) = x and zero input, u = 0, we have

‖y‖2L2 = xTPx .

Approximation error (H∞ error bound):

σm+1 < max
u

‖(G − Gtrc)u‖L2

‖u‖L2

< 2(σm+1 + . . . + σ2d).

Glover 1984, Rowley 2005
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Port-controlled Hamiltonian systems

Let’s go back to our second-order Langevin problem and
consider the stable system

ẋ(t) = (J − D)∇Hlin(x(t)) + Su(t)

y(t) = Cx(t) .

Balancing mixes configurations and momenta. Truncation
(e.g., by projection) does not preserve structure.

Preserving structure requires to impose constraints on
the Hamiltonian part (energy & structure matrix). Then

ξ̇(t) = (Jtrc − Dtrc)∇Htrc(ξ(t)) + Strcu(t)

y(t) = Ctrcξ(t)

is stable with ξ ∈ Rm (odd or even dim.) and Jtrc = −JT
trc.

Hartmann et al. 2007
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Partially-observed Langevin equation

Consider the family of Langevin equations for ε > 0

ẋε(t) = (J − D)∇Hlin(x
ε(t)) +

√
εSẆ (t)

y ε(t) = Cxε(t) .

Using again the shorthand A = (J − D)∇2Hlin, we have
Y ε

t = CX ε
t , where X ε

t , X ε
0 = 0 is the family of solutions

X ε
t =

√
ε

∫ t

0
e

A(t − s)
S dW (s) .

The system is stable for all ε > 0. If 2D = SST it admits
an ergodic invariant measure dµε ∝ exp(−Hlin/ε).
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Controllability of the Langevin equation

Consider the map F : H1([0,T ]) → C ([0,T ]) and
f = F (u), u(0) = 0 that is defined point-wise by

(Fu)(t) =

∫ t

0
e

A(t − s)
Su̇(s)ds .

We introduce the controllability function (rate function)

Ix(f ) = inf
u∈H1,f (T )=x

∫ T

0
|u̇(t)|2dt

measuring the minimum “energy” that is needed to steer
the system from f (0) = 0 to f (T ) = x within time T .

We declare Ix(f ) = ∞ if no such u ∈ H1 exists.

cf. Dembo & Zeitsouni 1998
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Controllability of the Langevin equation, cont’d

Theorem (Hartmann,Schütte 2008)

The controllability function Lcon(x) = Ix(f ) is given by

Lcon(x) = xTQ(T )−1x

with Q(T ) = cov(X ε(T )) for ε = 1.

Proof: Minimize ‖u‖2H1 subject to (Fu)(T ) = x .

The idea of replacing the Brownian motion W (t) by its
polygonal approximation u ∈ H1 is to make sense of Ix(f ).
If ε is small, LDT guarantees that f (t) is “close” to X ε(t).

For T →∞, the controllability Gramian Q is the unique
s.p.d solution of the Lyapunov equation

AQ + QAT = −SST .
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Observability of the Langevin equation

The observability function

Lobs(x) =

∫ T

0
|Y 0

t |2dt , X 0
0 = x

measures the output energy up to time T in the absence
of noise (i.e., ε = 0), if X 0

0 = x at time t = 0.

For T →∞, it follows immediately that

Lobs(x) = xTPx ,

where the observability Gramian P is the unique s.p.d
solution of the Lyapunov equation

ATP + PA = −CTC .

Hartmann & Schütte 2008, cf. Moore 1981
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Model reduction by balancing

Compute the Gramians Q,P of the stable Langevin
system ẋ = (J − D)∇H(x) + SW , y = Cx .

Find the balancing transformation x 7→ Tx , such that

T−1QT−T = TTPT = diag(σ1, . . . , σ2d) .

Notice: T−1QPT = diag(σ2
1, . . . , σ

2
2d).

Constrain the system to the subspace of the largest
singular values σ1, . . . , σm or, alternatively, scale the
smallest Hankel singular values according to

(σm+1, . . . , σ2d) 7→ δ(σm+1, . . . , σ2d) , δ > 0 .

and balance the Langevin equation by x 7→ Tδx . In the
resulting perturbed system, let δ go to zero.
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Properties of the balanced Langevin equation

Restriction to the best controllable and observable
subspace yields the constrained Langevin equation

ξ̇(t) = (Jtrc − Dtrc)∇Htrc(ξ(t)) + StrcẆ (t)

y(t) = Ctrcξ(t)

with Jtrc = −JT
trc and Htrc as before.

By 2Dtrc = βStrcS
T
trc and asymptotic stability it follows

that the dynamics has the ergodic invariant measure

dρ ∝ exp(−βHtrc) .

Convergence of the scaled system for δ → 0 is due to
singular perturbation arguments. In this case the
effective Hamiltonian equals the free energy

Hfree = −β−1 ln ρ(ξ) .

Hartmann et al. 2007, cf. Berglund & Gentz 2006, Kifer 2001



Motivation

A control
problem

Partially-
observed
Langevin
equation

Examples

1 Motivation
Conformational flexibility

2 A control problem
Balanced truncation
Port-controlled Hamiltonian systems

3 Partially-observed Langevin equation
Controllability and observability
Model reduction by balancing

4 Examples



Motivation

A control
problem

Partially-
observed
Langevin
equation

Examples

Unobservable modes

Consider the second-order high-friction Langevin equation

ẍ1 = −εx1 − ẋ1 +
√

2εẆ

y = x1 .

Computing controllability and observability Gramian

Q =

(
1 0
0 ε

)
, P =

1

2ε

(
1 + ε 1

1 1

)
yields the joint HSV σ1 ∼ 1/

√
ε and σ2 ∼

√
ε.

To lowest order in ε, the constrained equation for ξ = x1

turns out to be the first-order diffusion

ẋ1 = −εx1 +
√

2εẆ .
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Influence of unobservable modes

Flexibility may come from unobservable modes: here,
central dihedral angles and unobserved angular momenta of the
freely rotating end-group are most important.

Helical conformation of octa-alanine, 14
dihedral angles plus conjugate momenta

Parametrization by HMMSDE: see Horenko & Hartmann 2007, Horenko & Schütte 2008
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Take-home messages

Mode balancing is a sensible approach towards molecular
flexibility and model reduction that takes into account
which variables can be observed.

Efficient numerical tools for the computation of (exact
or empirical) Gramians have recently become available.

Structure-preservation for the reduced model is a subtle
issue (e.g., singular structure matrix).

Error bounds à la standard balanced truncation are still
missing. Using averaging techniques may be a good idea.
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Thanks for your attention.

further information on biocomputing.mi.fu-berlin.de
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