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Structure of the talk

@ Introduction
© The Diffusion Monte Carlo method : a variance reduction technique
© Analysis of the bias : the fixed-node approximation

© Numerical implementation
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Numerical analysis of the DMC method in a simple case .
L ntroduction &

The Born-Oppenheimer approximation

For most applications, systems of limited size (e.g. molecules) are

described by
@ M nuclei with electric charges z; € N* and positions X; € R?,
ke{l,...,M}.

slow variables — modelled by classical mechanics.

@ N electrons with positions x; € R%,i € {1,...,N} and charge —1.
Very light particles.
fast variables — modelled by (nonrelativistic) quantum
mechanics.

In the Born-Oppenheimer approximation, for electronic
computations, the nuclei positions are supposed to be constant.
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Numerical analysis of the DMC method in a simple case .
L Introduction &

Electronic state

To simplify, we leave the spin variables aside.
Electronic state — modelled by the Hamiltonian

Y1 1
__ZEAX’ Zz|x—xk| Z lx; — x|

i=1 i=1 k=1 """ 1<i<j<N

where the positions ¥; of the nuclei are supposed to be fixed.
Electronic ground state energy :

Fo =inf{<w,Hw>7 ven@), [ k- 1} M

with

N N
D(H) = {11; e \L*(R®) , Hye /\LZ(R3)}

i=1 i=1
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Numerical analysis of the DMC method in a simple case .
L Introduction &

Electronic state

Antisymmetrized tensor product space

/\L2 R%) = {¢ € LX(R*)N) : Vo € S, Vx € (RPN, 9h(x,) = (—1)*Dp(x)}

with x5 = (X,(1), ..., Xsny) for x = (x1,...,xn) and £(o) signature of
g.
Justified by

@ exchangeability of the electrons (in terms of the density |¢|*:
[$(xo)? = [ (x)?)

@ Pauli’s exclusion principle for fermions (|1/|> vanishes when two
positions x; are equal)

5/34

Benjamin Jourdain (ENPC CERMICS) HIM, Bonn, April 7-11th 2008



Numerical analysis of the DMC method in a simple case .
L ntroduction &

Ground state properties
Ground state = element 1)y of D(H) which minimizes the energy (1)

< o, Hipg >= Eo with |[¢g2 = 1.

Theorem 1
o When N < Z = S0, 2 (neutral molecule or positive ion), then H is
self-adjoint in D(H) and there exists a ground state 1 (Zhislin 1960).

® Any ground state 1y belongs to C?(R®N) for 0 € (0,1) and to
C=(R3N \ T) where

T={(x1, -, xn) € RN : Ji#jst x; = xjor i ks.t. xi = X}

Any ground state vy solves the Euler-Lagrange equation

Hu)y = Egto. )
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Numerical analysis of the DMC method in a simple case .

- Introduction

The Tiling property
For any continuous function ¢ on R*N, we define
u=nRr*\y(0).
For o € Sy and x = (x1,...,xn) € (R®)N, we set

Xo = (Xo(1)s -+ Xo(N))- When 1 is antisymmetric, for any connected
component C of U and Vo € Sy,

o(C) ={x, :x €C}
is also a connected component of U.

Theorem 2
@ Any ground state 1y satisfies the tiling property : for any connected

component C of Uy = RN \ 451(0), Uy = |, .5, 7(C) (Ceperley 91).

@ Moreover, for any connected component C of Uy,

Eo=Ec Ein {%/c|w|2+/cv¢2, ¥ € HY(C), /C¢2:1},
—
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Numerical analysis of the DMC method in a simple case .
L ntroduction &

Numerical computation of the ground state energy

Difficult problem because
@ dimension 3N with N large,
@ antisymmetry condition due to the fermionic nature of electrons

Some numerical methods:

@ Hartree-Fock methods (variational approximation : restriction of D(H) to
Slater determinants det(si(x;))),
@ Density Functional Theory (Thomas-Fermi, Kohn-Sham),

© Quantum Monte Carlo methods (Variational Monte Carlo, Diffusion
Monte Carlo).
see E. Cances, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday,
Computational Quantum Chemistry: a Primer, Handbook of Numerical
Analysis, volume X (2003).
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Numerical analysis of the DMC method in a simple case .
L Introduction &

Trick : Schrodinger in complex time

Add a ficticious time variable : ¢(t, x) = e~H;(x) solves

dp=—Hp =300~V
¢(0,.) = ¢i(.) € D(H)

. N M ] 1
with V(x) = =370 >0, \x,.z_;ck‘ + E1gi<jgN -]

If Ey isolated single eigenvalue for H associated with eigenstate 1
(1ol = 1) and < 41, ¢hg ># 0, then

o(t,x) = e ey (x) ~ e < 4y, g > ho(x) (t large)
=Ey=— t_1§+moo % log |o(t,x)] . 3)
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Numerical analysis of the DMC method in a simple case .
L Introduction &

Feynman-Kac interpretation
If (W;) Brownian motion in R, for r € [0, ],

de” Jo V(X+Ws)ds¢(t — x+Wr) — e Jo V(x+Ws)ds (Vx¢(t —rx+ Wy)dWy

+ [—8@ + %Aqﬁ - qu} (t—r,x+ W,)dr).

2

0
Therefore

t
e~ Jo VO WISy, (x L W) = (8, x)+/ e~ Jo VOEWISG (b, x+W,).dW,
0

and 6(t,x) = E (¢I(x FWe b V(x+Ws)ds>.
By (3),

1 +
= Eo=— lim - log \E (wx + Wy)e ”"*Ws)‘“)
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Numerical analysis of the DMC method in a simple case .
L ntroduction &

Variance reduction

1 i
R F - — [y V(x+Ws)ds
Eo tl}g’l ; log ‘IE (z/q(x + Wy)e Jo )

Problem : large fluctuations of V in the exponential factor = variance
too large.
Need of variance reduction.

Principle of the Diffusion Monte Carlo method (importance
sampling)

o choose ¢; € D(H) as close as possible to the ground state 1y,

@ modify the dynamics of the Brownian motion by adding the drift

term Vf’

@ replace Vby E, = —‘ﬂ in the exponential factor (when vy = vy,
E; = Ej constant).
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Numerical analysis of the DMC method in a simple case .

[ Introduction

The Diffusion Monte Carlo method

Yields very good results and is widely used in the chemistry

community.

Benchmark quantum Monte Carlo

TABLE 1. Atomization energies (keal/mol) for the 55 molecules in the G1
set (Refs. 1, 2). Diffusion Monte Carlo (DMC) calculations and experimen-
tal (Expt.) results are listed. For DMC, statistical error bars are given in
parentheses. Experimental errors are listed in parentheses (a dash indicates

no error was available).

Molecule DMC Expt.
LiH 553(2) 56.00(1)
Bell 43.0(2) 46.90(1)
CH 79.5(2) 79.90(2)
CH, B)) 181.9(4) 179.6(4)
CH, (*4) 169.7(4) 170.6(4)
CH; 290.9(2) 289.3(2)
GCH, 395.0(2) 392.5(1)
NH 78.2(4) 79.0(4)
NH, 169.2(4) 170.0(3)
NH; 276.5(2) 276.7(1)
OH 101.2(3) 101.4(3)
H,0 219.4(2) 219.35(1)
HE 135.9(2) 135.2(2)
SiH, (‘A 145.5(2) 144.4(2)

J.C. Grossman, J. Chem. Phys., 117 (2002).
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Numerical analysis of the DMC method in a simple case .
|—The Diffusion Monte Carlo method : a variance reduction technique &

© Introduction
© The Diffusion Monte Carlo method : a variance reduction technique
© Analysis of the bias : the fixed-node approximation

© Numerical implementation
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Numerical analysis of the DMC method in a simple case .
|—The Diffusion Monte Carlo method : a variance reduction technique

The DMC method

Let i
E(H) def < e, Hyy >
< e~ Hapy, i >

By spectral decomposition,

_ Eo<¥r1,%0 >2 g~ Fot
< tpr, hy >2 e~ Fot

For f(t,x) = ¢r(x)e~"yy(x) = ¢i(x)$(t, x) and E = 21,

<f(t,),EL() >
B ="

E(t)

— Ey ast — +o0.
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Numerical analysis of the DMC method in a simple case .
I—The Diffusion Monte Carlo method : a variance reduction technique &

Probabilistic interpretation of E(t)
The function f(t, x) =y (x)e~ ey (x) = 11(x)p(t, x) solves

1
Of = 5Af = V.(of)-Eif, £(0,.) =47() 4
where b = % and E; = % =-1 A"Z” + V. Assume ||¢)y][» = 1.
@ Without the term —E;f, (4) Fokker—Planck equation for the
density of X; solving
dX; = dW; + b(Xy)dt, Xo ~ 17 (x)dx. (5)

@ With this term, h(t, x) defined by
Vg RN SR, [ g()h(t,x)dx = E (g(X)e b EO0E)
RN

solves (4).
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Numerical analysis of the DMC method in a simple case .
LThe Diffusion Monte Carlo method : a variance reduction technique &

Probabilistic interpretation of E(t)
One expects E(t) to be equal to

<h(t,),EL() > E (EL(Xt)e— b EL(XS)dS) d:ef EDMC(t)

<h(t,),1> g (e— f(;EL(xads)

Variance reduction :
@ if 1)y close to the ground state vy, E; = %’/I’—’ ~ %’/;—0 = E, fluctuates
less than V,

o the drift b = Vlog(|¢r|) drives the process X; solving (5) where
|¥1] (and hopefully |¢y]) is large.
b= % and E; = % both explode near the nodal surface ;" (0)
which is not empty because of the antisymmetry of 1y (ex:
{x:x1 = x} C ¢y }(0))= previous interpretation formal.
Questions : E(.) = EPMC(.)? EPMC () —, ,  E¢?
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|—Analysis of the bias : the fixed-node approximation &

© Introduction
© The Diffusion Monte Carlo method : a variance reduction technique
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Numerical analysis of the DMC method in a simple case .
LAnalysis of the bias : the fixed-node approximation &

The fixed node approximation

Theorem 3

Assume that Uy = R3N \ ;1 (0) has a finite number of connected
components. Under some technical assumptions on V and )y, as t — +oo,
EPMC(t) converges exponentially to

EgMC = inf{< ¢, Hy >: ¢ € D(H), ||[¢llo =1, 47 (0) c ¥~ (0)}.
In addition, ESMC > Eq with equality iff 1; '(0) C 1 *(0) where g

ground state of H.
(Cances, Jourdain, Lelievre, M3AS 2006)

The zeros of ¢; ({x : ¢1(x) = 0}) are called the nodes of ¢; — Fixed
Node Approximation.

\ ;
Benjamin Jourdain (ENPC CERMICS) HIM, Bonn, April 7-11th 2008 18/ 34




Numerical analysis of the DMC method in a simple case .
I—Analysis of the bias : the fixed-node approximation &

Elements of proof
Step 1:Vx € R3 \ ¢, 1(0), the SDE

t
XF=x+ W+ / b(X¥)ds
0

admits a unique solution.

In addition, Vt > 0, ¥1(x)y(X}) > 0.

Step2:Asb = vqﬁ” 1Vy? — byp? = 0 and 17 (x)dx reversible measure
for the SDE. Hence

Vg RN SR, [ g()h(t x)dx LB (g(xp)e B
R3N
:/ g(x)YF(0)E (e— fJEL(X:)ds) .
R3N

Hence h(t, x) = ¢?(x)E (e— I mxzf)ds)
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Numerical analysis of the DMC method in a simple case .

|—Analysis of the bias : the fixed-node approximation

Elements of proof

h(t,x) = ?(x)E (e_ o EL(X%Y)dS). Therefore

d:ef < h(t7‘>7 % > _ < X(t,.),Him >
< h(t7 )71 > < X(t7 ')71/}1 >

EDMC(i')

where x(t,x) = ¥ (x)E (e— s EL(Xi‘)dS) vanishes on ;*(0).

AsE(t) = %% and e~y does not vanish on ;" (0), in
general
EPMC(t) £ E(t).
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Numerical analysis of the DMC method in a simple case .
I—Analysis of the bias : the fixed-node approximation &

Elements of proof
Step 3 : For each connected component C of R3N \ ¢,1(0),

xeC = Vt>0, XfeC

Consequence : the restriction of x(t,x) to Ry x C unique solution of

O = —Hu = %Au — Vu, u(0,x) = 1le(x)¢r(x), u =0o0n dC.

Let
Ec =inf{< 1, Hy >¢: ¢ € Hy(C), |¥|l12(c) = 1}-

E¢ is attained for some ¢ positive on C.

_ 2o <Hinx(t ) > -4 >cEc < e >haey et
doe <Y x(t ) > e < Ve >%z(c) e—Ect

EDMC (t)

AsVC, < Yy, 1¢ >f2(c)7é 0, lim;_ ; oo EPMC(t) = min¢ Ee.
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Numerical analysis of the DMC method in a simple case .
LAnalysis of the bias : the fixed-node approximation &

Elements of proof
Step 4: min¢ E¢ = EPMC

< : minimization component by component < global
minimization

> :let g, € HY(Co) with [|9he,|l12(c,) = 1 be such that
< e, Hiey >c,= mine Ec.
Since Cy connected component of R3N \ v (0) with 1/
antisymmetric, one can extend ¢, into a function ¢
antisymmetric on RN such that

¥ (0) € v1(0)
<¢,Hyp >= ||7/}||% < d)CovH"/JCo >cy -

Remark 4

If 9 satisfies the tiling property, one can check that for any connected
component C of RN \ ¢, 1(0), E¢c = E§MC. Working with a single
component is enough to compute ESMC.

\
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Computation of EPMC(#) in practice
Use of particles (called walkers by physicists). Evolution of the
position X} of the i-th particle at time t by
@ a time-discretization of dX! = dW} + b(X})dt.
In general, Euler scheme :

XiJrét =X+ W;'+5t — Wi+ b(X})6t,

@ rejection of the new position until ¢ (X[, 5,)¢1(X}) > 0 (otherwise
particle i crosses a nodal surface of iy between t and ¢ + dt). This
does not prevent multiple crossings,

@ use of a Metropolis-Hastings acceptation/rejection step to ensure
that the distribution of X! +ot is close to 1 (x)dx — improves the
integrability of E; (XL, ;) = 1[,1’ (X!, s)- Introduction of an
effective time to handle the possibility of staying at the same
place in the approximation of the exponential weight e~ Jo (%)

(Umrigar, Nightingale, Runge J. Chem. Phys. 1993).
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Computation of EPMC(#) in practice

E (EL(Xt)e_ J EL(XS)dS)
E (e— I a(&)ds)

In order to control the variance, replication of the particles with high
exponential weight and killing of the particles with low weight.

EDMC(t) _

@ In general, the number of particles is not preserved during the
replication/killing steps,

9 Also implementations with constant number of walkers
(Assaraf, Caffarel, Khelif Phys. Rev. E 2000).
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Numerical analysis in a simplified case

@ dimension: 3N — 1,
@ antisymmetry — oddness,

° H:_%dd—;+#+0x4witha,0>0

1 042)(2
@ Yy =2 (2)*xe” "z odd ground state of Hy = —%% + %'zxz
(energy : %)

_% 1
°b_w1_x ax

o Ep = i — it 4 gyt — 30 4 oyt

® For the SDE dX; = dW, + (4 — aX; ) dt, possibility to simulate

according to the conditional law of X,, given X; and to the
reversible measure 21, 0,7 (x)dx (initialization).

Simplification : even if b is explosive at 0, no simultaneous explosion
of E;. One-dimensional model — does not take into account
explosions at points where two particles coincide.
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Numerical analysis
For E; = 3¢ + 6x*, computation of
B (EL (Xp)e- i EL(XS)ds) 30, E (X‘% T x;*ds>
EDMC(T) = T =+ T
E (e— J EL(XS)ds) 2 E (e—a f xgds)

EP(T)

Time discretization of the integral: K € N* steps

Lemma 5

For K € N*,

E (X‘%e—% s XtT/K) Cr
0T K i = K-
E (e K 2k=1 kT/K)

ER(T)

EP(T) —
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Particle approximation

o (X{)i<i<n iid. according to 207 (x)1 (y0ydx
@ To control variance, v resampling of the particles over [0, T]:
I = X number of discretization steps and At = L time between
two resampling.
For 0 S n S vV — 1, to obtain (Xl(n+1)At)1<iSN from (X;At)lfiSN
9 Mutation step :simulation of &, = ((Xnm+ Tyenn ’XizAH-’% )i<i<n)

according to SDEs driven by independent Brownian motions
& Selection step : conditionally to the result, generation of

(Xén +1)a)1<i<n indep. and s.t. the following consistency equality
holds

(N Z X(n-H)Af

Zp]é Withpj_ . F i (X AHrkT)
X]y,AtJr T o ZN 67% Zk:1 (X;Ar+%)4
i=1
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Selection step
Resampling methods which satisfy the assumption
Multinomial sampling : (X én+1) ap)1<i<n conditionally i.i.d. according

to Z] L POy

Residual sampling : Leta/ = [Np/|. Choose Xén A= Xil AL
1+ Z] Lan<i< Zf a™ and choose the remaining

N — Zm 14" positions i.i.d. according to
ZN g 7u/ (5 ]

=1 N-30 nars 1T
Stratified sampling : for 1 <i < N let U’ be i.i.d. ~ U0, 1] and
N

nAH— iy

for

i
X(HH)N Zl (o prisl < 1pm}XnAt+%
o
Stratified reminder sampling : First step in residual sampling +
stratified instead of multinomial sampling in the 2"
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Particle approximation

Theorem 6
N

1 ; C, Cr
E|EP(T) - < D (Xia)t| < %+ =
N K

i=1

(El Makrini, Jourdain, Lelievre M2AN 2007).

2

@ main contribution w.r.t. Del Moral et al: C,, does not depend on K,
E; unbounded

@ for fixed v and T, convergence as N, K — +o0

@ optimal number v of resampling?

\ :
Benjamin Jourdain (ENPC CERMICS) HIM, Bonn, April 7-11th 2008 30/ 34




Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Numerical results
1/K

Expectation of the absolute value of the error (reference energy computed by
a spectral method) w.r.t.

@ the number K of discretization steps (v = 5000, » = 30 multinomial resampling, 6 = 2,7 = 5,

300 independent realizations)

@ the number N of particles (v = 50 multinomial resampling, 6 = 0.5, T = 5, K = 1000, 2000 independent

realizaﬁons) .

Exact simulation of the SDE (dotted curves)/ use of a discretization scheme proposed by Alfonsi, MCMA 2006 (solid curves).
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Comparison of the resampling methods

0016

0014

Without

0012

0.008

i
0.006 ),

Evolution of the variance (computed over 200 indep. simulations)

with time : N = 1000, T = 5, K = 1000, v = 20, § = 2.
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Choice of the number v of selection steps
14

A+

Expectation of the absolute value of the error (reference energy computed by
a spectral method) w.r.t. the number v of selection steps (multinomial
resampling, N = 5000, T = 5, K = 1000, § = 2, 300 independent realizations)
v, = 25 optimal !
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Numerical analysis of the DMC method in a simple case .
L Numerical implementation &

Choice of the number v of selection steps
Variancq

0.9

0.8

0.7

0.6

0.5

04r

031

0.2

01

Evolution of the variance without resampling with time T (same parameters)
Minimal for ¢, ~ 0.25. T'/t, = 20 close to v, = 25.

Suggests to compute ¢, (without resampling, variance easily

estimated over a few independent particles) and choose v = T/t,.
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