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Motivation

Biological function depends on conformation’s flexibility.

s

1.3us simulation of dodeca-alanine at 7 = 300K ' y\

(implicit solvent, GROMOS96 force field)

Motivation




Conformational flexibility

m The microscopic dynamics (molecule & solvent) is
generated by the nonlinear Hamiltonian

Motivation

H:T'Q—R, QCR* H=p M 'p+V(q),

with initial conditions distributed according to exp(—3H).

m We suppose that the dynamics within a conformation
can be approximated by the linear Langevin equation

x(t) = (J = D) VHyn(x(t)) + SW(t)

where Hj, = %x{l\_ﬂ_lxz + %XITle and
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Conformational flexibility, cont'd

For v s.p.d, the system is stable, i.e., all eigenvalues of
A = (J — D)V?Hy;, have strictly negative real part.

Motivation

m The system satisfies Hormander’s condition. If further
2v = foo !, this entails ergodicity with respect to

dpu(x) o< exp(—LBHin(x))dx .

m The Gaussian distribution exp(—(Hjy,) indicates that all
modes are flexible. Which are the most flexible ones?

m Often the most flexible modes are thought of as having
the largest variance. But: variance is not always most
important to the dynamics.
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Conformational flexibility as a control problem

Key observations
1

A control
problem

m We may consider flexibility as the property of being

sensitive to excitations due to the noise (controllability).

m A sensible notion of flexibility should take into account
what can be measured experimentally (observability).

m Determining the flexibility of a conformation therefore

amounts to identifying a low-dimensional subspace of
easily controllable and highly observable modes




Linear control systems

m For the moment let us replace the white noise by a
smooth control function u € L2([0, T]), i.e.,

A control
problem

x(t) = Ax(t)+ Su(t), x(0)=0
y(t) = (1),

where A = (J — D)V?Hy, € R?9%24 and y ¢ R¥ is a
linear observable (e.g., all configurations y = x1).

m VoP yields the transfer function (input-output relation),

G: L3([0, T]) — RX, y(t) = C/t eA(t =) Su(s)ds.
0



Model reduction by balanced truncation

m For the stable linear system x = Ax + Su, y = Cx
compute controllability and observability Gramians

A control
problem

Q = / exp(At)SS T exp(AT t)dt
0

P = / exp(ATt)CT C exp(At)dt .
0

m Balancing: find a transformation x — Tx, such that
T1QT™ T = TTPT = diag(oy, . .., 024) .-
m Truncation: Project onto the first m columns of T.

Moore 1981



Properties of balanced truncation

m Interpretation of the controllability Gramian Q: x € R??
is “more controllable” than x’ € R29 if

A control

problem XTQX > X,TQX, (’X| = |X/| = 1)

m Interpretation of the observability Gramian P: given an
initial state x(0) = x and zero input, u = 0, we have

Iylz2 = xT Px.
m Approximation error (H error bound):

1(G = Girc)ulls2

[ull 2

Om+1 < ml?x < 2((Tm+1 +...+ Uzd).

Glover 1984, Rowley 2005



Port-controlled Hamiltonian systems

m Let's go back to our second-order Langevin problem and
consider the stable system
A control x(t) = (J—D)VHun(x(t))+ Su(t)
problem
y(t) = (1).

m Balancing mixes configurations and momenta. Truncation
(e.g., by projection) does not preserve structure.

m Preserving structure requires to impose constraints on
the Hamiltonian part (energy & structure matrix). Then

f(t) = (Jtrc - Dtrc) VHtrc(g(t)) + Strcu(t)
y(t) = Ctrcg(t)

is stable with £ € R™ (odd or even dim.) and Jyc = —J/l..

Hartmann et al. 2007
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Partially-observed Langevin equation

m Consider the family of Langevin equations for € > 0

X(t) = (J— D) VHin(x(t)) + VeSW(t)
Partially- ye(t) = Cxe(t).

observed
Langevin

equation m Using again the shorthand A = (J — D)V?Hiyy,, we have
Y = CX{, where X{, X5 = 0 is the family of solutions

x;:ﬁ/ot eA=5) s aw(s).

m The system is stable for all ¢ > 0. If 2D = SS7 it admits
an ergodic invariant measure du o< exp(—Hyy /€).



Controllability of the Langevin equation

m Consider the map F : HY([0, T]) — C([0, T]) and
f = F(u), u(0) = 0 that is defined point-wise by

t
(Fu)(t):/ At =9) 5is)ds
Fa :

Langevin

equation m We introduce the controllability function (rate function)
T 2

I(f) = inf u(t)|“dt

()= inf [l

measuring the minimum “energy” that is needed to steer
the system from f(0) = 0 to f(T) = x within time T.

m We declare /,(f) = oo if no such u € H?! exists.

cf. Dembo & Zeitsouni 1998



Controllability of the Langevin equation, cont'd

Theorem (Hartmann,Schiitte 2008)

The controllability function Leon(x) = Ik(f) is given by

Leon(x) = x Q(T) x
Partially-

EZ:;gﬁ‘i with Q(T) = cov(X¢(T)) fore = 1.

equation

= Proof: Minimize |[u||2, subject to (Fu)(T) = x.

m The idea of replacing the Brownian motion W/(t) by its
polygonal approximation u € H' is to make sense of /,(f).
If € is small, LDT guarantees that f(t) is “close” to X¢(t).

m For T — oo, the controllability Gramian Q@ is the unique
s.p.d solution of the Lyapunov equation

AQ + QAT = —sST .



Observability of the Langevin equation

m The observability function

;
Lope(x) = /0 YOPdt, X9 = x

Partially- measures the output energy up to time T in the absence

observed

Langevin of noise (i.e., e = 0), if XY = x at time t = 0.

equation

m For T — oo, it follows immediately that
Lobs(x) = xTPx,

where the observability Gramian P is the unique s.p.d
solution of the Lyapunov equation

ATP+PA=-CTC.

Hartmann & Schiitte 2008, cf. Moore 1981



Model reduction by balancing

m Compute the Gramians Q, P of the stable Langevin
system x = (J — D)VH(x) + SW, y = Cx.
m Find the balancing transformation x — Tx, such that

Partially- T_lQT_T = TTPT = diag(o’1,...,0’2d).
observed
Langevin

equation Notice: T~1QPT = diag(c%,...,03).
m Constrain the system to the subspace of the largest

singular values o1, ...,0my or, alternatively, scale the
smallest Hankel singular values according to

(Gm+17"'a02d)'_>5(O-m+1a"'70-2d)7 6>0.

and balance the Langevin equation by x — Tsx. In the
resulting perturbed system, let § go to zero.



Properties of the balanced Langevin equation

m Restriction to the best controllable and observable
subspace yields the constrained Langevin equation

g(t) = (Jtrc - Dtrc) VHtrc(f(t)) 4 Strc W(t)
Partially- y(t) = Ctrcg(t)

observed H — T
T with Jiye = —Ji. and Hiye as before.

cauation m By 2D, = /jStrCST and asymptotic stability it follows

trc
that the dynamics has the ergodic invariant measure

dp X exp(_ﬁHtrc) .

m Convergence of the scaled system for § — 0 is due to
singular perturbation arguments. In this case the
effective Hamiltonian equals the free energy

Heree = _ﬁ_l In p(f) :

Hartmann et al. 2007, cf. Berglund & Gentz 2006, Kifer 2001
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Examples

Unobservable modes

m Consider the second-order high-friction Langevin equation
X] = —€x1—X1+V 26W
y = Xi.

m Computing controllability and observability Gramian

(10 1 1+e 1
Q‘(o e>’ P_26< 1 1>

yields the joint HSV o1 ~ 1/\/€ and 03 ~ /€.

m To lowest order in ¢, the constrained equation for £ = x;
turns out to be the first-order diffusion

X] = —€x1 + \/ZW



Influence of unobservable modes

Flexibility may come from unobservable modes: here,
central dihedral angles and unobserved angular momenta of the
freely rotating end-group are most important.

o
©

Examples ’

Helical conformation of octa-alanine, 14 \“‘f |
dihedral angles plus conjugate momenta |

Parametrization by HMMSDE: see Horenko & Hartmann 2007, Horenko & Schiitte 2008



Take-home messages

Mode balancing is a sensible approach towards molecular
flexibility and model reduction that takes into account
which variables can be observed.

m Efficient numerical tools for the computation of (exact
or empirical) Gramians have recently become available.

Examples

m Structure-preservation for the reduced model is a subtle
issue (e.g., singular structure matrix).

m Error bounds a la standard balanced truncation are still
missing. Using averaging techniques may be a good idea.




Thanks for your attention.

further information on biocomputing.mi.fu-berlin.de
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