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• Spatial adaptivity1

- Error estimates guide mesh refinement

• Multiscale MC methods for high accuracy2

– Higher order closures

– Multigrid

• Multicomponent interacting systems

Microscopics !→ CG system !→ Reconstructed Microscopics
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tions of walks. Together with the universality, as shown by
de Gennes in the famous n! 0 limit paper [7, 8], this pro-
vided a very powerful basis for the investigation of gen-
eral/universal properties that range from single chain sys-
tems to melts, mixtures, networks and many more. Also,
attempts have been made to use such simulations to make
even quantitative predictions for different systems. For
some questions, where the mapping problem can be
reduced to a single length scale, such as the reptation
dynamics of melts, this has been very successful [5]. Such
procedures, however, compare the different systems only
on a rather large length scale and still disregard the rather
dedicate balance between local conformation/packing and
global properties.
Up to now a widely used technique for modeling poly-

mer melts is amorphous cell simulation. This method was
developed for generating energy-minimized atomistic
structures of amorphous glasses. It has been used for
simple polymers such as polypropylene [9–11] as well as
for polycarbonates [12]. The method consists of two parts.
In the first step a start conformation is generated, which is
put into a simulation box. In the second step the molecular

energy of the system is minimized. Amorphous cell simu-
lations contain no thermal fluctuations and only permit the
investigation of static properties.
Recently there have been a few other approaches to fill

this gap. These approaches were mainly employed for
polycarbonates, as these are commercially very important
polymers. On the other hand, different modifications are
available, which allows a rather crucial test of the new
methods. The first attempts tried to map the molecular
structure by a suitable highly complex fitting procedure to
a special version of the so-called bond fluctuation model.
Although these attempts were very promising it was diffi-
cult to account for the different polycarbonate modifica-
tions (see below) in a proper way. Alternative approaches,
like the present, use continuous space models in order to
avoid lattice artifacts. Heermann and co-workers devel-
oped their so-called ellipsoid model, where the different
units of the polymer are represented by appropriately
shaped and sized ellipsoids. However, again important
experimental properties, such as neutron scattering data or
the Vogel–Fulcher behavior of the diffusion constant,
could not be reproduced.
Here we follow a different continuous space approach

that is more closely inspired by the chemical structure of
the chain. The mapping procedure does not have any free
fitting parameter and thus the results give a rather crucial
test of the approach. As a system we choose three different
modifications of polycarbonate, all of which are of techni-
cal importance. This choice is also motivated by the simi-
larity of the molecules, which allows for a test of the sensi-
tivity of our ansatz.
This is the first of a small series of papers, which will

describe the coarse-graining procedure and report on the
comparison with (mainly) macroscopic experiments. The
following paper is concerned with the inverse procedure,
namely the re-introduction of the chemical details, which
allows a detailed comparison with microscopic experi-
ments, especially neutron scattering. Furthermore, we are
also constructing a procedure that allows an even coarser
view.
The present paper is organized as follows. First the

choice of systems is explained. Then we give a detailed
account of the coarse-graining procedure and the simula-
tions of the simple coarse-grained model. The next section
provides a detailed comparison of the simulation results
with the experimental findings, such as chain extension or
Vogel–Fulcher temperature. Finally, the conclusion sec-
tion will give an outlook and a critical discussion of the
present approach.

2. Choice of systems

The system of choice for such an investigation should be
such that different modifications are rather well studied.
This provides a most critical test of these approaches. A
typical class of systems that fulfill such criteria are poly-
carbonates (PC). Since their first synthesis in 1955 they
have become a very important class of materials. Currently

Fig. 1. A sketch of the different time and length scales in polymer

problems. Starting from the top, one could only observe a marked

chain in a melt or dense solution of otherwise identical chains as a

very pale shadow. The typical extension of the shadow is given by

the diameter of the overall coil, as indicated. The characteristic

time for this picture to change can vary dramatically, depending on

chain length and temperature, starting at about 10–4 for short chains

and “high temperatures” with essentially no upper limit. Looking

more closely, more of the chain structure is revealed. This is the

universal coil regime. Times and lengths for this regime are indi-

cated. Again the variation of time is very large, especially as a func-

tion of temperature. Typical times, as they are present in typical

experiments, are indicated. Only if one again looks much more clo-

sely can the chemical details of the polymers be identified. There

the behavior is governed by the local chemical details of the species

under consideration. The lower time boundary is given by the high-

est frequency, which is usually from the C"C bond oscillations.
Typical coarse-grained simulations are situated somewhere

between the coil and the microscopic regime.



Microscopics: United Atom (UA) Model

• Continuum model: X ∈ (R3)N – positions of n atoms on one
macromolecule; m macromolecules; N = nm.

• Hamiltonian:HN(X) = Hb(X)+Hnb(X)+HCoul(X)+Hwall+Hkin

Bonded Interactions: Gaussian, FENE, etc. short-range

Hb(X) =
∑

i

Ub(θi, φi, ri) short-range

Non-Bonded Interactions: 12-6 Lennard Jones long-range

Hnb(X) =
∑

i,j

ULJ
nb (|xi − xj|)

positions of particles were recorded for further analysis. For

both systems, we checked that the specific volume found was

in good agreement with former simulation results and experi-

mental data.29,30 The computed average density of PE was

766 kgm!3 while that of cis-PB leveled off at 824 kgm!3 as

shown in the Fig. 1.

The beads we take into account to build g!
" ,nb(R) and

g!
" ,b(R) for a coarse-grained level ! are chosen as it is

shown in Fig. 2. To improve the accuracy of the posttreat-

ment calculation of the Monte Carlo data we have obtained

more information for a determined system by considering

different possible grouping of the monomers. For example,

as it can be seen in Fig. 3, we not only use the beads formed

as shown in scheme #a$ but all the beads built successively
moving one monomer further along the chain as represented

on scheme #b$ to extract the nonbonded part. The bonded

part comes from the different configurations displayed on

scheme #c$ and established following the same principle.
We exhibit the results for PE in Fig. 4 with ! varying

from 4 #8 centers of force$ to 20 #40 centers of force$ and the
results for cis-PB on Fig. 5, ! ranging between 2 #8 centers
of force$ and 12 #48 centers of force$. From the nonbonded

part we can already notice some general trends when the

coarse-graining level increases. There are large fluctuations

of g!
" ,nb(R) at short R, which make it difficult to precisely

know the value of g!
" ,nb(0). This comes from a poor statis-

tics at small R, especially when ! increases, i.e., when the
total number of beads per simulation box decreases. At large

R, the situation is more favorable and the nonbonded pair

distribution functions converge to 1. Some structure appears

for the lowest ! values, especially for PE at !"2 and for
cis-PB at !"4. The excluded volume nonbonded contribu-
tions effect decreases on increasing !, meaning that beads
can overlap more easily. This is an important feature when

considering the modelisation of ‘‘soft’’ or ‘‘dissipative’’ par-

ticles. Indeed, the nonbonded coarse-grained pair distribution

functions corresponding to !"4 for PE and !"2 for cis-PB
exhibit a strong excluded volume effect #the probability that
two beads overlap is null$. The associated potential of mean
force will exhibit a strong repulsive part at short R. This

indicates that for such small ! values, particles can not be
considered as soft particles. Moreover, this will prevent from

the use of large time steps in the DPD simulations. There-

FIG. 2. Illustration of the nonbonded and bonded contributions taken into

account in the building of the coarse-grained pair distribution functions

g!
" ,nb(R) and g!

" ,b(R).

FIG. 3. #a$ ‘‘Natural’’ coarse-grained chains for !"3 #each black filled
circle representing a monomer$. The contribution of the bead i to the build-
ing of g!

" ,nb(R) is taken into account evaluating all the distances between i

and all the other beads. #b$ To improve the statistics, all the dashed lined
beads are built, moving each time one monomer further to build a new bead,

and the distances between these beads and i come into the calculation of

g!
" ,nb(R). #c$ The same idea is used for g!

" ,b(R) for which three different

chains are built.

FIG. 4. Nonbonded and bonded coarse-grained pair distribution functions

built from microscopic Monte Carlo simulations for PE. Each symbol rep-

resents a value of ! #number of monomers per bead$.

FIG. 5. Nonbonded and bonded coarse-grained pair distribution functions

built from microscopic Monte Carlo simulations for cis-PB. Each symbol

represents a value of ! #number of monomers per bead$.
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Equilibrium Gibbs measure at β = 1
kT

.

µ(dX) =
1

Z
e−βH(X) Πdxi

Molecular Dynamics ( via Langevin thermostat)

• UA is a typical set-up for CG in polymer science literature:

Briels, et. al. J.Chem.Phys. ’01;

Doi et. al. J.Chem.Phys. ’02;

Kremer et. al. Macromolecules ’06, etc.

Also the parametric statistics approach:

Müller-Plathe Chem.Phys.Chem ’00.



CG procedure, ”blobs”: for instance Doi, et al. ’02

the Vogel–Fulcher temperature for different monomer modi-

fications of polycarbonate.2

More elaborate methods have been proposed for deter-

mining the effective nonbonded potential. In one scheme, the

effective nonbonded potential is iteratively refined so that the

radial pair distribution function obtained by this effective

potentials coincides with that obtained by the microscopic

model.3–8 In the other scheme, the effective nonbonded po-

tential is determined by the angle average of the Boltzmann’s

factor keeping the nonbonded distance fixed.9

In a previous paper,10 we have extended the second

scheme to take the characteristic entropy effect of polymeric

systems into account. In this article, we propose a scheme to

obtain both the effective bond and nonbond potentials for a

flexible polymer chain simultaneously. We take the united

atom model as the microscopic model, and consider how it

can be mapped on a coarse-grained model in which three

successive united atoms are represented by a segment. We

have carried out MD simulations for a single-chain system

and determined the effective potential. We then applied it to

polymer melt.

II. OUTLINE OF THE COARSE-GRAINING
PROCEDURE

In this paper, we take the united atom model !hereafter
referred to as UA model" as the microscopic model, and
construct a coarse-grained model !hereafter referred to as CG
model" for a flexible polymer chain. In the CG model, n

successive CH2 atoms are combined into an effective seg-

ment whose interaction center is defined as the center of

mass of the n united atoms, and adjacent effective segments

are bound each other with a bond of length L !see Fig. 1".
The bond angle # and the torsion angle $ are defined from

two successive bonds and three successive bonds along the

backbone, respectively. In order to retain the microscopic

structural characteristic of the polymer chain, the segment

should not exceed the persistence length. The condition that

bond crossing should not take place imposes further limita-

tion on the degree of coarse graining. Considering these limi-

tations, we chose n equal to 3 in the present work.

We assume that the total potential energy for a coarse-

grained chain is written as

U tot
CG!%

i
Ubond
CG !Li ,T ""%

i
Uang
CG!# ,T "

"%
i
U tor
CG!$ i ,T ""%

i# j

!
Unb
CG!Ri j ,T ", !1"

where the components, Ubond
CG (Li ,T), Uang

CG(# i ,T),

U tor
CG($ i ,T), and Unb

CG(Ri j ,T), are the effective potentials

for the bond length Li , the bond angle # i , the torsion angle

$ i , and the distance between nonbonded segment pair Ri j ,

respectively, where i and j are the indices of the coarse-

grained degrees of freedom. Note that each coarse-grained

potential is a function of temperature. The prime on the last

summation in Eq. !1" indicates that the first, second, and
third neighbors along the backbone are excluded in the sum-

mation, because such contributions are already included in

the bond potentials. These coarse-grained potentials must be

determined in such a way that the distribution functions ob-

tained from the CG model agree with those of the UAmodel.

As in the previous works,2 we impose the following condi-

tion for the bond-length potential Ubond
CG (L ,T),

Ubond
CG !L ,T "!$

1

&
ln Pbond

UA !L ,T ""Abond , !2"

where Pbond
UA (L ,T) is the distribution function for the segment

bond length L,

Pbond
UA !L ,T "!

Bbond

L2
! d' exp($&UUA!'")%

i
*!Li$L ".

!3"

Here UUA(') is the total potential energy of configurations
with the segment bond length of L calculated explicitly with

the UA model, &!1/kBT , kB is Boltzmann’s constant, and
Bbond is the normalization constant. + d' indicates the inte-

gration over all microscopic phase space '. The constant
Abond in Eq. !2" can be determined by requiring that the
potential minimum of Ubond

CG (L ,T) is zero. Other bond poten-

tials, Uang
CG(# ,T) and U tor

CG($ ,T), can be obtained in a similar
manner:

Uang
CG!# ,T "!$

1

&
ln Pang

UA!# ,T ""Aang , !4"

Pang
UA!# ,T "!

Bang

sin# ! d' exp!$&UUA!'""

%%
i

*!# i$#", !5"

U tor
CG!$ ,T "!$

1

&
ln P tor

UA!$ ,T ""A tor , !6"

P tor
UA!$ ,T "!B tor! d' exp($&UUA!'")%

i
*!$ i$$".

!7"

FIG. 1. Mapping scheme of the UA model onto a CG one for polyethylene.

n successive CH2 atoms are combined into a single coarse-grained segment

whose interaction center is defined as the center of mass of the n CH2 atoms.

The effective bond length L is defined as the distance between adjacent

effective segments. Effective bond angle # and effective torsion angle $ are

defined from two successive effective bonds and three successive effective

bonds along the backbone, respectively.
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TX = Q = (q1, . . . , qm) ∈ Q, where qi ∈ R3.

Exact CG Hamiltonian H̄(Q) via Renormalization map:

H̄(Q) = −1

β
log

∫
{X|TX=Q}

e−βH(X) dX



Break-up of computational task: Simplifying assumptions

(i) H̄ decouples:

H̄(Q) = H̄b + H̄nb =
∑

CG var.

Ūb + Ūnb

(ii) Ūb = Ūθ
b + Ūφ

b + Ū r
b where each term depends only on torsion

angle φ, rotation angle θ and distance r respectively between
successive CG particles.

(iii) Ūnb depends only on two-body interactions between CG par-
ticles; no multi-body interactions included.



How to calculate the CG non-bonded interactions Ūnb:

McCoy-Curro scheme,Macromolecules ’98.

For two isolated small molecules with centers of mass at q1, q2:

Unb(|q1 − q2|) = −1

β
log

∫
{X|TX=(q1,q2)}

e−βH(X) dX

positions of particles were recorded for further analysis. For

both systems, we checked that the specific volume found was

in good agreement with former simulation results and experi-

mental data.29,30 The computed average density of PE was

766 kgm!3 while that of cis-PB leveled off at 824 kgm!3 as

shown in the Fig. 1.

The beads we take into account to build g!
" ,nb(R) and

g!
" ,b(R) for a coarse-grained level ! are chosen as it is

shown in Fig. 2. To improve the accuracy of the posttreat-

ment calculation of the Monte Carlo data we have obtained

more information for a determined system by considering

different possible grouping of the monomers. For example,

as it can be seen in Fig. 3, we not only use the beads formed

as shown in scheme #a$ but all the beads built successively
moving one monomer further along the chain as represented

on scheme #b$ to extract the nonbonded part. The bonded

part comes from the different configurations displayed on

scheme #c$ and established following the same principle.
We exhibit the results for PE in Fig. 4 with ! varying

from 4 #8 centers of force$ to 20 #40 centers of force$ and the
results for cis-PB on Fig. 5, ! ranging between 2 #8 centers
of force$ and 12 #48 centers of force$. From the nonbonded

part we can already notice some general trends when the

coarse-graining level increases. There are large fluctuations

of g!
" ,nb(R) at short R, which make it difficult to precisely

know the value of g!
" ,nb(0). This comes from a poor statis-

tics at small R, especially when ! increases, i.e., when the
total number of beads per simulation box decreases. At large

R, the situation is more favorable and the nonbonded pair

distribution functions converge to 1. Some structure appears

for the lowest ! values, especially for PE at !"2 and for
cis-PB at !"4. The excluded volume nonbonded contribu-
tions effect decreases on increasing !, meaning that beads
can overlap more easily. This is an important feature when

considering the modelisation of ‘‘soft’’ or ‘‘dissipative’’ par-

ticles. Indeed, the nonbonded coarse-grained pair distribution

functions corresponding to !"4 for PE and !"2 for cis-PB
exhibit a strong excluded volume effect #the probability that
two beads overlap is null$. The associated potential of mean
force will exhibit a strong repulsive part at short R. This

indicates that for such small ! values, particles can not be
considered as soft particles. Moreover, this will prevent from

the use of large time steps in the DPD simulations. There-

FIG. 2. Illustration of the nonbonded and bonded contributions taken into

account in the building of the coarse-grained pair distribution functions

g!
" ,nb(R) and g!

" ,b(R).

FIG. 3. #a$ ‘‘Natural’’ coarse-grained chains for !"3 #each black filled
circle representing a monomer$. The contribution of the bead i to the build-
ing of g!

" ,nb(R) is taken into account evaluating all the distances between i

and all the other beads. #b$ To improve the statistics, all the dashed lined
beads are built, moving each time one monomer further to build a new bead,

and the distances between these beads and i come into the calculation of

g!
" ,nb(R). #c$ The same idea is used for g!

" ,b(R) for which three different

chains are built.

FIG. 4. Nonbonded and bonded coarse-grained pair distribution functions

built from microscopic Monte Carlo simulations for PE. Each symbol rep-

resents a value of ! #number of monomers per bead$.

FIG. 5. Nonbonded and bonded coarse-grained pair distribution functions

built from microscopic Monte Carlo simulations for cis-PB. Each symbol

represents a value of ! #number of monomers per bead$.
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• The calculation is computationally feasible but disregards multi-
body interactions.

• Extension to long chains: Doi et al.J.Chem.Phys. ’02.



Challenges in coarse-graining methods

Often: wrong predictions in dynamics, phase transitions, melt
structure, crystallization, etc. See for instance:

• CG in polymers: sensitive dependence to temperature

low vs. high

extended configurations is overestimated with the CG model

and the deviations increase with decrease of temperature

!vide infra". Figure 9 shows the comparison between the UA
model and the CG model for the radial distribution function

g(R). It is found from Fig. 9 that the radial distribution

functions obtained with the UA model agree with those ob-

tained with the CG model at all temperatures but T

!300 K. The simulation results for mean densities and the
segment distribution functions indicate that the effective po-

tentials obtained for the isolated system can be applied to the

melt system over a wide temperature range.

VI. DISCUSSION

Though the UA model combined with the effective po-

tentials, which are determined by our proposed scheme, re-

produces the statistical quantities associated with a whole

chain as well as the averaged local structures, significant

deviation is seen for the temperature T!300 K. The devia-
tion arises from the formation of solidlike domains in the CG

model that increases the bent configurations. To examine the

reason in detail, we checked the correlation between the

bonded variables with the UA model. First we calculated the

partial distribution functions for L in configurations within a

specific range of # and the partial distribution functions are

shown in Fig. 10. It is found from Fig. 10 that the order of

the two peak heights in the segment bond length distribution

functions for configurations with # in 10°–20° and those

with # in 50°–60° are inverted at T!300 K, while such
change is not seen at T!800 K, indicating strong correlation
between the segment bond lengths and the segment bond

angles at lower temperature. The correlation is caused by the

fact that the effective bond angle potential is strongly depen-

dent on the segment bond length at lower temperature and

vice versa, because the extended configurations with longer

L and smaller # and the bent ones with shorter L and larger

# are stabilized more than the other configurations. Figure

11 shows the partial distribution functions for # in configu-

rations within a specific range of $. As shown in Fig. 11, the

FIG. 9. Radial distribution functions obtained for the melt with the UA

model !solid line" and the CG one !dotted line" at !a" T!300 K and

!b" 800 K.

FIG. 10. Bond length distribution functions for configurations with the seg-

ment bond angle of 10°–20° !solid line", 30°–40° !dashed line", and 50°–
60° !dotted line", respectively, obtained for the isolated chain with the UA
model at !a" T!300 K and !b" 800 K.

FIG. 11. Bond angle distribution functions for the configurations with the

segment torsion angle from "180° to "170° !solid line", "100° to "90°
!dashed line", and "10° to 0° !dotted line", respectively, obtained for the
isolated chain with the UA model at !a" T!300 K and !b" 800 K.
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extended configurations is overestimated with the CG model

and the deviations increase with decrease of temperature

!vide infra". Figure 9 shows the comparison between the UA
model and the CG model for the radial distribution function

g(R). It is found from Fig. 9 that the radial distribution

functions obtained with the UA model agree with those ob-

tained with the CG model at all temperatures but T

!300 K. The simulation results for mean densities and the
segment distribution functions indicate that the effective po-

tentials obtained for the isolated system can be applied to the

melt system over a wide temperature range.

VI. DISCUSSION

Though the UA model combined with the effective po-

tentials, which are determined by our proposed scheme, re-

produces the statistical quantities associated with a whole

chain as well as the averaged local structures, significant

deviation is seen for the temperature T!300 K. The devia-
tion arises from the formation of solidlike domains in the CG

model that increases the bent configurations. To examine the

reason in detail, we checked the correlation between the

bonded variables with the UA model. First we calculated the

partial distribution functions for L in configurations within a

specific range of # and the partial distribution functions are

shown in Fig. 10. It is found from Fig. 10 that the order of

the two peak heights in the segment bond length distribution

functions for configurations with # in 10°–20° and those

with # in 50°–60° are inverted at T!300 K, while such
change is not seen at T!800 K, indicating strong correlation
between the segment bond lengths and the segment bond

angles at lower temperature. The correlation is caused by the

fact that the effective bond angle potential is strongly depen-

dent on the segment bond length at lower temperature and

vice versa, because the extended configurations with longer

L and smaller # and the bent ones with shorter L and larger

# are stabilized more than the other configurations. Figure

11 shows the partial distribution functions for # in configu-

rations within a specific range of $. As shown in Fig. 11, the

FIG. 9. Radial distribution functions obtained for the melt with the UA

model !solid line" and the CG one !dotted line" at !a" T!300 K and

!b" 800 K.

FIG. 10. Bond length distribution functions for configurations with the seg-

ment bond angle of 10°–20° !solid line", 30°–40° !dashed line", and 50°–
60° !dotted line", respectively, obtained for the isolated chain with the UA
model at !a" T!300 K and !b" 800 K.

FIG. 11. Bond angle distribution functions for the configurations with the

segment torsion angle from "180° to "170° !solid line", "100° to "90°
!dashed line", and "10° to 0° !dotted line", respectively, obtained for the
isolated chain with the UA model at !a" T!300 K and !b" 800 K.
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• DPD: Pivkin, Karniadakis J. Chem. Phys. (2006): artificial
crystallization

III. OPEN DPD SYSTEMS

We first investigate the effect of coarse graining by per-

forming DPD-Verlet simulations in a fully periodic domain

of size !10rc"3 containing 3000 particles. The temperature of
the fluid is set to kBT=0.1 and the DPD force parameters are

!R=3 and "=45. #Equation !3" is used to calculate the con-
servative force parameter a.$ The modified velocity Verlet
method !with #=0.5" !Ref. 11" and a time step of 0.02 are
used to advance the system in time. Initially, all DPD par-

ticles are densely packed occupying only a small fraction of

the computational domain. After letting the fluid to equili-

brate for 80 000 time steps, we record the mean-square dis-

placement !MSD" for 20 000 steps.
In three dimensions and for periodic equilibrium sys-

tems, the MSD of atoms is related to the diffusion coefficient

D through the Einstein relation

D = lim
t→$

%#r!t" − r!0"$2&
6t

. !5"

Equation !5" implies that for large times the mean-square
displacement grows linearly. The diffusion coefficient is ob-

tained by calculating the slope of MSD versus time in the

asymptotic regime. !For nonequilibrium systems the dis-

placement of the atoms due to the bulk transport is sub-

tracted." In Fig. 2 we plot the MSD for the Nm=1 and Nm
=100 cases. The former shows the initial quadratic response

and the subsequent linear growth with time, as expected;

however, in the latter !Nm=100" we observe a very different
behavior, more characteristic of solidlike structures. In Fig. 2

we plot the diffusion coefficient D computed for different

levels of coarse graining of the DPD fluid. The values of D

gradually decrease with Nm, and for Nm=30 the diffusion

coefficient is about 450 times smaller than that for Nm=1.

For homogeneous substances the structural arrangement

of atoms depends only on the distance r between atoms. The

radial distribution function !RDF" is proportional to the

probability of finding two atoms separated by distance r and

it is defined by

g!r" =
1

N%DPD
'(

i

N

(
i!j

N

& #r − rij$) . !6"
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III. OPEN DPD SYSTEMS
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placement !MSD" for 20 000 steps.
In three dimensions and for periodic equilibrium sys-
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%#r!t" ! r!0"$2&
6t

. !5"
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displacement grows linearly. The diffusion coefficient is ob-

tained by calculating the slope of MSD versus time in the

asymptotic regime. !For nonequilibrium systems the dis-

placement of the atoms due to the bulk transport is sub-
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• ”classical” example: 1-D nearest neigbor Ising vs. Curie-Weiss
(or Mean Field)



Mathematics and Numerics of CG

1. Error Quantification and numerical accuracy of CG methods.

2. The role of randomness: need to approximate the measure
rather than just H = H(X):

e−βH(X)dX ∼ µmicro(dX) #→ T∗µmicro(dX) ≈ µcg(dQ) ∼ e−βH̄(Q)dQ

3. The role of multi-body CG interaction terms.

4. ”Reverse map”-reconstruct microscopic info from CG:

Mathematical formulation in terms of relative entropy; loss of
information during CG–information re-insertion in reverse map.

joint work with: P. Plecháč (U of TN, ORNL), V. Harmandaris
(Max Planck Inst. Polymers, Mainz)



2. Stochastic lattice dynamics–Ising Systems

σ(x) = 0 or 1: site x is resp. empty or occupied.

Hamiltonian: HN(σ) = −1
2

∑
x "=y

J(x, y)σ(x)σ(y) + h
∑

x
σ(x)

- J: potential with interaction range L,

J(x− y) =
1

L
V

(i− j

L

)
, x = i/N, y = j/N

possibly short-/long- range interactions.

Canonical Gibbs measure: at the inverse temperature β = 1
kT

,

µΛ,β(σ = σ0) =
1

ZΛ,β
exp

{
− βHN(σ0)

}
PN(σ = σ0)



Arrhenius adsoprtion/desorption dynamics:

σ(x) = 0 or 1: site x is resp. empty or occupied.

Generator: LXf(σ) =
∑

x
c(x, σ, X)[f(σx)− f(σ)]

Transition rate: c(x, σ, X) = c0 exp
[
− βU(x)

]
U(x): Energy barrier a particle has to overcome in jumping from
a lattice site to the gas phase.

- Detailed Balance
- U(x) = U(x, σ, X) =

∑
z "=x

J(x− z)σ(z)− h(X).

- strong interactions/low temperature → clustering/phase
transitions



Why study this system?

0. Many-particle system, related to realistic models, KMC, etc.

1.Strong interactions/low temperature→ clustering/phase tran-
sitions. ”Complex” landscape: metastability of islands.

How CG performs in predicting phase transitions and various
rare events?

2.Equilibrium/ Detailed Balance.

How CG performs in transient and long time regimes?

3.Numerous analytic benchmark solutions; a variety of mathe-
matical physics tools.



Hierarchical coarse-graining of stochastic lattice dynamics

K., Majda, Vlachos,Proc. Nat. Acad. Sci.’03, JCompPhys’03;

K., Vlachos J.Chem.Phys.’03

Construct a stochastic process for a hierarchy of “mesoscopic”
length or time scales. Coarse-grained Monte Carlo algorithm
(CGMC).

Coarse observable at resolution q:

ηt(k) = Tσt(k) :=
∑
y∈Dk

σt(y)

In general it is non-markovian



Stochastic closures: can we write a new approximating Markov
process for ηt?

• ”projective dynamics”: Koleshik, Novotny, Rikvold, PRL ’98;
coarse rates for total coverage calculated by sampling;

Ergodicity: Are the long-time dynamics reproduced?

• Errors can contaminate the simulation at long times; wrong
switching times in bistable systems: Hanggi et al PRA ’84 (well-
mixed systems).

• Connections to lumpable Markov processes
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1. CG Schemes at Equilibrium

K., Plechac, Rey-Bellet, Tsagkarogiannis, [M2AN, ’07, J. Non.
Newt. Fluid Mech. ’08, preprint]

• CG Hamiltonian–Renormalization Group Map: N = mq

e−βH̄m(η) =

∫
e−βHN(σ) PN(dσ | η) ≡ E[e−βHN | η]

• Correction terms around a first ”good guess” H̄(0)
m :

H̄m(η) = H̄(0)
m (η)− 1

β
logE[e−β(HN−H̄(0)

m ) | η] , m = N, N − 1, ...

• Heuristics: Expansion of e∆H and log:

= E [∆H | η] + E
[
(∆H)2 | η

]
− E [∆H | η]2 + O((∆H)3)

formal calculations inadequate since:

∆H ≡ HN − H̄(0)
m = N · O(ε)

• Rigorous analysis – Cluster expansion: around H̄(0)
m



Systems with short+long-range interactions

HN(σ) = Hl
N(σ) + Hs

N(σ) ;

J: long range potential ∼ H(l)
N radius L. K: short range potential

∼ H(s)
N with radius S << L.

Examples: Surface processes, epitaxial growth, polymers, etc.

CG: approximation of the free energy-landscape.

CG prior: P̄m(η) = PN({σ : Tσ = η})
• Splitting strategy:

e−βH
N
(σ)PN(dσ) = e−βHs

N
(σ)e

−β
(

Hl
N
(σ)−H̄l

m(η)
)
PN(dσ|η)e−βH̄l

m(η)P̄m(η)



Case 1: Long- and intermediate-range interactions

Approximate CG Hamiltonian:

H̄(0)(η) = −1

2

∑
l∈Λc

M

∑
k #=l

J̄(k, l)η(k)η(l)− 1

2
J̄(0,0)

∑
l∈Λc

M

η(l)(η(l)− 1) +
∑
l∈Λc

M

h̄(l)η(l)

• E
[
HN − H̄(0) | η

]
= 0

Involves two-body CG interaction only:

J̄(k, l)η(k)η(l) =

∫ ∑
x∈Ck,y∈Cl

J(x− y)σ(x)σ(y)PN(dσ | ηk, ηl)

Where

J̄(k, l) =
1

q2

∑
x∈Ck

∑
y∈Cl,y #=x

J(x− y)

• Analytical version of McCoy-Curro scheme in polymers:

Ūmcc(ηk, ηl; k − l) = −1

β
log

∫
e−βHN(σ)PN(dσ | ηk, ηl)



Corrections to the Hamiltonian H̄(0) !→Multi-body terms

H̄m(η) = H̄(0)
m (η) + H̄(1)

m (η) + ...

H̄(1)(η) = β
∑

k1

∑
k2>k1

∑
k3>k2

[j2
k1k2k3

(−E1(k1)E2(k2)E1(k3) + ...

• Er(k) ≡ Er(η(k)) = (2η(k)/q − 1)r + oq(1)

• “Moments” of interaction potential J:

j2
k1k2k3

=
∑
x∈Ck1

∑
y∈Ck2

∑
z∈Ck3

(J(x− y)− J̄(k1, k2))(J(y − z)− J̄(k2, k3))

Computational complexity-Compression of H̄(1)

• Evaluation of the Hamiltonian:
Count Speed-up

Microscopic: HN(σ) O(NLd) 1
CG0: H̄(0) O(MLd/qd) O(q2d)
CG1: H̄(0) + H̄(1) O(ML2d/q2d) O(q3d/Ld)

• Decay of J (e.g. Coulomb) !→ J − J̄ decays faster.



Rigorous analysis – Cluster expansion

Idea: Identify clusters that do not ”communicate”–factorize–
then Taylor expand.

Step 1: Rewrite

E
[
e−β(HN−H̄(0)) | η

]
=

∫ ∏
k≤l

(1 + (e−β∆klJ(σ) − 1))PN(dσ | η)

where

∆klJ(σ) =
1

2

∑
x∈Ck

∑
y∈Cl

(J(x− y)− J̄(k, l))σ(x)σ(y)

Step 2: Assume e... − 1 small and expand∏
k≤l

(1 + (e−β∆klJ(σ) − 1)) =
∑
G∈GM

∏
{k,l}∈G

(e−β∆klJ(σ) − 1))

Convergence criterion for the resulting series (Kotecký-Preiss-
Dobrushin)



Error Quantification in CG Schemes

Theorem 1:

Define the “small” parameter ε ≡ β q
L
‖∇J‖1

1. Approximation of the CG free-energy landscapes

H̄m(η) = H̄(0)
m (η)−1

β
logE[e−β(HN−H̄(0)

m ) | η] = H̄(0)
m (η)+H̄(1)

m (η)+NO(ε3) .

2. Loss of information during coarse-graining

• Specific relative entropy:

R (µ | ν) :=
1

N

∑
σ

log
{

µ(σ)

ν(σ)

}
µ(σ) .%

R
(
µ̄(α)

M,q,β |µN,βoT−1
)

= O
(
εα+2

)
.

• Tσ = Projection on coarse variables=
∑

y∈Dk
σ(y).



Remarks:

• Information Theory interpretation: The relative entropy
describes the increase in descriptive complexity of a random
variable due to “wrong information”.

• Controlling the expansion: “high-temperature” cluster ex-
pansion techniques (Cammarota CMP 82, Procacci, De-
Lima, Scoppola LMP 98)

• Related work: M. Suzuki et. al.’95, Cassandro/Presutti
’96, Bovier/Zahradnik ’97; cluster expansions around mean-field;
focus on criticality.



General Case: combined short+long range interactions:

K., Plechac, Rey-Bellet, Tsagkarogiannis, [preprint ’08]

Results on the long range interactions suggest a separation into:

• smooth, long-range interactions (expensive with KMC-very
efficient with CGMC)

• separately handle short range interactions∗

e−βH
N
(σ)PN(dσ) = e

−
(

βHl
N
(σ)−H̄l

m(η)
)[

e−βHs
N
(σ)PN(dσ|η)

]
e−H̄l

m(η)P̄m(η)

∗Related Cluster Expansion: Bertini, Cirillo, Olivieri, J. Stat.
Phys. ’99.



Double/Triple terms in CG short range interactions:

H̄(1)
k−1,k,k+1(η(k − 1), η(k), η(k + 1)) = −1

β
log

(
1− λΦ1

k−1(η(k − 1))Φ1
k(η(k))

−λΦ1
k(η(k))Φ

1
k+1(η(k + 1))

+λ2Φ1
k−1(η(k − 1))Φ2

k(η(k))Φ
1
k+1(η(k + 1)

)
where λ = tanh(βK),

Φ1
k(η) :=

∫
σ(x)ρ̂k and Φ2

k(η) :=

∫
σ(x)σ(y)ρ̂k

• Semi-analytical splitting method: Fine scales are sim-
ulated (cheaply) in the Φ-terms, then a CGMC step is
performed.

• Triple terms are important only at lower temperatures.



CG Markovian Dynamics

Birth-Death type process, with interactions.

Lcg(η) =
∑
k∈Λc

ca(k, η)
[
g(η + δk)− g(η)

]
+

cd(k, η)
[
g(η − δk)− g(η)

]
.

• Coarse-grained rates: Detailed Balance
Adsorption rate of a single particle in the k-coarse cell

ca(k, η) = q − η(k)
Desorption rate

cd(k, η) = η(k) exp
[
− β

(
U0 + Ū(k)

)]
with or w/o higher order terms.



Formal derivation

Step 1: From the microscopic generator:

d

dt
Eg(η) = E

∑
k∈Λc

{ ∑
x∈Dk

c(x, σ)
(
1− σ(x)

)}
×[

g(η + δk)− g(η)
]
+

E
∑
k∈Λc

{ ∑
x∈Dk

c(x, σ)σ(x)

}
×[

g(η − δk)− g(η)
]

.

“Closure” argument: Express as a function of the coarse vari-
ables the terms{ ∑

x∈Dk

c(x, σ) ...

}
,

{ ∑
x∈Dk

c(x, σ) ...

}



• ∑
x∈Dk

c(x, σ)
(
1− σ(x)

)
=

(
q − η(k)

)
:= ca(k, η)

• ∑
Dk

c(x, σ)σ(x) =
∑

Dk
σ(x) exp

[
− β

(
U0 + U(x)

)]
??
= cd(k, η)

One possibility: c(x, σ) ≈ const. on coarse cell Dk, e.g.

1. high temperature/external field, or

2. q << L q: level of coarse-graining, L: interaction range

We have

cd(k, η)≈η(k) exp
[
− β

(
U0 + Ū(k)

)]
where U(x) = Ū(l) + O

(
q
L

)
, and

Ū(l) =
∑
k∈Λc
k $=l

J̄(l, k)η(k) + J̄(0,0)
(

η(l)− 1
)
− h̄ .



I. Error Estimates for observables – Dynamics

[K., P. Plechac, A. Sopasakis, SIAM Num. Anal. ’06]

Theorem 1:

q: level of coarse-graining

L: # of interacting neighbors

coarse grained observables/quantity of interest: ψ,

microscopic dynamics: σt,

coarse-grained dynamics: ηt

Then for any fixed time 0 < T <∞
|Eψ(TσT)− Eψ(ηT)| ≤ CT ε2 ,

• Tσt = Projection on coarse variables=
∑

y∈Dk
σt(y).

• Error accumulation as T → ∞? 2nd order error estimates at
equilibrium



Difficulty: Tσt(k) =
∑

y∈Dk
σt(y) . is not a Markov process.

Elements of the proof:

1. γt: Markovian reconstruction of the microscopic process σt

from the coarse process ηt with controlled error:

• T(γt)t≥0 and (ηt)t≥0 have the same distribution

• |Eφ(σT)− Eφ(γT)| ≤ CT ε2 ,

2. Stochastic averaging → cancellations and 2nd order accu-
racy.

3. Bernstein-type estimates to control discrete derivatives–
here related to the number of jumps-extended system!

4. Weak topology estimates for SDE: Talay-Tubaro (1990),
Szepessy, Tempone, Zouraris (2001),..., K., Szepessy (2006).



Error II–Loss of information during coarse-graining

[with José Trashorras (Paris IX), J. Stat. Phys. (2006)]

• µm,q,β(t): Coarse-grained PDF at time t.
• µN,βoT(t): Projection of the microscopic PDF at time t on

the coarse observables.

Theorem 2:

R
(
µm,q,β(t) |µN,βoT(t)

)
= OT(

q

L
) , t ∈ [0, T ]

where

R (µ | ν) :=
1

N

∑
σ

log
{

µ(σ)

ν(σ)

}
µ(σ) ."



Some computational tests

CG Arrhenius lattice dynamics Metastable regime

1. Power law interactions: J(r) = r−α.
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2. Switching Time PDFs/Autocorrelations-corrections
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 Comparison of deterministic (top row), CGMC (middle row), and experimental patterns (bottom) of 
Pb/Cu(111) system as the Pb concentration increases from low (left) to high (right). 

Example: Hetero-epitaxy in a Pb/Cu system

     Plass, Last, et al., Nature (2001)

     Simulation with CGMC at mesoscopic length scales:  
     Chaterjee, Vlachos, Chem Eng. Sci. (2007)



Reverse CG map–Microscopic Reconstruction

[Tschöp et al Acta Polymer. ’98], [K., Trashorras, J. Stat.
Phys. ’06], [K., Plechac, Sopasakis, SIAM Num. Anal. ’06]

[Trashorras, Tsagkarogiannis ’08]: systematic equilibrium study

µN(dσ) ∼ e−β(H(σ)−H̄(η))PN(dσ|η)µ̄M(dη) ≡ µN(dσ|η)µ̄M(dη) .

We can think of the conditional probability µN(dσ|η) as recon-
structing (perfectly) µN(dσ) from the (exactly) CG measure
µ̄M(dη).

Mathematical formulation:

1. CG Scheme: µ̄app
M (dη) ≈ µ̄M(dη)

2. Reconstruction: Construct a “suitable” conditional proba-
bility νN(dσ|η) and define the approximate microscopic measure

µapp
N (dσ) := νN(dσ|η)µ̄app

M (dη) .



Efficiency of the reconstruction:

R
(
µapp

N |µN

)
= R

(
µ̄app

M |µ̄M

)
+

∫
R (νN(·|η) |µN(·|η)) µ̄app

M (dη)

Example: µ̄app
M (dη) = µ̄(0)

M (dη) , νN(dσ | η) = PN(dσ | η) ,

a. PN(σ|η) is a product measure =⇒ ”local” reconstruction
at each coarse-cell;

b. Reconstruction for equilibrium and dynamics;

c. Numerical error estimate for reconstructed microscopic dy-
namics γt:

|Eφ(σT)− Eφ(γT)| ≤ CT ε2 ,



A statistics perspective:

e−βH
N
(σ)PN(dσ) = e

−β
(

HN(σ)−H̄s
m(η)−Hl

m(η)
)
PN(dσ|η)e−β

(
H̄s

m(η)+H̄l
m(η)

)
P̄m(η)

Importance Sampling based on proposals

CG approximating measure (or an ”easy” part of it); local re-
construction.

K., Plechac, Rey-Bellet [J. Sci. Comp. ], to appear (2008).

Thus far:  Applied math/statistical mechanics perspective of expanding (using cluster
     expansions) around a “carefully” chosen first CG guess,
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CG diagnostics, a posteriori error–Adaptive CG

[K., Plechac, Rey-Bellet, Tsagkarogiannis, J.Non-Newt. Fluid
Mech. to appear, ’08]

1. Cluster expansions → a posteriori expansion for the relative
entropy.

H̄m(η) = H̄(0)
m (η)− 1

β
logE[e−β(HN−H̄(0)

m ) | η] = H̄(0)
m (η)+H̄(1)

m (η)+ ...

The error indicator R(.) is given by the terms H̄(1), H̄(2) and
depends only on the coarse variable η:

R
(
µ(0)

m,q |µNoT
)
=EḠ(0)[R(η)] + log

(
E

µ(0)
m,q

[eR(η)]
)

+ O(ε3)

2. ”Goal-oriented” a posteriori estimates and adaptivity?

Typical observables: spatial correlation functions of coarse ob-
servables



A mathematical prototype:Competing short (LK = 1) and
long (LJ = 64) range

HN = −K
∑

|x−y|=1

σ(x)σ(y)− J

2N

∑
x,y

σ(x)σ(y) + h
∑

x

σ(x)

Exact solution in 1D/2D (M. Kardar, PRB ’83)
Phase diagram  
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Example: Adaptive computation of phase diagrams
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Spatial adaptivity:
[Chaterjee, K., Vlachos, Phys. Rev. E’05; J. Chem. Phys. ’05]



Concluding Remarks

1. Error Quantification and numerical accuracy of CG methods.

Information Theory and Quantity of Interest approaches.

2. Compression of the measure rather than just H = H(X):

e−βH(X)dX ∼ µmicro(dX) #→ µcg(dQ) ∼ e−βH̄(Q)dQ

3. The role of multi-body CG interaction terms in the two-body
CG interactions.

4. Adaptive CG schemes

5. ”Reverse map”-reconstruct microscopic info from CG simu-
lations.
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