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Numerical analysis of the DMC method in a simple case .

Introduction

The Born-Oppenheimer approximation

For most applications, systems of limited size (e.g. molecules) are
described by

M nuclei with electric charges zk ∈ N
∗ and positions x̄k ∈ R

3,
k ∈ {1, . . . ,M}.
slow variables→modelled by classical mechanics.
N electrons with positions xi ∈ R

3, i ∈ {1, . . . ,N} and charge −1.
Very light particles.
fast variables→modelled by (nonrelativistic) quantum
mechanics.

In the Born-Oppenheimer approximation, for electronic
computations, the nuclei positions are supposed to be constant.
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Introduction

Electronic state

To simplify, we leave the spin variables aside.
Electronic state→modelled by the Hamiltonian

H = −
N∑

i=1

1

2
∆xi −

N∑

i=1

M∑

k=1

zk
|xi − x̄k|

+
∑

1≤i<j≤N

1

|xi − xj|

where the positions x̄k of the nuclei are supposed to be fixed.
Electronic ground state energy :

E0 = inf

{

〈ψ,Hψ〉, ψ ∈ D(H),

∫

R3N

|ψ|2 = 1

}

(1)

with

D(H) =

{

ψ ∈
N∧

i=1

L2(R3) , Hψ ∈
N∧

i=1

L2(R3)

}
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Introduction

Electronic state

Antisymmetrized tensor product space

N∧

i=1

L2(R3) = {ψ ∈ L2((R3)N) : ∀σ ∈ Sn, ∀x ∈ (R3)N, ψ(xσ) = (−1)ε(σ)ψ(x)}

with xσ = (xσ(1), . . . , xσ(N)) for x = (x1, . . . , xN) and ε(σ) signature of
σ.
Justified by

exchangeability of the electrons (in terms of the density |ψ|2:
|ψ(xσ)|2 = |ψ(x)|2)
Pauli’s exclusion principle for fermions (|ψ|2 vanishes when two
positions xi are equal)
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Introduction

Ground state properties
Ground state = element ψ0 of D(H) which minimizes the energy (1)

< ψ0,Hψ0 >= E0 with ‖ψ0‖2 = 1.

Theorem 1

When N ≤ Z =
∑M
k=1 zk (neutral molecule or positive ion), then H is

self-adjoint in D(H) and there exists a ground state ψ0 (Zhislin 1960).

Any ground state ψ0 belongs to C
θ(R3N) for θ ∈ (0, 1) and to

C∞(R3N \ Γ) where

Γ = {(x1, . . . , xN) ∈ (R3)N : ∃i 6= j s.t. xi = xj or ∃i, k s.t. xi = x̄k}.

Any ground state ψ0 solves the Euler-Lagrange equation

Hψ0 = E0ψ0. (2)
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Introduction

The Tiling property
For any continuous function ψ on R

3N, we define

U = R
3N \ ψ−1(0).

For σ ∈ SN and x = (x1, . . . , xN) ∈ (R3)N, we set
xσ = (xσ(1), . . . , xσ(N)). When ψ is antisymmetric, for any connected
component C of U and ∀σ ∈ SN,

σ(C) = {xσ : x ∈ C}
is also a connected component of U.

Theorem 2

Any ground state ψ0 satisfies the tiling property : for any connected
component C of U0 = R

3N \ ψ−1
0 (0), U0 =

⋃

σ∈SN
σ(C) (Ceperley 91).

Moreover, for any connected component C of U0,

E0 = EC
def
= inf

{
1

2

∫

C

|∇ψ|2 +

∫

C

Vψ2, ψ ∈ H10(C),

∫

C

ψ2 = 1

}

.
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Introduction

Numerical computation of the ground state energy

Difficult problem because

dimension 3N with N large,

antisymmetry condition due to the fermionic nature of electrons

Some numerical methods:

Hartree-Fock methods (variational approximation : restriction of D(H) to

Slater determinants det(φi(xj))),

Density Functional Theory (Thomas-Fermi, Kohn-Sham),

Quantum Monte Carlo methods (Variational Monte Carlo, Diffusion
Monte Carlo).

see E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday,

Computational Quantum Chemistry: a Primer, Handbook of Numerical

Analysis, volume X (2003).
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Introduction

Trick : Schrödinger in complex time
Add a ficticious time variable : φ(t, x) = e−tHψI(x) solves

{

∂tφ = −Hφ = 1
2∆φ− Vφ

φ(0, .) = ψI(.) ∈ D(H)

with V(x) = −∑Ni=1
∑M
k=1

zk
|xi−x̄k|

+
∑

1≤i<j≤N
1

|xi−xj|
.

If E0 isolated single eigenvalue for H associated with eigenstate ψ0
(‖ψ0‖2 = 1) and < ψI, ψ0 >6= 0, then

φ(t, x) = e−tHψI(x) ∼ e−E0t < ψI, ψ0 > ψ0(x) (t large)

⇒ E0 = − lim
t→+∞

1

t
log |φ(t, x)| . (3)
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Introduction

Feynman-Kac interpretation
If (Wt) Brownian motion in R

3N, for r ∈ [0, t],

dre
−

R r
0
V(x+Ws)dsφ(t− r, x+Wr) = e−

R r
0
V(x+Ws)ds

(

∇xφ(t− r, x+Wr).dWr

+

[

−∂tφ+
1

2
∆φ− Vφ

]

︸ ︷︷ ︸

0

(t− r, x+Wr)dr

)

.

Therefore

e−
R t
0
V(x+Ws)dsψI(x+Wt) = φ(t, x)+

∫ t

0

e−
R r
0
V(x+Ws)ds∇xφ(t−r, x+Wr).dWr

and φ(t, x) = E

(

ψI(x+Wt)e
−

R t
0
V(x+Ws)ds

)

.

By (3),

⇒ E0 = − lim
t→+∞

1

t
log
∣
∣
∣E

(

ψI(x+Wt)e
−

R t
0
V(x+Ws)ds

)∣
∣
∣
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Introduction

Variance reduction

E0 = − lim
t→+∞

1

t
log
∣
∣
∣E

(

ψI(x+Wt)e
−

R t
0
V(x+Ws)ds

)∣
∣
∣

Problem : large fluctuations of V in the exponential factor⇒ variance
too large.
Need of variance reduction.

Principle of the Diffusion Monte Carlo method (importance
sampling)

choose ψI ∈ D(H) as close as possible to the ground state ψ0,

modify the dynamics of the Brownian motion by adding the drift

term ∇ψI
ψI
,

replace V by EL = HψI
ψI
in the exponential factor (when ψI = ψ0,

EL = E0 constant).
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Introduction

The Diffusion Monte Carlo method
Yields very good results and is widely used in the chemistry
community.

J.C. Grossman, J. Chem. Phys., 117 (2002).
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The Diffusion Monte Carlo method : a variance reduction technique

The DMC method

Let

E(t)
def
=

< e−tHψI,HψI >

< e−tHψI, ψI >

By spectral decomposition,

E(t) ∼ E0 < ψI, ψ0 >
2 e−E0t

< ψI, ψ0 >2 e−E0t
→ E0 as t→ +∞.

For f (t, x) = ψI(x)e
−tHψI(x) = ψI(x)φ(t, x) and EL = HψI

ψI
,

E(t) =
< f (t, .),EL(.) >

< f (t, .), 1 >
.
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The Diffusion Monte Carlo method : a variance reduction technique

Probabilistic interpretation of E(t)
The function f (t, x) =ψI(x)e

−tHψI(x) = ψI(x)φ(t, x) solves

∂tf =
1

2
∆f −∇.(bf )−ELf , f (0, .) = ψ2I (.) (4)

where b = ∇ψI
ψI
and EL = HψI

ψI
= − 12

∆ψI
ψI

+ V. Assume ‖ψI‖2 = 1.

Without the term −ELf , (4) Fokker-Planck equation for the
density of Xt solving

dXt = dWt + b(Xt)dt, X0 ∼ ψ2I (x)dx. (5)

With this term, h(t, x) defined by

∀g : R
3N → R,

∫

R3N

g(x)h(t, x)dx = E

(

g(Xt)e
−

R t
0
EL(Xs)ds

)

solves (4).

Benjamin Jourdain (ENPC CERMICS) HIM, Bonn, April 7-11th 2008 15 / 34



Numerical analysis of the DMC method in a simple case .

The Diffusion Monte Carlo method : a variance reduction technique

Probabilistic interpretation of E(t)
One expects E(t) to be equal to

< h(t, .),EL(.) >

< h(t, .), 1 >
=

E

(

EL(Xt)e
−

R t
0
EL(Xs)ds

)

E

(

e−
R t
0
EL(Xs)ds

)
def
= EDMC(t).

Variance reduction :

if ψI close to the ground state ψ0, EL = HψI
ψI

∼ Hψ0
ψ0

= E0 fluctuates

less than V,

the drift b = ∇ log(|ψI|) drives the process Xt solving (5) where
|ψI| (and hopefully |ψ0|) is large.

b = ∇ψI
ψI
and El =

HψI
ψI
both explode near the nodal surface ψ−1

I (0)

which is not empty because of the antisymmetry of ψI (ex:
{x : x1 = x2} ⊂ ψ−1

I (0))⇒ previous interpretation formal.
Questions : E(.) = EDMC(.)? EDMC(t) →t→+∞ E0?
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Analysis of the bias : the fixed-node approximation

The fixed node approximation

Theorem 3

Assume that UI = R
3N \ ψ−1

I (0) has a finite number of connected
components. Under some technical assumptions on V and ψI, as t→ +∞,
EDMC(t) converges exponentially to

EDMC0 = inf{< ψ,Hψ >: ψ ∈ D(H), ‖ψ‖2 = 1, ψ−1
I (0) ⊂ ψ−1(0)}.

In addition, EDMC0 ≥ E0 with equality iff ψ−1
I (0) ⊂ ψ−1

0 (0) where ψ0
ground state of H.
(Cancès, Jourdain, Lelièvre, M3AS 2006)

The zeros of ψI ({x : ψI(x) = 0}) are called the nodes of ψI → Fixed
Node Approximation.
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Analysis of the bias : the fixed-node approximation

Elements of proof
Step 1 : ∀x ∈ R

3N \ ψ−1
I (0), the SDE

Xxt = x+Wt +

∫ t

0

b(Xxs )ds

admits a unique solution.
In addition, ∀t ≥ 0, ψI(x)ψI(Xxt ) > 0.
Step 2 : As b = ∇ψI

ψI
, 12∇ψ2I − bψ2I = 0 and ψ2I (x)dx reversible measure

for the SDE. Hence

∀g : R
3N → R,

∫

R3N

g(x)h(t, x)dx
def
= E

(

g(Xt)e
−

R t
0
EL(Xs)ds

)

=

∫

R3N

g(x)ψ2I (x)E
(

e−
R t
0
EL(X

x
s )ds
)

dx.

Hence h(t, x) = ψ2I (x)E
(

e−
R t
0
EL(X

x
s )ds
)

.
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Analysis of the bias : the fixed-node approximation

Elements of proof

h(t, x) = ψ2I (x)E
(

e−
R t
0
EL(X

x
s )ds
)

. Therefore

EDMC(t)
def
=
< h(t, .), HψI

ψI
>

< h(t, .), 1 >
=
< χ(t, .),HψI >

< χ(t, .), ψI >

where χ(t, x) = ψI(x)E
(

e−
R t
0
EL(X

x
s )ds
)

vanishes on ψ−1
I (0).

As E(t) = <e−tHψI,HψI>
<e−tHψI,ψI>

and e−tHψI does not vanish on ψ
−1
I (0), in

general
EDMC(t) 6= E(t).
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Analysis of the bias : the fixed-node approximation

Elements of proof
Step 3 : For each connected component C of R3N \ ψ−1

I (0),

x ∈ C =⇒ ∀t ≥ 0, Xxt ∈ C

Consequence : the restriction of χ(t, x) to R+ × C unique solution of

∂tu = −Hu =
1

2
∆u− Vu, u(0, x) = 1C(x)ψI(x), u = 0 on ∂C.

Let
EC = inf{< ψ,Hψ >C : ψ ∈ H10(C), ‖ψ‖L2(C) = 1}.

EC is attained for some ψC positive on C.

EDMC(t) =

∑

C < HψI, χ(t, .) >L2(C)
∑

C < ψI, χ(t, .) >L2(C)

t→+∞∼
∑

C EC < ψI, ψC >
2
L2(C) e

−ECt

∑

C < ψI, ψC >2L2(C)
e−ECt

.

As ∀C, < ψI, ψC >
2
L2(C) 6= 0, limt→+∞ E

DMC(t) = minC EC .
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Analysis of the bias : the fixed-node approximation

Elements of proof
Step 4: minC EC = EDMC0

≤ : minimization component by component ≤ global
minimization

≥ : let ψC0 ∈ H10(C0)with ‖ψC0‖L2(C0) = 1 be such that
< ψC0 ,HψC0 >C0= minC EC .
Since C0 connected component of R3N \ ψ−1

I (0) with ψI
antisymmetric, one can extend ψC0 into a function ψ
antisymmetric on R

3N such that
{

ψ−1
I (0) ⊂ ψ−1(0)

< ψ,Hψ >= ‖ψ‖22 < ψC0 ,HψC0 >C0 .

Remark 4

If ψI satisfies the tiling property, one can check that for any connected
component C of R3N \ ψ−1

I (0), EC = EDMC0 . Working with a single
component is enough to compute EDMC0 .
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Numerical implementation
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Numerical implementation

Computation of EDMC(t) in practice
Use of particles (called walkers by physicists). Evolution of the

position X̃it of the i-th particle at time t by

a time-discretization of dXit = dW
i
t + b(X

i
t)dt.

In general, Euler scheme :

X̄it+δt = X̄
i
t +W

i
t+δt −Wit + b(X̄it)δt,

rejection of the new position until ψI(X̄
i
t+δt)ψI(X̄

i
t) > 0 (otherwise

particle i crosses a nodal surface of ψI between t and t+ δt). This
does not prevent multiple crossings,

use of a Metropolis-Hastings acceptation/rejection step to ensure

that the distribution of X̃it+δt is close to ψ
2
I (x)dx→ improves the

integrability of EL(X̃
i
t+δt) = HψI

ψI
(X̃it+δt). Introduction of an

effective time to handle the possibility of staying at the same

place in the approximation of the exponential weight e−
R t
0
EL(Xs)ds

(Umrigar, Nightingale, Runge J. Chem. Phys. 1993).
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Numerical implementation

Computation of EDMC(t) in practice

EDMC(t) =
E

(

EL(Xt)e
−

R t
0
EL(Xs)ds

)

E

(

e−
R t
0
EL(Xs)ds

) .

In order to control the variance, replication of the particles with high
exponential weight and killing of the particles with low weight.

In general, the number of particles is not preserved during the
replication/killing steps,

Also implementations with constant number of walkers
(Assaraf, Caffarel, Khelif Phys. Rev. E 2000).
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Numerical implementation

Numerical analysis in a simplified case
dimension : 3N → 1,
antisymmetry→ oddness,
H = − 12 d

2

dx2 + α2x2

2 + θx4 with α, θ > 0

ψI =
√
2α
(
α
π

) 1
4 xe−

α2x2

2 odd ground state of H0 = − 12 d
2

dx2 + α2

2 x
2

(energy : 3α2 )

b =
ψ′

I

ψI
= 1
x − αx

EL = HψI
ψI

= H0ψI
ψI

+ θx4 = 3α
2 + θx4

For the SDE dXt = dWt +
(
1
Xt

− αXt
)

dt, possibility to simulate

according to the conditional law of Xs+r given Xs and to the
reversible measure 21{x>0}ψ

2
I (x)dx (initialization).

Simplification : even if b is explosive at 0, no simultaneous explosion
of EL. One-dimensional model→ does not take into account
explosions at points where two particles coincide.
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Numerical implementation

Numerical analysis
For EL = 3α

2 + θx4, computation of

EDMC(T) =
E

(

EL(XT)e
−

R T
0
EL(Xs)ds

)

E

(

e−
R T
0
EL(Xs)ds

) =
3α

2
+ θ

E

(

X4Te
−θ

R T
0
X4s ds
)

E

(

e−θ
R T
0
X4s ds
)

︸ ︷︷ ︸

ED(T)

Time discretization of the integral: K ∈ N
∗ steps

Lemma 5

For K ∈ N
∗,

∣
∣
∣
∣
ED(T) −

E

(

X4Te
− θT
K

PK
k=1 X

4
kT/K

)

E

(

e−
θT
K

PK
k=1 X

4
kT/K

)

︸ ︷︷ ︸

EDK (T)

∣
∣
∣
∣
≤ CT
K
.
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Numerical implementation

Particle approximation

(Xi0)1≤i≤N i.i.d. according to 2ψ
2
I (x)1{x>0}dx

To control variance, ν resampling of the particles over [0,T]:
l = K

ν
number of discretization steps and ∆t = T

ν
time between

two resampling.
For 0 ≤ n ≤ ν − 1, to obtain (Xi(n+1)∆t)1≤i≤N from (Xin∆t)1≤i≤N

Mutation step :simulation of ξn = ((Xi
n∆t+ T

K
, . . . ,Xi

n∆t+ lT
K

)1≤i≤N)

according to SDEs driven by independent Brownian motions
Selection step : conditionally to the result, generation of

(Xi(n+1)∆t)1≤i≤N indep. and s.t. the following consistency equality
holds

E

(

1

N

N∑

i=1

δXi
(n+1)∆t

∣
∣
∣
∣
ξn

)

=
N∑

j=1

ρjδ
X
j

n∆t+ lT
K

with ρj =
e
− θT
K

Pl
k=1(X

j

n∆t+ kT
K

)4

∑N
i=1 e

− θT
K

Pl
k=1(X

i

n∆t+ kT
K

)4
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Numerical implementation

Selection step
Resampling methods which satisfy the assumption

Multinomial sampling : (Xi(n+1)∆t)1≤i≤N conditionally i.i.d. according

to
∑N
j=1 ρ

jδ
X
j

n∆t+ lT
K

Residual sampling : Let aj = ⌊Nρj⌋. Choose Xi(n+1)∆t = X
j

n∆t+ lT
K

for

1+
∑j−1
m=1 a

m ≤ i ≤∑jm=1 a
m and choose the remaining

N −∑Nm=1 a
m positions i.i.d. according to

∑N
j=1

Nρj−aj

N−
PN
m=1 a

m δXj
n∆t+ lT

K

.

Stratified sampling : for 1 ≤ i ≤ N let Ui be i.i.d. ∼ U [0, 1] and

Xi(n+1)∆t =
N∑

j=1

1
{

Pj−1
m=1 ρ

m≤ i−Ui

N ≤
Pj
m=1 ρ

m}
X
j

n∆t+ lT
K

Stratified reminder sampling : First step in residual sampling +
stratified instead of multinomial sampling in the 2nd
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Numerical implementation

Particle approximation

Theorem 6

E

∣
∣
∣
∣
∣
ED(T) − 1

N

N∑

i=1

(Xiν∆t)
4

∣
∣
∣
∣
∣
≤ Cν√

N
+
CT
K
.

(El Makrini, Jourdain, Lelièvre M2AN 2007).

main contribution w.r.t. Del Moral et al: Cν does not depend on K,
EL unbounded

for fixed ν and T, convergence as N,K→ +∞
optimal number ν of resampling?
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Numerical analysis of the DMC method in a simple case .

Numerical implementation

Numerical results
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Expectation of the absolute value of the error (reference energy computed by
a spectral method) w.r.t.

the number K of discretization steps (N = 5000, ν = 30 multinomial resampling, θ = 2, T = 5,

300 independent realizations)

the number N of particles (ν = 50 multinomial resampling, θ = 0.5, T = 5, K = 1000, 2000 independent

realizations).

Exact simulation of the SDE (dotted curves)/ use of a discretization scheme proposed by Alfonsi, MCMA 2006 (solid curves).
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Numerical analysis of the DMC method in a simple case .

Numerical implementation

Comparison of the resampling methods
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Numerical analysis of the DMC method in a simple case .

Numerical implementation

Choice of the number ν of selection steps
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ν∗ = 25 optimal !
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Numerical analysis of the DMC method in a simple case .

Numerical implementation

Choice of the number ν of selection steps
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Evolution of the variance without resampling with time T (same parameters)

Minimal for t∗ ∼ 0.25. T/t∗ = 20 close to ν∗ = 25.
Suggests to compute t∗ (without resampling, variance easily
estimated over a few independent particles) and choose ν = T/t∗.
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