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Instructions for Audience

I’ve nagged speakers for 2.5 days. 
Now you have the opportunity to take revenge.
Please do!
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systems of equations (e.g., Newton’s laws of mechanics). 
The central theme of the exact sciences.

In many cases, even though we believe to have reliable 
models, they are useless because we can not solve them, 
even not numerically.  They are too complex (e.g., 
weather prediction, cell biology). 

A “second level” of modeling is required to obtain useful 
models. This second step is often called dimension 
reduction, coarse-graining, homogenization, or 
simply, modeling.
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Mathematical Setting

Full (“microscopic”) dynamics:

dz

dt
= h(z) + γ(z)

dW

dt

•  Dynamics z(t) take place in a high-dimensional 
(possibly infinite-dimensional) space Z.

•  May be deterministic or stochastic.
•Too complex to be solved.
•Dynamics of interest take place in a (low-

dimensional) subspace X of Z.
•Objective: find a self-contained description of the 

dynamics in X without resolving the dynamics in 
Y=Z∕X.
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Using coordinates x ∈X and y ∈Y:

dx

dt
= f(x, y) + α(x, y)

dU

dt

dy

dt
= g(x, y) + β(x, y)

dV

dt

microscopic

The goal is to obtain a reduced, macroscopic, closure 
equation in X:

such that X(t) approximates well the component x(t) of the 
full dynamics.

dX

dt
= F (X) + A(X)

dU

dt
macroscopic
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• Controlled versus uncontrolled approximation
Dimension reduction is sometimes backed by analysis, 
along with error estimates (e.g., systems with scale 
separation). In other cases, it is based on heuristic 
reasoning, and scope of validity is unknown (e.g., K-ε 
models of turbulence).

• Deterministic versus stochastic
Dynamics in Z and X may be either deterministic or 
stochastic. We classify systems accordingly as DD, DS, 
SD, and SS.
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Running Themes (cont.)

• Reduction principle
Two steps: identification of the subspace X (often not 
known) and derivation of dynamics in X.

• Memory
Generally, variable elimination introduces memory (non-
Markovian dynamics; e.g., HMM). Need to choose X such 
that memory is negligible.

• Path-wise versus distributions
Often the dynamical system is “lifted” to an evolution of 
probability distribution. Higher dimensional but linear 
(hence, functional analytical techniques).
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A general technique to (formally) reduce the dimensionality of 
systems of ODEs. Developed in the context of irreversible 
stat. mech.  In essence, a rewriting of the equations in a 
suggestive form. 

dx

dt
= f(x, y)

dy

dt
= g(x, y)

The basic idea: (1) treat x(t) as a given function and integrate 
(formally) the y-equation. The solution y(t) depends on the 
entire history of x(t) (“variation of constants”). (2) Substitute 
y(t) in the x-equation, resulting in a closed reduced system.

dx(t)
dt

= f̃(x(t)) +
∫ t

0
K(x(t− s), s) ds + N(x(0), y(0), t)

“memory” “noise”“Markovian”
Generalized Langevin Equation



Scale Separation



Scale Separation



Scale Separation

An important class of systems in which complexity can 
often be reduced in a controlled way is systems in 
which there exists a disparity of scales (spatial or 
temporal). 



Scale Separation

An important class of systems in which complexity can 
often be reduced in a controlled way is systems in 
which there exists a disparity of scales (spatial or 
temporal). 

(Spatial) Homegenization: dynamics depend on small 
scale features, but phenomena of interest are on large 
scales (e.g., porous media, climate prediction).



Scale Separation

An important class of systems in which complexity can 
often be reduced in a controlled way is systems in 
which there exists a disparity of scales (spatial or 
temporal). 

(Spatial) Homegenization: dynamics depend on small 
scale features, but phenomena of interest are on large 
scales (e.g., porous media, climate prediction).

(Temporal) Averaging: dynamics include short 
timescale features, but phenomena of interest over long 
time scales (e.g., molecular conformations, climate 
prediction).
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dx

dt
= f(x, y) + α(x, y)

dU

dt
dy

dt
=

1
ε
g(x, y) +

1√
ε
β(x, y)

dV

dt

In our context, x(t) are the “slow” variables, whereas 
y(t) are the “fast” variables:

Fast to slow timescale ratio

Goal: “integrate” over the fast dynamics to obtain a 
reduced equation for x(t), and prove that it is exact in the 
limit ε→0.

Several scenarios, depending on the functions f,g,α,β.
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Goes back to Tikhonov (East) and Levinson (West).
Starting point: ODEs with scale separations:

dy

dt
=

1
ε
g(x, y)

dx

dt
= f(x, y)

Systems of class DD

Up to mild regularity assumptions on f,g, it can be shown 
that y(t)=η(x(t)) + O(ε). To O(ε) corrections, x(t) is 
approximated by the solution X(t) of the reduced 
equation: dX

dt
= f(X, η(X))

Assumption: for every fixed x, the y-dynamics has a unique 
attracting fixed point, y=η(x). 



x

y

η(x)

attracting manifold

Actual trajectory

y-dynamics
“slaved” to
x-dynamics



Example:
dx1

dt
= −x2 − x3

dx2

dt
= x1 +

1
5
x2

dx3

dt
=

1
5

+ y − 5x3

dy

dt
= −y

ε
+

x1x3

ε



Example:
dx1

dt
= −x2 − x3

dx2

dt
= x1 +

1
5
x2

dx3

dt
=

1
5

+ y − 5x3

dy

dt
= −y

ε
+

x1x3

ε

For fixed x y → x1x3



Example:
dx1

dt
= −x2 − x3

dx2

dt
= x1 +

1
5
x2

dx3

dt
=

1
5

+ y − 5x3

dy

dt
= −y

ε
+

x1x3

ε

For fixed x y → x1x3

Reduced dynamics:
dX1

dt
= −X2 −X3

dX2

dt
= X1 +

1
5
X2

dX3

dt
=

1
5

+ (X1 − 5)X3

Rössler system



Example:
dx1

dt
= −x2 − x3

dx2

dt
= x1 +

1
5
x2

dx3

dt
=

1
5

+ y − 5x3

dy

dt
= −y

ε
+

x1x3

ε

For fixed x y → x1x3

Reduced dynamics:
dX1

dt
= −X2 −X3

dX2

dt
= X1 +

1
5
X2

dX3

dt
=

1
5

+ (X1 − 5)X3

Rössler system

−8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8
Atrractor. ε=0.01

x1

x 2

ε = 0.01



Example:
dx1

dt
= −x2 − x3

dx2

dt
= x1 +

1
5
x2

dx3

dt
=

1
5

+ y − 5x3

dy

dt
= −y

ε
+

x1x3

ε

For fixed x y → x1x3

Reduced dynamics:
dX1

dt
= −X2 −X3

dX2

dt
= X1 +

1
5
X2

dX3

dt
=

1
5

+ (X1 − 5)X3

Rössler system

−8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8
Attractor.

X1

X
2

−8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8
Atrractor. ε=0.01

x1

x 2

ε = 0.01



Averaging
First used in 3-body celestial mechanics (Lagrange 1788).

dy

dt
=

1
ε
g(x, y)

dx

dt
= f(x, y)



Averaging
First used in 3-body celestial mechanics (Lagrange 1788).

dy

dt
=

1
ε
g(x, y)

dx

dt
= f(x, y)

Assumption: for fixed x, the y-dynamics are ergodic.

Let          denote the solution operator of the y-dynamics:ϕt
x(y)

d

dt
ϕt

x(y) = g(x, ϕt
x(y)) ϕ0

x(y) = y



Averaging
First used in 3-body celestial mechanics (Lagrange 1788).

dy

dt
=

1
ε
g(x, y)

dx

dt
= f(x, y)

Assumption: for fixed x, the y-dynamics are ergodic.

Let          denote the solution operator of the y-dynamics:ϕt
x(y)

d

dt
ϕt

x(y) = g(x, ϕt
x(y)) ϕ0

x(y) = y

Ergodic dynamics induce a Young measure on Y:

µx(A) = lim
T→∞

∫ T

0
IA(ϕt

x(y)) dt

measure depends on x indicator function
independent of y
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Averaging (cont.)

Comments:
•Extensive literature (mostly Russian).
•Extension to cases where ergodicity fails on 

sufficiently small sets (Arnold, Neistadt). 
•Extension to non-autonomous systems (Artstein).
•Extension to non-unique invariant measure 
(differential inclusions, Artstein).

• Invariant measure may depend on y(0).

Anosov’s theorem states that x(t) converges uniformly 
on any bounded time interval to the solution X(t) of the 
averaged equation:

dX

dt
=

∫

Y
f(X, y)µX(dy) class DD



Application: Stiff Hamiltonian Systems

Ubiquitous in molecular systems: Hamiltonian systems with 
strong potential forces resuling in fast oscillatory motion 
around a sub-manifold, along with weaker forces responsible 
for conformational changes over longer timescales (Rubin and 

Ungar, 1957, Neistadt 1984, Bornemann and Schuette 1997).

H(z, p) =
1
2

∑

i

p2
i

2mi
+ V (z) +

1
ε2

U(z)

“soft” potential “stiff” potential

The stiff potential is minimal on a smooth submanifold M.
Goal: approximate solution by a flow on M.
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Example: a two-particle system

H(x, p, y, v) =
1
2
(p2 + v2) + V (x) +

ω2(x)
2ε2

y2

constraining manifold y=0

Assumption: energy E does not
depend on ε, hence y→0 as ε→0.

This system is still not
in the desired form of 
scale separation because 
the “slow” (x,p) equations
depend on ε.

Change variables:
 η = y/ε.

Equations of motion:

dx

dt
= p

dp

dt
= −V ′(x)− ω′(x)

2ε2
y2

dy

dt
= v

dv

dt
= −ω(x)

ε2
y

ratio of small 
parameters

Naive solution: set y=0.
Wrong!
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Transformed system of equations:

dx

dt
= p

dp

dt
= −V ′(x)− ω′(x)

2
η2

dη

dt
=

1
ε
v

dv

dt
= −ω(x)

ε
η

slow

fast

The y-dynamics are ergodic:
(harmonic oscillator with 
x-dependent frequency).

The invariant measure  
depends on the total energy (i.e., 
on initial data of full system).

Applying the averaging principle (here, a variation of
Anosov’s theorem)

dX

dt
= P

dP

dt
= −V ′(X)− J (ω1/2(X))′ effective (Fixman) potential

(non-trivial)

constant depending on
initial data
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Stochastic Averaging
A (relatively) strightforward generalizartion of the 
averaging method to stochastic systems:

dx

dt
= f(x, y)

dy

dt
=

1
ε
g(x, y) +

1√
ε
β(x, y)

dV

dt

If for fixed x the y-dynamics is ergodic with invariant 
measure μx(dy), then as ε→0, x(t) converges uniformly to X(t):

dX

dt
=

∫

Y
f(X, y)µX(dy) class SD
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backed up by a limit theorem):
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=

1
ε
g(x, y) +

1√
ε
β(x, y)

dV
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Step 1: write corresponding Kolmogorov 
(Fokker-Planck) equation for φ(x,y,t):

∂φ

∂t
= − ∂
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(f φ)
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backed up by a limit theorem):

dx

dt
= f(x, y)
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=

1
ε
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1√
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β(x, y)
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Step 1: write corresponding Kolmogorov 
(Fokker-Planck) equation for φ(x,y,t):

∂φ

∂t
= − ∂

∂x
(f φ)

︸ ︷︷ ︸
L1φ

−1
ε

∂

∂y
(g φ) +

1
ε

∂2

∂y2

(
β2 φ

)

︸ ︷︷ ︸
1
ε L0φ

Step 2: power series expansion:

φ(x, y, t) = φ0(x, y, t) + ε φ1(x, y, t) + . . .



Step 3: equate terms of same order:

O(1/ε) terms:

L0φ = − ∂
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(β2 φ) the generator of the y-dynamics
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eq(y) invariant distribution

of y-dynamics
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L1φ = − ∂

∂x
(f φ) the generator of the x-dynamics

O(1) terms: L0φ1 =
∂φ0

∂t
− L1φ0

Solvability condition: right-hand side orthogonal to the 
kernel of L0*  (constant functions). Integrate over y:

∂π

∂t
= − ∂

∂x

[
π(x, t)

(∫
f(x, y)φx

eq(y) dy

)]

Step 3: equate terms of same order:

O(1/ε) terms:

L0φ = − ∂

∂y
(g φ) +

1
2

∂2

∂y2
(β2 φ) the generator of the y-dynamics

L0φ0 = 0

solution: φ0(x, y, t) = π(x, t)φx
eq(y) invariant distribution

of y-dynamics
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equation of the deterministic system

∂π
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= − ∂

∂x

[
π(x, t)

(∫
f(x, y)φx

eq(y) dy

)]

dX

dt
=

∫
f(X, y)φX

eq(y) dy ≡ F (X)

This asymptotic expansion can be made into a  rigorous 
convergence proof (e.g., through limit theorem for semi-
groups).
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for the following scaling:

dx

dt
=

1√
ε
f0(x, y) + f1(x, y)

dy

dt
=

1
ε
g(y) +

1√
ε
β(y)

dV

dt

x-equation contains a
“fast” term

y-equation independent 
of x (skew-symmetric, not essential)

The setting is such that f0(x,y) averages to zero under
the invariant measure of the y-dynamics. A large term 
that averages to zero becomes, as ε→0, white noise.
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Step 1: Switch to the Kolmogorov equation:
∂φ

∂t
=

1
ε
L0φ +

1√
ε
L1φ + L2φ

L0φ = − ∂

∂y
(g φ) +

1
2

∂2

∂y2
(β2 φ) L1φ = − ∂

∂x
(f0 φ) L2φ = − ∂

∂x
(f1 φ)

Step 2: Asymptotic series expansion:
φ(x, y, t) = φ0(x, y, t) +

√
εφ1(x, y, t) + εφ2(x, y, t) + . . .

Step 3: Equate terms of same order

O(1/ε) terms: L0φ0 = 0

solution: φ0(x, y, t) = π(x, t)φeq(y)



O(1/√ε) terms: L0φ1 = −L1φ0

Solvability condition requires that integral of RHS be zero.

This follows from the properties of f0.

                Solution: 

RHS =
∂

∂x
[f0(x, y)φeq(y)π(x, t)]

φ1 = −L−1
0 L1φ0
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Solvability condition requires that integral of RHS be zero.

This follows from the properties of f0.

                Solution: 

RHS =
∂

∂x
[f0(x, y)φeq(y)π(x, t)]

φ1 = −L−1
0 L1φ0

O(1) terms: L0φ2 =
∂φ0

∂t
− L1φ1 − L2φ0

Again, apply same solvability condition, and obtain an 
equation for the (leading order) marginal π(x,t):

∂π

∂t
= −

∫
L1L

−1
0 L1φeq(y)π(x, t) dy +

∫
L2φeq(y)π(x, t) dy



Step 4: identification of reduced problem:
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= −

∫
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L2φeq(y)π(x, t) dy

first-order operator in xoperator in y

driftdiffusion



Step 4: identification of reduced problem:

∂π

∂t
= −

∫
L1L

−1
0 L1φeq(y)π(x, t) dy +

∫
L2φeq(y)π(x, t) dy

first-order operator in xoperator in y

driftdiffusion

We identify the equation for the marginal π(x,t) as a 
Kolmogorov equation of a diffusion process X(t).

The drift and diffusion may be difficult to evaluate 
analytically due to the need to invert L0.
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Solution of reduced system:
X(t) = X(0) exp [−λt + U(t)]

Properties (a.s):

λ > 0 → lim
t→∞

X(t) = 0

λ = 0 → lim sup
t→∞

X(t) =∞

λ < 0 → lim
t→∞

X(t) =∞



Original system:
dx

dt
=
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ε
yx− λx

dy

dt
= −1

ε
y +

1√
ε

dV

dt

Reduced system:
dX

dt
=

(
1
2
− λ

)
X + X

dU

dt

class SS

Solution of reduced system:
X(t) = X(0) exp [−λt + U(t)]

Properties (a.s):

λ > 0 → lim
t→∞

X(t) = 0

λ = 0 → lim sup
t→∞

X(t) =∞

λ < 0 → lim
t→∞

X(t) =∞

Numerical solution of   log x(t)  for ε=0.1.
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The same type of arguments remain valid if the y-dynamics
are deterministic, but sufficiently-well mixing.
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dt
= x− x3 +

4
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√

ε
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dy1

dt
=

10
ε

(y2 − y1)

dy2

dt
=

1
ε
(28y1 − y2 − y1y3)

dy3

dt
=

1
ε
(y1y2 −

8
3
y3)

y(t) satisfying 
the (accelerated)
chaotic Lorenz 
equations

fast term that 
averages to zero

For ε→0, the slow 
component x(t) 
converges (in Law)
to the solution X(t) 
of the SDE:

(σ=0.126)  class DS.

dX

dt
= X −X3 + σ

dU

dt

Reduced equation describes
noisy particle in quartic 
potential. Equlibrium 
distribution is bi-modal.
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Large Systems



Large Systems

Another class of systems for which the reduced system can 
be derived rigorously as a limit of the full dynamics, is 
systems which many DOFs. The reduced system is obtained 
in the limit where the number of DOFs tends to infinity 
(the “thermodynamics limit”).

An instance of such systems are mechanical systems of heat 
baths. (Will be addressed in detail in tomorrow’s lecture).

Also systems of class DS.



Birth-Death Systems
Chemical reactions are commonly modeled by 
stochastic birth-death systems.

The model: 

There are m species with populations x=(x1,x2,...,xm).

There are n reactions with rates hi(x) and 
stoichiometry numbers νij.

Can easily be simulated by the Gillespie algorithm
(generative simulation of cont.-time Markov chains) 





The Gillespie algorithm:
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The Gillespie algorithm:

• Initialize xi(0) for i=1,...,m.

•Compute the reaction rates rj=hj(x(0)) for j=1,...,n.

• Set the total rate r =r1+...+rn.

• Select the (random) transition time t by picking
a random variable p~U[0,1] and setting t=-(log p)/r.

• Select the j-th reaction with probability rj/r.

• Update x(t) accordingly and return to step 2.



The Gillespie algorithm provides a “pathwise” description. 
Alternatively, one can consider the master equation (the 
discrete analog of the Fokker-Planck equation).



The Gillespie algorithm provides a “pathwise” description. 
Alternatively, one can consider the master equation (the 
discrete analog of the Fokker-Planck equation).

Example: a 3-species system
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x2
x1

N

At time t=0:
x1 = 0 x2 = 0 x3 = N

N is the total number
of particles
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The master equation:
for p(x1,x2,x3,t)

dp

dt
=

(x1 + 1)2

N
p(x1 + 1, x2 − 1, x3)−

x2
1

N
p(x1, x2, x3)

+
x1(x2 + 1)

N
p(x1, x2 + 1, x3 − 1)− x1x2

N
p(x1, x2, x3)

+ (x3 + 1)p(x1 − 1, x2, x3 + 1)− x3p(x1, x2, x3)
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Because occupancies are O(N), each reaction changes
by little the “density”  Xi=xi/N.
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The master equation:
for p(x1,x2,x3,t)

dp

dt
=

(x1 + 1)2

N
p(x1 + 1, x2 − 1, x3)−

x2
1

N
p(x1, x2, x3)

+
x1(x2 + 1)

N
p(x1, x2 + 1, x3 − 1)− x1x2

N
p(x1, x2, x3)

+ (x3 + 1)p(x1 − 1, x2, x3 + 1)− x3p(x1, x2, x3)

Because occupancies are O(N), each reaction changes
by little the “density”  Xi=xi/N.

Van-Kampen’s Ω-expansion:
A change of variables. Treat the Xi as continuous variables.

ρ(X1, X2, X3) = p(NX1, NX2, NX3)



The master equation in terms of  ρ(X1,X2,X3):
ε
dρ

dt
= (X1 + ε)2ρ(X1 + ε, X2 − ε, X3)−X2

1ρ(X1, X2, X3)

+ X1(X2 + ε)p(X1, X2 + ε, X3 − ε)−X1X2ρ(X1, X2, X3)
+ (X3 + ε)ρ(X1 − ε, X2, X3 + ε)−X3ρ(X1, X2, X3)

where ε=1/N. 
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Taylor expand and take ε→0:
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= (X1 + ε)2ρ(X1 + ε, X2 − ε, X3)−X2

1ρ(X1, X2, X3)

+ X1(X2 + ε)p(X1, X2 + ε, X3 − ε)−X1X2ρ(X1, X2, X3)
+ (X3 + ε)ρ(X1 − ε, X2, X3 + ε)−X3ρ(X1, X2, X3)

where ε=1/N. 

This is the Liouville equation of the (deterministic) 
system (the rate equations):

dX1

dt
= −X2

1 + X3

dX2

dt
= −X1X2 + X2

1

dX3

dt
= −X3 + X1X2

21

3

x3

x1
x1

N

x2
x1

N

class SD

∂ρ

∂t
=

∂

∂X1

[
(X2

1 −X3)ρ
]
+

∂

∂X2

{
(X1X2 −X2

1 )ρ
}

+
∂

∂X3
[(X3 −X1X2)]

Taylor expand and take ε→0:



The master equation in terms of  ρ(X1,X2,X3):
ε
dρ

dt
= (X1 + ε)2ρ(X1 + ε, X2 − ε, X3)−X2

1ρ(X1, X2, X3)

+ X1(X2 + ε)p(X1, X2 + ε, X3 − ε)−X1X2ρ(X1, X2, X3)
+ (X3 + ε)ρ(X1 − ε, X2, X3 + ε)−X3ρ(X1, X2, X3)

where ε=1/N. 

This is the Liouville equation of the (deterministic) 
system (the rate equations):

dX1

dt
= −X2

1 + X3

dX2

dt
= −X1X2 + X2

1

dX3

dt
= −X3 + X1X2

21

3

x3

x1
x1

N

x2
x1

N

class SD

if O(ε) terms are retained
one gets a second-order
Fokker-Planck equation
of a stochastic system.

class SS
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+
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{
(X1X2 −X2

1 )ρ
}

+
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[(X3 −X1X2)]

Taylor expand and take ε→0:



Numerical simulation:
Comparison between a single realization of the Gillespie 
algorithm with the solution of the deterministic reduced 
system.
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Algorithms



We have seen two classes of systems in which dimension 
reduction can be rigorously obtained as a limit (scale 
separation and large systems).

Most case of (real) interest do not belong to any of these 
classes (at least not in a strict sense), yet, “something needs 
to be done”. 

In the remaning of this lecture we will review 
uncontrolled approximations, as well as 
computational algorithms of dimension reduction.
[I apologize in advance: I will only refer to a small part of the recent developments.]  



Projective Integration
Kevrekidis and co-workers 2003 and later

Suppose we have a deterministic 
system with scale separation, but 
we are unable to derive the reduced 
model. Goal: approximate x(t).

dx
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Case I: for fixed x the y-dynamics are attracted to an 
invariant manifold. 

Algorithm: perform a number of 
short time steps to let y reach
the invariant manifold. Evalulate
the time-derivative of x, and then
advance x by a “large” step.
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Projective integration scheme:

Integrate the y-equation with “small”
time steps δt<ε, for a time long
enough to reach the manifold:

given (xn, yn)

yn,m+1 = yn,m +
δt

ε
g(xn, yn,m) i = 0, . . . ,M − 1



short 
steps

long 
steps

Projective integration scheme:

Integrate the y-equation with “small”
time steps δt<ε, for a time long
enough to reach the manifold:

given (xn, yn)

yn,m+1 = yn,m +
δt

ε
g(xn, yn,m) i = 0, . . . ,M − 1

Evolve x in time “macroscopically”:

xn+1 = xn + ∆t f(xn, yn,M )

Can be generalized to higher-order schemes.
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For |x|<1/√3 the y-equation is 
bi-stable. Suppose x(0)<1/√3 and
y is near the positive fixed point.
x grows until it exceeds 1/√3, then
y jumps to the negative branch
and x decreased until it gets under -1/√3
and so on.
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For |x|<1/√3 the y-equation is 
bi-stable. Suppose x(0)<1/√3 and
y is near the positive fixed point.
x grows until it exceeds 1/√3, then
y jumps to the negative branch
and x decreased until it gets under -1/√3
and so on.

Projective integration:
yn,m+1 = yn,m +

δt

ε
(−xn + yn,m − y3

n,m)

xn+1 = xn + ∆t yn,M



Numerical results:
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This idea can even be used in cases where we do not 
know the parition of slow and fast variables 
(but we know that such a partitions exists).

In many cases, no harm if we evolve x as well in the 
first (relaxation) phase, and then project forward both 
x and y (y will tend back to the invariant manifold in 
the following relaxation phase).

This idea was proposed by Gear and Kevrekidis as a 
mean to accelerate existing “legacy codes”, by 
wrapping them with a projective integrator.



Equation-Free Closures
Kevrekidis and co-worker developed numerous algorithms 
on the premises that one does not even have equations 
(e.g., the legacy code), or, equivalently, that the equations 
are known but useless. 

The assumption is that we have control of a numerical 
solver that we can use at will (e.g., initialize with various 
initial data), but only for short time intervals (“bursts”).

The idea is to make a clever use of these short calculations 
to predict “coarse” properties of the system.



Example [Siettos et al. 2003]: 
Liquid crystalline polymers are characterized by an 
orientation unit vector u. The distribution ψ(u,t) satisfies 
the (nonlinear) Smoluchowski equation: 
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potential intensity averaging w.r.t ψ 

Goal: find the equilibrium value of a “coarse order-
parameter” as function of the potential intensity α.
(high dimensional problem)
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Algorithm:

• Step 1: select the “coarse” 
variables:

•Step 2: given X, “lift” it to many 
“microscopic” states u that are 
consistent with the value of X.

• Step 3: evolve each macroscopic 
state for a short duration T (here, 
evolve the corresponding SDE, 
and approximate ensemble 
averages by empirical averages).

• Step 4: project  the ensemble 
u(T) onto the coarse variables X.

X = 〈uzuz〉 −
1
3
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Algorithm:

• Step 1: select the “coarse” 
variables:

•Step 2: given X, “lift” it to many 
“microscopic” states u that are 
consistent with the value of X.

• Step 3: evolve each macroscopic 
state for a short duration T (here, 
evolve the corresponding SDE, 
and approximate ensemble 
averages by empirical averages).

• Step 4: project  the ensemble 
u(T) onto the coarse variables X.

X = 〈uzuz〉 −
1
3 The lift-evolve-

project cycle provides 
a “projective integrator” 
for the coarse variables 
(separation of scales 
implicity assumed).

Use it to do 
“numerical 
analysis” (e.g., find 
fixed points, bifurcation 
analysis, etc.)



The isotropic !‘‘flat’’" solution loses stability at what ap-
pears !for our scalar coarse variable" like a transcritical bi-
furcation at a critical potential Ucr , giving rise to two par-

tially oriented anisotropic solutions. The predicted critical

value of Ucr as calculated with our ‘‘coarse Brownian dy-

namics’’ procedure was found to be Ucr!5.01 and agrees
within 0.2% with the predictions of the Smoluchowski equa-

tion. A turning point was found to be on the subcritical pro-

late (S"0, nematic" branch at U*#4.6 !within 2.2% of the

predictions obtained using the discretized Smoluchowski

equation". The stability of the linearized system is monitored
by computing the norm of the eigenvalues that cross the unit

circle. The stability results here are consistent with those

dictated by bifurcation theory: solutions on the subcritical

prolate branch are unstable between U*#U#Ucr and regain

stability past the turning point !for U"U*); solutions on the

oblate branch (S#0) appear stable in these computations.
Extensive time evolution of the stochastic system shows that

the oblate branch is indeed unstable with respect to pertur-

bations that drive it to a prolate branch that does not have the

z axisymmetry imposed by our lifting step.

It is interesting to consider the apparent stability of the

computed oblate branch. We know from fully discretized

Smoluchowski simulations that this branch is unstable. It is

actually a saddle branch: most directions in phase space are

attracted to the steady states, and only the ones destabilized

at Ucr are unstable. Close to Ucr these unstable modes are so

slow, that the BD simulator, depending on its time horizon,

does not initially ‘‘see’’ the instability $see Figs. 2!b"–2!d"%,
considering this direction as practically neutral. It records the

movement along one of the slowest attracting direction and

reports the steady state as stable. Of course, if we let the

time-reporting horizon of the time stepper grow longer, the

instability will be correctly characterized. This might appear

at first sight as a defect of the approach; on the contrary, we

FIG. 1. Coarse bifurcation diagram for the nematic model for N traj!3
$105, dt!0.0005, T!1.75; solid !open" rhombs and circles correspond to
stable !unstable" stationary states. These are obtained as fixed points of the
coarse BD time stepper.

FIG. 2. Evolution of &uz
2' for different initial values, intensity potentials and stochastic integrator time steps. !a", !b" U!6.5, N traj!10

3, dt!0.001, !c" U
!5.5, N traj!10

3, dt!0.001, !d" U!5.5, N traj!3$105, dt!0.0005. The purpose of the figure is to illustrate some of the parametric and numerical effects,
but also to show that initial transients may linger enough around an unstable stationary state for the coarse time stepper to find it as a fixed point.
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System Identification

Idea: observe trajectories of the system of interest 
(experiments or simulations) and fit its behavior to an 
optimally selected low-dimensional model.

Motivating example: 
•we observe the time evolution of the conformation 

of a complex molecule. 
•We assume that the effective dynamics consist of 

rare transitions between metastable states.
•We model the transitions between essential 

conformations by a continuous-time Markov 
process. 

•Unclear what conformations are (we observe 
points in a high-dimensional space) and how many.
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Assume skew symmetric dynamics: dx

dt
= f(x, y)

dy

dt
= g(y)

A trajectory of the system is sampled
at time intervals τ. This induces a propagation operator
(“embedded Markov chain”):

(xn+1, yn+1) = Φ(xn, yn)

Denoting by Π the projection (x,y)➙x, we are interested in
the (non-Markovian) dynamics.

xn+1 = ΠΦ(xn, yn)

Goal: identity the meta-stable states in X and the 
corresponding Markov transition matrix.
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xn+1 = ΠΦ(xn, yn)

The underlying assumption is that some kind of scale 
separation exists, so that the process xn can be 
approximated by a Markov chain on X.

Key idea: metastability is associated with the 
eigenfunctions with eigenvalues close to 1. These 
eigenfunctions are approximately piece-wise constant. The 
meta-stable states are the piece-wise constant intervals.

Algorithm: (1) partition  into a finite (large) number of 
intervals. (2) construct the Markov transition matrix Pij by 
empirical counting. (3) identify the cluster of e.v. close to 1. 
(4) identify the meta-stable states. (5) project Pij onto the 
coarser partition.



Model example: a particle interacting with a “heat bath”

dx

dt
= −V ′(x) +

N∑

j=1

uj

duj

dt
= −j uj j = 1, . . . , N

V(x)



Model example: a particle interacting with a “heat bath”

dx

dt
= −V ′(x) +

N∑

j=1

uj

duj

dt
= −j uj j = 1, . . . , N

V(x)

•Evolve the system and sample x(t) at time intervals 1.



Model example: a particle interacting with a “heat bath”

dx

dt
= −V ′(x) +

N∑

j=1

uj

duj

dt
= −j uj j = 1, . . . , N

V(x)

•Evolve the system and sample x(t) at time intervals 1.
•Divide the axis into many small intervals.



Model example: a particle interacting with a “heat bath”

dx

dt
= −V ′(x) +

N∑

j=1

uj

duj

dt
= −j uj j = 1, . . . , N

V(x)

•Evolve the system and sample x(t) at time intervals 1.
•Divide the axis into many small intervals.
•Construct a transition matrix Pij by counting. 



Model example: a particle interacting with a “heat bath”

dx

dt
= −V ′(x) +

N∑

j=1

uj

duj

dt
= −j uj j = 1, . . . , N

V(x)

•Evolve the system and sample x(t) at time intervals 1.
•Divide the axis into many small intervals.
•Construct a transition matrix Pij by counting. 
•Calculate the spectrum of this matrix.



Model example: a particle interacting with a “heat bath”

dx

dt
= −V ′(x) +

N∑

j=1

uj

duj

dt
= −j uj j = 1, . . . , N

V(x)

•Evolve the system and sample x(t) at time intervals 1.
•Divide the axis into many small intervals.
•Construct a transition matrix Pij by counting. 
•Calculate the spectrum of this matrix.



Concluding Remarks



Concluding Remarks

•Active field of research. Systems of increasing 
complexity are being studied, raising the demand for 
dimension-reduction techniques.



Concluding Remarks

•Active field of research. Systems of increasing 
complexity are being studied, raising the demand for 
dimension-reduction techniques.

•Analyses are very instructive, but usually restricted to 
systems of “academic” interest.



Concluding Remarks

•Active field of research. Systems of increasing 
complexity are being studied, raising the demand for 
dimension-reduction techniques.

•Analyses are very instructive, but usually restricted to 
systems of “academic” interest.

• In “real life” one has to be content with uncontrolled 
approximations. Has to be “tailored” to the problem at 
hand. No technique is able to solve all problems.



Concluding Remarks

•Active field of research. Systems of increasing 
complexity are being studied, raising the demand for 
dimension-reduction techniques.

•Analyses are very instructive, but usually restricted to 
systems of “academic” interest.

• In “real life” one has to be content with uncontrolled 
approximations. Has to be “tailored” to the problem at 
hand. No technique is able to solve all problems.

•Many open ends (e.g., what is the mathematical 
framework for equationsless closures?)


